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Preface to the Third Edition

Beginning with the first edition of Complex Analysis, we have attempted to present
the classical and beautiful theory of complex variables in the clearest and most
intuitive form possible. The changes in this edition, which include additions to ten
of the nineteen chapters, are intended to provide the additional insights that can be
obtained by seeing a little more of the “big picture”. This includes additional related
results and occasional generalizations that place the results in a slightly broader
context.

The Fundamental Theorem of Algebra is enhanced by three related results.
Section 1.3 offers a detailed look at the solution of the cubic equation and its role in
the acceptance of complex numbers. While there is no formula for determining the
roots of a general polynomial, we added a section on Newton’s Method, a numerical
technique for approximating the zeroes of any polynomial. And the Gauss-Lucas
Theorem provides an insight into the location of the zeroes of a polynomial and
those of its derivative.

A series of new results relate to the mapping properties of analytic functions.
A revised proof of Theorem 6.15 leads naturally to a discussion of the connection
between critical points and saddle points in the complex plane. The proof of the
Schwarz Reflection Principle has been expanded to include reflection across analytic
arcs, which plays a key role in a new section (14.3) on the mapping properties of
analytic functions on closed domains. And our treatment of special mappings has
been enhanced by the inclusion of Schwarz-Christoffel transformations.

A single interesting application to number theory in the earlier editions has been
expanded into a new section (19.4) which includes four examples from additive
number theory, all united in their use of generating functions.

Perhaps the most significant changes in this edition revolve around the proof of
the prime number theorem. There are two new sections (17.3 and 18.2) on Dirichlet
series. With that background, a pivotal result on the Zeta function (18.10), which
seemed to “come out of the blue”, is now seen in the context of the analytic con-
tinuation of Dirichlet series. Finally the actual proof of the prime number theorem
has been considerably revised. The original independent proofs by Hadamard and
de la Vallée Poussin were both long and intricate. Donald Newman’s 1980 article

v



vi Preface to the Third Edition

presented a dramatically simplified approach. Still the proof relied on several nontriv-
ial number-theoretic results, due to Chebychev, which formed a separate appendix
in the earlier editions. Over the years, further refinements of Newman’s approach
have been offered, the most recent of which is the award-winning 1997 article by
Zagier. We followed Zagier’s approach, thereby eliminating the need for a separate
appendix, as the proof relies now on only one relatively straightforward result due
of Chebychev.

The first edition contained no solutions to the exercises. In the second edition,
responding to many requests, we included solutions to all exercises. This edition
contains 66 new exercises, so that there are now a total of 300 exercises. Once again,
in response to instructors’ requests, while solutions are given for the majority of
the problems, each chapter contains at least a few for which the solutions are not
included. These are denoted with an asterisk.

Although Donald Newman passed away in 2007, most of the changes in this
edition were anticipated by him and carry his imprimatur. I can only hope that
all of the changes and additions approach the high standard he set for presenting
mathematics in a lively and “simple” manner.

In an earlier edition of this text, it was my pleasure to thank my former student,
Pisheng Ding, for his careful work in reviewing the exercises. In this edition, it as
an even greater pleasure to acknowledge his contribution to many of the new results,
especially those relating to the mapping properties of analytic functions on closed
domains. This edition also benefited from the input of a new generation of students
at City College, especially Maxwell Musser, Matthew Smedberg, and Edger Sterjo.
Finally, it is a pleasure to acknowledge the careful work and infinite patience of
Elizabeth Loew and the entire editorial staff at Springer.

Joseph Bak
City College of NY

April 2010



Preface to the Second Edition

One of our goals in writing this book has been to present the theory of analytic
functions with as little dependence as possible on advanced concepts from topol-
ogy and several-variable calculus. This was done not only to make the book more
accessible to a student in the early stages of his/her mathematical studies, but also
to highlight the authentic complex-variable methods and arguments as opposed to
those of other mathematical areas. The minimum amount of background material
required is presented, along with an introduction to complex numbers and functions,
in Chapter 1.

Chapter 2 offers a somewhat novel, yet highly intuitive, definition of analyticity
as it applies specifically to polynomials. This definition is related, in Chapter 3, to
the Cauchy-Riemann equations and the concept of differentiability. In Chapters 4
and 5, the reader is introduced to a sequence of theorems on entire functions, which
are later developed in greater generality in Chapters 6–8. This two-step approach, it
is hoped, will enable the student to follow the sequence of arguments more easily.
Chapter 5 also contains several results which pertain exclusively to entire functions.

The key result of Chapters 9 and 10 is the famous Residue Theorem, which is
followed by many standard and some not-so-standard applications in Chapters 11
and 12.

Chapter 13 introduces conformal mapping, which is interesting in its own right
and also necessary for a proper appreciation of the subsequent three chapters. Hydro-
dynamics is studied in Chapter 14 as a bridge between Chapter 13 and the Riemann
Mapping Theorem. On the one hand, it serves as a nice application of the theory
developed in the previous chapters, specifically in Chapter 13. On the other hand,
it offers a physical insight into both the statement and the proof of the Riemann
Mapping Theorem.

In Chapter 15, we use “mapping” methods to generalize some earlier results.
Chapter 16 deals with the properties of harmonic functions and the related theory of
heat conduction.

A second goal of this book is to give the student a feeling for the wide applicability
of complex-variable techniques even to questions which initially do not seem to
belong to the complex domain. Thus, we try to impart some of the enthusiasm
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viii Preface to the Second Edition

apparent in the famous statement of Hadamard that "the shortest route between
two truths in the real domain passes through the complex domain." The physical
applications of Chapters 14 and 16 are good examples of this, as are the results
of Chapter 11. The material in the last three chapters is designed to offer an even
greater appreciation of the breadth of possible applications. Chapter 17 deals with
the different forms an analytic function may take. This leads directly to the Gamma
and Zeta functions discussed in Chapter 18. Finally, in Chapter 19, a potpourri of
problems–again, some classical and some novel–is presented and studied with the
techniques of complex analysis.

The material in the book is most easily divided into two parts: a first course
covering the materials of Chapters 1–11 (perhaps including parts of Chapter 13), and
a second course dealing with the later material. Alternatively, one seeking to cover
the physical applications of Chapters 14 and 16 in a one-semester course could omit
some of the more theoretical aspects of Chapters 8, 12, 14, and 15, and include them,
with the later material, in a second-semester course.

The authors express their thanks to the many colleagues and students whose
comments were incorporated into this second edition. Special appreciation is due
to Mr. Pi-Sheng Ding for his thorough review of the exercises and their solutions.
We are also indebted to the staff of Springer-Verlag Inc. for their careful and patient
work in bringing the manuscript to its present form.

Joseph Bak
Donald J. Newmann
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Chapter 1
The Complex Numbers

Introduction

Numbers of the form a + b
√−1, where a and b are real numbers—what we call

complex numbers—appeared as early as the 16th century. Cardan (1501–1576)
worked with complex numbers in solving quadratic and cubic equations. In the 18th
century, functions involving complex numbers were found by Euler to yield solutions
to differential equations. As more manipulations involving complex numbers were
tried, it became apparent that many problems in the theory of real-valued functions
could be most easily solved using complex numbers and functions. For all their util-
ity, however, complex numbers enjoyed a poor reputation and were not generally
considered legitimate numbers until the middle of the 19th century. Descartes, for
example, rejected complex roots of equations and coined the term “imaginary” for
such roots. Euler, too, felt that complex numbers “exist only in the imagination” and
considered complex roots of an equation useful only in showing that the equation
actually has no solutions.

The wider acceptance of complex numbers is due largely to the geometric repre-
sentation of complex numbers which was most fully developed and articulated by
Gauss. He realized it was erroneous to assume “that there was some dark mystery
in these numbers.” In the geometric representation, he wrote, one finds the “intu-
itive meaning of complex numbers completely established and more is not needed
to admit these quantities into the domain of arithmetic.”

Gauss’ work did, indeed, go far in establishing the complex number system on
a firm basis. The first complete and formal definition, however, was given by his
contemporary, William Hamilton. We begin with this definition, and then consider
the geometry of complex numbers.

1.1 The Field of Complex Numbers

We will see that complex numbers can be written in the form a + bi , where a and b
are real numbers and i is a square root of −1. This in itself is not a formal definition,
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2 1 The Complex Numbers

however, since it presupposes a system in which a square root of −1 makes sense.
The existence of such a system is precisely what we are trying to establish. Moreover,
the operations of addition and multiplication that appear in the expression a + bi
have not been defined. The formal definition below gives these definitions in terms
of ordered pairs.

1.1 Definition

The complex field C is the set of ordered pairs of real numbers (a, b) with addition
and multiplication defined by

(a, b) + (c, d) = (a + c, b + d)

(a, b)(c, d) = (ac − bd, ad + bc).

The associative and commutative laws for addition and multiplication as well as
the distributive law follow easily from the same properties of the real numbers. The
additive identity, or zero, is given by (0, 0), and hence the additive inverse of (a, b)
is (−a,−b). The multiplicative identity is (1, 0). To find the multiplicative inverse
of any nonzero (a, b) we set

(a, b)(x, y) = (1, 0),

which is equivalent to the system of equations:

ax − by = 1

bx + ay = 0

and has the solution

x = a

a2 + b2
, y = −b

a2 + b2
.

Thus the complex numbers form a field.
Suppose now that we associate complex numbers of the form (a, 0) with the

corresponding real numbers a. It follows that

(a1, 0) + (a2, 0) = (a1 + a2, 0) corresponds to a1 + a2

and that
(a1, 0)(a2, 0) = (a1a2, 0) corresponds to a1a2.

Thus the correspondence between (a, 0) and a preserves all arithmetic operations
and there can be no confusion in replacing (a, 0) by a. In that sense, we say that the
set of complex numbers of the form (a, 0) is isomorphic with the set of real numbers,
and we will no longer distinguish between them. In this manner we can now say that
(0, 1) is a square root of −1 since

(0, 1)(0, 1) = (−1, 0) = −1
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and henceforth (0, 1) will be denoted i . Note also that

a(b, c) = (a, 0)(b, c) = (ab, ac),

so that we can rewrite any complex number in the following way:

(a, b) = (a, 0) + (0, b) = a + bi.

We will use the latter form throughout the text.
Returning to the question of square roots, there are in fact two complex square

roots of −1: i and −i . Moreover, there are two square roots of any nonzero complex
number a + bi . To solve

(x + iy)2 = a + bi

we set

x2 − y2 = a

2xy = b

which is equivalent to

4x4 − 4ax2 − b2 = 0

y = b/2x .

Solving first for x2, we find the two solutions are given by

x = ±
√

a + √
a2 + b2

2

y = b

2x
= ±

√
−a + √

a2 + b2

2
· (sign b)

where

sign b =
{

1 if b ≥ 0

−1 if b < 0.

EXAMPLE

i. The two square roots of 2i are 1 + i and −1 − i .
ii. The square roots of −5 − 12i are 2 − 3i and −2 + 3i . ♦

It follows that any quadratic equation with complex coefficients admits a solution
in the complex field. For by the usual manipulations,

az2 + bz + c = 0 a, b, c ∈ C, a �= 0
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is seen to be equivalent to

(
z + b

2a

)2

= b2 − 4ac

4a2 ,

and hence has the solutions

z = −b ± √
b2 − 4ac

2a
. (1)

In Chapter 5, we will see that quadratic equations are not unique in this respect:
every nonconstant polynomial with complex coefficients has a zero in the complex
field.

One property of real numbers that does not carry over to the complex plane is the
notion of order. We leave it as an exercise for those readers familiar with the axioms
of order to check that the number i cannot be designated as either positive or negative
without producing a contradiction.

1.2 The Complex Plane

Thinking of complex numbers as ordered pairs of real numbers (a, b) is closely
linked with the geometric interpretation of the complex field, discovered by Wallis,
and later developed by Argand and by Gauss. To each complex number a + bi
we simply associate the point (a, b) in the Cartesian plane. Real numbers are thus
associated with points on the x-axis, called the real axis while the purely imaginary
numbers bi correspond to points on the y-axis, designated as the imaginary axis.

Addition and multiplication can also be given a geometric interpretation. The sum
of z1 and z2 corresponds to the vector sum: If the vector from 0 to z2 is shifted parallel
to the x and y axes so that its initial point is z1, the resulting terminal point is z1 + z2.
If 0, z1 and z2 are not collinear this is the so-called parallelogram law; see below.

y

x

z1 + z2

z1 + z2
0

y

x0

z1 z1

z2

z2

The geometric method for obtaining the product z1z2 is somewhat more compli-
cated. If we form a triangle with two sides given by the vectors (originating from
0 to) 1 and z1 and then form a similar triangle with the same orientation and the
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vector z2 corresponding to the vector 1, the vector which then corresponds to z1 will
be z1z2.

This can be verified geometrically but will be most transparent when we introduce
polar coordinates later in this section. For the moment, we observe that multiplication
by i is equivalent geometrically to a counterclockwise rotation of 90◦.

z1 z2

0 1 0 1

z1

z2

z

iz

i

With z = x + iy, the following terms are commonly used:

Re z, the real part of z, is x ;
Im z, the imaginary part of z, is y (note that Im z is a real number);
z̄, the conjugate of z, is x − iy.

Geometrically, z̄ is the mirror image of z reflected across the real axis.

z

z–

Re z
0

|z|, the absolute value or modulus of z, is equal to
√

x2 + y2; that is, it is the
length of the vector z. Note also that |z1 − z2| is the (Euclidean) distance between
z1 and z2. Hence we can think of |z2| as the distance between z1 + z2 and z1 and
thereby obtain a proof of the triangle inequality:

|z1 + z2| ≤ |z1| + |z2|.
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An algebraic proof of the inequality is outlined in Exercise 8.

0

z1 + z2

|z1 + z2|

z1

|z1|

|z2|

Arg z, the argument of z, defined for z �= 0, is the angle which the vector (orig-
inating from 0) to z makes with the positive x-axis. Thus Arg z is defined (modulo
2π) as that number θ for which

cos θ = Re z

|z| ; sin θ = Im z

|z| .

0 |Re z|

|Im z||z|

z

θ

EXAMPLES

i. The set of points given by the equation Re z > 0 is represented geometrically by
the right half-plane.

ii. {z : z = z̄} is the real line.
iii. {z : − θ < Arg z < θ} is an angular sector (wedge) of angle 2θ .
iv. {z : |Arg z − π/2| < π/2} = {z : Im z > 0}.
v. {z : |z + 1| < 1} is the disc of radius 1 centered at −1. ♦
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0
(i)

θ

0
(iii)

0

(v)

–1
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A nonzero complex number is completely determined by its modulus and
argument. If z = x + iy with |z| = r and Arg z = θ , it follows that x = r cos θ ,
y = r sin θ and

z = r(cos θ + i sin θ).

We abbreviate cos θ + i sin θ as cis θ . In this context, r and θ are called the polar
coordinates of z and r cis θ is called the polar form of the complex number z. This
form is especially handy for multiplication. Let z1 = r1 cis θ1, z2 = r2 cis θ2. Then

z1z2 = r1r2 cis θ1 cis θ2 = r1r2 cis(θ1 + θ2),

since

(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2)

= cis(θ1 + θ2).

Thus, if z is the product of two complex numbers, |z| is the product of their moduli
and Arg z is the sum of their arguments (modulo 2π). (This can be used to verify
the geometric construction for z1z2 given at the beginning of this section.) Similarly
z1/z2 can be obtained by dividing the moduli and subtracting the arguments:

z1

z2
= r1

r2
cis(θ1 − θ2).

It follows by induction that if z = r cis θ and n is any integer,

zn = rn cis nθ. (1)

Identity (1) is especially handy for solving “pure” equations of the form zn = z0.

EXAMPLE

To find the cube roots of 1, we write z3 = 1 in the polar form

r3 cis 3θ = 1 cis 0,

which is satisfied if and only if

r = 1, 3θ = 0 (modulo 2π).

Hence the three solutions are given by

z1 = cis 0, z2 = cis
2π

3
, z3 = cis

4π

3
,
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or in rectangular (x, y) coordinates

z1 = 1, z2 = −1

2
+ i

√
3

2
, z3 = −1

2
− i

√
3

2
.

The polar form of the three cube roots reveals that they are the vertices of an equilateral
triangle inscribed in the unit circle. Similarly the n-th roots of 1 are located at the
vertices of the regular n-gon inscribed in the unit circle with one vertex at z = 1. For
example, the fourth roots of 1 are ±1 and ±i . ♦

i

– i

–1
1

1.3 The Solution of the Cubic Equation

As we mentioned at the beginning of this chapter, complex numbers were applied to
the solution of quadratic and cubic equations as far back as the 16th century. While
neither of these applications was sufficient to gain a wide acceptance of complex
numbers, there was a fundamental difference between the two. In the case of quadratic
equations, it may have seemed interesting that solutions could always be found among
the complex numbers, but this was generally viewed as nothing more than an oddity
at best. After all, if a quadratic equation (with real coefficients) had no real solutions,
it seemed just as reasonable to simply say that there were no solutions as to describe
so-called solutions in terms of some imaginary number.

Cubic equations presented a much more tantalizing situation. For one thing, every
cubic equation with real coefficients has a real solution. The fact that such a real
solution could be found through the use of complex numbers showed that the complex
numbers were at least useful, even if somewhat illegitimate. In fact, the solution of
the cubic equation was followed by a string of other applications which demonstrated
the uncanny ability of complex numbers to play a role in the solution of problems
involving real numbers and functions.

Let’s see how complex numbers were first applied to cubic equations. There is
obviously no loss in assuming that the general cubic equation:

ax3 + bx2 + cx + d = 0
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has leading coefficient a = 1. The equation can then be further reduced to the simpler
form:

x3 + px + q = 0 (1)

if we change x into x − b
3 . The first recorded solution for cubic equations involved

a method for finding the real solution of the above “reduced” or “depressed” cubic
in the form:

x3 + px = q (2)

To the modern reader, of course, equation (2) is, for all practical purposes, identical
to equation (1). But in the early 16th century, mathematicians were not entirely
comfortable with negative numbers either, and it was assumed that the coefficients
p and q in equation (2) denoted positive real numbers. In fact, in that case, f (x) =
x3 + px is a monotonically increasing function, so that equation (2) has exactly one
positive real solution. To find that solution, del Ferro (1465–1526) suggested setting
x = u + v, so that (2) could be rewritten as:

u3 + v3 + (3uv + p)(u + v) = q (3)

The solution to (3) can be found, then, by solving the pair of equations: 3uv+p = 0
and u3 + v3 = q . Using the first equation to express v in terms of u, and substituting
into the second equation leads to:

u6 − u3q − p3

27
= 0

which is a quadratic equation for u3 and has the solutions

u3 = q ± √
q2 + 4 p3/27

2
.

The identical formula can be obtained for v3, and since u3 + v3 = q ,

x = u + v = 3

√
q + √

q2 + 4 p3/27

2
+ 3

√
q − √

q2 + 4 p3/27

2
. (4)

or, as del Ferro would have written it to avoid the cube root of a negative number,

x = u + v = 3

√√
q2 + 4 p3/27 + q

2
− 3

√√
q2 + 4 p3/27 − q

2

For example, if p = 6 and q = 20, we find x = 3
√

6
√

3 + 10 − 3
√

6
√

3 − 10 or
(check this!) x = 2.

Although (4) was originally intended to be applied with p, q > 0, it can ob-
viously be applied equally well for any values of p and q . Changing q into −q
would simply cause the same change in x . For example, the unique real solution
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of the equation x3 + 6x = −20 is x = −2. Changing p into a negative number,
however, can introduce complex values. To be precise, if q2 + 4 p3/27 < 0; i.e., if
4 p3 < −27q2, equation (4) gives the solution as the sum of the cube roots of two com-
plex conjugates. For example, if we apply (4) to the equation x3 −6x = 4, we obtain

x = 3
√

2 + 2i + 3
√

2 − 2i (5)

Since we saw (in the last section) that we can calculate the three cube roots of any
complex number using its polar form, and since the cube roots of a conjugate of any
complex number are the conjugates of its cube roots, we realize that (5) actually does
give the three real roots of x3 − 6x = 4.

To Cardan, however, who published formula (4) in his Ars Magna(1545), the case:
4 p3 < −27q2 presented a dilemma. We leave it as an exercise to verify that equation
(2) has three real roots if and only if 4 p3 < −27q2. Ironically, then, precisely in
the case when all three solutions are real, if formula (4) is applicable at all, it gives
the solutions in terms of cube roots of complex numbers! Moreover, Cardan was
willing to try a direct approach to finding the cube roots of a complex number (as
we found the square roots of any complex number in section 1), but solving the
equation (x + iy)3 = a + bi by equating real and imaginary parts led to an equation
no less complicated than the original cubic. Cardan, therefore, labeled this situation
the “irreducible” case of the depressed cubic equation.

Fortunately, however, the idea of applying (4) even in the “irreducible” case, was
never laid to rest. Bombelli’s Algebra (1574) included the equation x3 = 15x + 4,
which led to the mysterious solution

x = 3
√

2 + 11i + 3
√

2 − 11i (6)

By a direct approach, combined with the assumption that the cube roots in (6) would
involve integral real and imaginary parts, Bombelli was able to show that formula (6)
did “contain” the solution x = 4 in the form of (2 + i) + (2 − i). He did not suggest
that (6) might also contain the other two real roots nor did he generalize the method.
In fact, over a hundred years later, the issue was still not resolved. Thus Leibniz
(1646–1716) continued to question how “a quantity could be real when imaginary
or impossible numbers were used to express it”. But he too could not let the matter
go. Among unpublished papers found after his death, there were several identities
similar to

3
√

36 + √−2000 + 3
√

36 − √−2000 = −6

which he found by applying (4) to: x3 − 48x − 72 = 0.
So complex numbers maintained their presence, albeit as second-class citizens, in

the world of numbers until the early 19th century when the spread of their geometric
interpretation began the process of their acceptance as first-class citizens.
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1.4 Topological Aspects of the Complex Plane

I. Sequences and Series The concept of absolute value can be used to define the
notion of a limit of a sequence of complex numbers.

1.2 Definition

The sequence z1, z2, z3, . . . converges to z if the sequence of real numbers |zn − z|
converges to 0. That is, zn → z if |zn − z| → 0.

Geometrically, zn → z if each disc about z contains all but finitely many of the
members of the sequence {zn}.

Since
|Re z|, |Im z| ≤ |z| ≤ |Re z| + |Im z|,

zn → z if and only if Re zn → Re z and Im zn → Im z.

EXAMPLES

1. zn → 0 if |z| < 1 since |zn − 0| = |z|n → 0.

2.
n

n + i
→ 1 since

∣∣∣∣ n

n + i
− 1

∣∣∣∣ =
∣∣∣∣ −i

n + i

∣∣∣∣ = 1√
n2 + 1

→ 0. ♦

1.3 Definition

{zn} is called a Cauchy sequence if for each ε > 0 there exists an integer N such that
n, m > N implies |zn − zm | < ε.

1.4 Proposition

{zn} converges if and only if {zn} is a Cauchy sequence.

Proof

If zn → z, then Re zn → Re z, Im zn → Im z and hence {Re zn} and {Im zn} are
Cauchy sequences. But since

|zn − zm | ≤ |Re(zn − zm)| + |Im (zn − zm)|
= |Re zn − Re zm | + |Im zn − Im zm |,

{zn} is also a Cauchy sequence.
Conversely, if {zn} is a Cauchy sequence so are the real sequences {Re zn} and

{Im zn}. Hence both {Re zn} and {Im zn} converge, and thus {zn} converges. �

An infinite series
∑∞

k=1 zk is said to converge if the sequence {sn} of partial sums,
defined by sn = z1 + z2 + · · · zn , converges. If so, the limit of the sequence is called
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the sum of the series. The basic properties of infinite series listed below will be
familiar from the theory of real series.

i. The sum and the difference of two convergent series are convergent.
ii. A necessary condition for

∑∞
k=1 zk to converge is that zn → 0 as n → ∞.

iii. A sufficient condition for
∑∞

k=1 zk to converge is that
∑∞

k=1 |zk | converges. When∑∞
k=1 |zk | converges, we will say

∑∞
k=1 zk is absolutely convergent.

Property (iii), which will be important in later chapters, follows from Proposi-
tion 1.4. For if

∑∞
k=1 |zk | converges and tn = |z1| + |z2| + · · · + |zn | then {tn} is a

Cauchy sequence. But then so is the sequence {sn} given by sn = z1 + z2 + · · ·+ zn ,
since

|sm − sn | = |zn+1 + zn+2 + · · · + zm |
≤ |zn+1| + |zn+2| + · · · + |zm | = |tm − tn|

by the triangle inequality. Hence
∑∞

k=1 zk converges.

EXAMPLES

1.
∑∞

k=1
i k

k2 + i
converges since

∣∣∣∣ i k

k2 + i

∣∣∣∣ = 1√
k4 + 1

and since
∞∑

k=1

1√
k4 + 1

converges.

2.
∑∞

k=1
1

k + i
diverges, since

1

k + i
= k − i

k2 + 1
, which implies that

∞∑
k=1

Re

(
1

k + i

)
diverges. ♦

II. Classification of Sets in the Complex Plane We give some definitions relating
to planar sets.

1.5 Definitions

D(z0; r) denotes the open disc of radius r > 0 centered at z0; i.e., D(z0; r) =
{z : |z − z0| < r}.

D(z0; r) is also called a neighborhood (or r -neighborhood) of z0.
C(z0; r) is the circle of radius r > 0 centered at z0.
A set S is said to be open if for any z ∈ S, there exists δ > 0 such that D(z; δ) ⊂ S.
For any set S, S̃ = C\S denotes the complement of S; i.e., S̃ = {z ∈ C : z /∈ S}.
A set is closed set if its complement is open. Equivalently, S is closed if {zn} ⊂ S

and zn → z imply z ∈ S.
∂S, the boundary of S, is defined as the set of points whose δ-neighborhoods have

a nonempty intersection with both S and S̃, for every δ > 0.
S̄, the closure of S, is given by S̄ = S ∪ ∂S.
S is bounded if it is contained in D(0; M) for some M > 0.
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Sets that are closed and bounded are called compact.
S is said to be disconnected if there exist two disjoint open sets A and B whose

union contains S while neither A nor B alone contains S. If S is not disconnected, it
is called connected.

[z1, z2] denotes the line segment with endpoints z1 and z2.
A polygonal line is a finite union of line segments of the form [z0, z1] ∪ [z1, z2] ∪

[z2, z3] . . . ∪ [zn−1, zn].
If any two points of S can be connected by a polygonal line contained in S, S is

said to be polygonally connected.

z1

z2

It can be shown that a polygonally connected set is connected. The converse,
however, is false. For example, the set of points z = x + iy with y = x2 is clearly
connected but is not polygonally connected since the set contains no straight line
segments. In fact there are even connected sets whose points cannot be connected to
one another by any curve in the set (see Exercise 23). On the other hand, for open
sets, connectedness and polygonal connectedness are equivalent.

1.6 Definition

An open connected set will be called a region.

1.7 Proposition

A region S is polygonally connected.

Proof

Suppose z0 ∈ S. Let A be the set of points of S which can be polygonally connected
to z0 in S and let B represent the set of points in S which cannot. Since any point z
can be connected to any other point in D(z; δ), it follows that A is open. Similarly
B is open. For if any point in a disc about z could be connected to z0, then z could
be connected to z0. Now S is connected, S = A ∪ B and A is nonempty; hence we
must conclude that B is empty. Finally, since every point in S can be connected to
z0, every pair of points can be connected to each other by a polygonal line in S. �

III Continuous Functions

1.8 Definition

A complex valued function f (z) defined in a neighborhood of z0 is continuous at z0
if zn → z0 implies that f (zn) → f (z0). Alternatively, f is continuous at z0 if for
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each ε > 0 there is some δ > 0 such that |z−z0| < δ implies that | f (z)− f (z0)| < ε.
f is continuous in a domain D if for each sequence {zn} ⊂ D and z ∈ D such that
zn → z, we have f (zn) → f (z).

If we split f into its real and imaginary parts

f (z) = f (x, y) = u(x, y) + iv(x, y),

where u and v are real-valued, it is clear that f is continuous if and only if u and v
are continuous functions of (x, y). Thus, for example, any polynomial

P(x, y) =
m∑
j=1

n∑
k=1

ak j x
k y j

is continuous in the whole plane. Similarly

1

z
= x

x2 + y2 − i
y

x2 + y2

is continuous in the “punctured plane” {z : z �= 0}. It follows also that the sum,
product, and quotient (with nonzero denominator) of continuous functions are con-
tinuous.

We say f ∈ Cn if the real and imaginary parts of f both have continuous partial
derivatives of the n-th order.

A sequence of functions { fn} converges to f uniformly in D if for each ε > 0,
there is an N > 0 such that n > N implies | fn(z) − f (z)| < ε for all z ∈ D. Again,
by referring to the real and imaginary parts of { fn}, it is clear that the uniform limit
of continuous functions is continuous.

1.9 M-Test

Suppose fk is continuous in D, k = 1, 2, . . .. If | fk(z)| ≤ Mk throughout D and if∑∞
k=1 Mk converges, then

∑∞
k=1 fk(z) converges to a function f which is continuous

in D.

Proof

The convergence of
∑∞

k=1 fk(z) is immediate. Moreover, for each ε > 0, we can
choose N so that∣∣∣∣∣ f (z) −

n∑
k=1

fk(z)

∣∣∣∣∣ =
∣∣∣∣∣∣

∞∑
n+1

fk(z)

∣∣∣∣∣∣ ≤ Mn+1 + Mn+2 + · · · < ε

for n ≥ N . Hence the convergence is uniform and f is continuous. �
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EXAMPLE

f (z) = ∑∞
k=1 kzk is continuous in D : |z| ≤ 1

2 since

|kzk | ≤ k

2k
in D and

∞∑
k=1

k

2k

converges. (See Exercise 21.) ♦
Recall that a continuous function maps compact/connected sets into compact/

connected sets. None of the other properties listed above, though, are preserved
under continuous mappings. For example f (z) = Re z maps the open set C into
the real line which is not open. The function g(z) = 1/z maps the bounded set:
0 < |z| < 1 onto the unbounded set: |z| > 1.

Most of the key results in subsequent chapters will concern properties of (a certain
class of) functions defined on a region. We note that, arguing as in the proof of
Proposition 1.7, we could show that any two points in a region can be connected by
a polygonal line containing only horizontal and vertical line segments. For future
reference we will introduce the term polygonal path to denote such a polygonal line.

One important result regarding real-valued functions on a region is given below.

1.10 Theorem

Suppose u(x, y) has partial derivatives ux and uy that vanish at every point of a
region D. Then u is constant in D.

Proof

Let (x1, y1) and (x2, y2) be two points of D. Then, as noted above, they can be
connected by a polygonal path that is contained in D. Any two successive vertices of
the path represent the end-points of a horizontal or vertical segment. Hence, by the
Mean-Value Theorem for one real variable, the change in u between these vertices is
given by the value of a partial derivative of u somewhere between the end-points times
the difference in the non-identical coordinates of the endpoints. Since, however, ux

and uy vanish identically in D, the change in u is 0 between each pair of successive
vertices; hence u(x1, y1) = u(x2, y2). �

1.5 Stereographic Projection; The Point at Infinity

The complex numbers can also be represented by the points on the surface of a
punctured sphere. Let

∑
=

{
(ξ, η, ζ ) : ξ2 + η2 +

(
ζ − 1

2

)2

= 1

4

}
; (1)
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that is, let
∑

be the sphere in Euclidean (ξ, η, ζ ) space with distance 1
2 from (0, 0, 1

2 ).
Suppose, moreover, that the plane ζ = 0 coincides with the complex plane C, and that
the ξ and η axes are the x and y axes, respectively. To each (ξ, η, ζ ) ∈ ∑

we associate
the complex number z where the ray from (0, 0, 1) through (ξ, η, ζ ) intersects C.
This establishes a 1-1 correspondence, known as stereographic projection, between
C and the points of

∑
other than (0, 0, 1). Formulas governing this correspondence

can be derived as follows. Since (0, 0, 1), (ξ, η, ζ ) and (x, y, 0) are collinear,

x

ξ
= y

η
= 1

1 − ζ

(0, 0, 1)

(0, 0, 0)

(  ,   ,   )

(x, y, 0)

 = yη

η

 = xξ

ξ

ζ

ζ

so that

x = ξ

1 − ζ
; y = η

1 − ζ
. (2)

We leave it as an exercise to show that the equations (1) and (2) can be solved for
ξ, η, ζ in terms of x , y as

ξ = x

x2 + y2 + 1
; η = y

x2 + y2 + 1
; ζ = x2 + y2

x2 + y2 + 1
. (3)

Now suppose that {σk} = {(ξk, ηk , ζk)} is a sequence of points of
∑

which converges
to (0, 0, 1) and let {zk} be the corresponding sequence in C. By (2),

x2 + y2 = ξ2 + η2

(1 − ζ )2 = ζ

1 − ζ
,

so that asσk → (0, 0, 1), |zk| → ∞. Conversely, it follows from (3) that if |zk| → ∞,
σk → (0, 0, 1). Loosely speaking, this suggests that the point (0, 0, 1) on

∑
cor-

responds to ∞ in the complex plane. We can make this more precise by formally
adjoining to C a “point at infinity” and defining its neighborhoods as the sets in
C corresponding to the spherical neighborhoods of (0, 0, 1). (See Exercise 24.)
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While we will not examine the resulting “extended plane” in greater detail, we will
adopt the following convention.

1.11 Definition

We say {zk} → ∞ if |zk | → ∞; i.e., |zk | → ∞ if for any M > 0, there exists
an integer N such that k > N implies |zk| > M . Similarly, we say f (z) → ∞ if
| f (z)| → ∞.

For future reference, we note the connection between circles on
∑

and circles
in C. By a circle on

∑
, we mean the intersection of

∑
with a plane of the form

Aξ + Bη+Cζ = D. According to (3), if S is such a circle and T is the corresponding
set in C,

(C − D)(x2 + y2) + Ax + By = D (4)

for (x, y) ∈ T . Note that if C �= D, (4) is the equation of a circle. If C = D, (4)
represents a line. Since C = D if and only if S intersects (0, 0, 1), we have the
following proposition.

1.12 Proposition

Let S be a circle on
∑

and let T be its projection on C. Then

a. if S contains (0, 0, 1), T is a line;
b. if S doesn’t contain (0, 0, 1), T is a circle.

The converse of Proposition 1.12 is also valid. We leave its proof as an exercise.
(See Exercise 25.)

Exercises

1. Express in the form a + bi:

a.
1

6 + 2i
b.

(2 + i)(3 + 2i)

1 − i

c.

(
− 1

2
+ i

√
3

2

)4

d. i2, i3, i4, i5, . . .

2. Find (in rectangular form) the two values of
√−8 + 6 i .

3. Solve the equation z2 + √
32 iz − 6 i = 0.

4. Prove the following identities:
a. z1 + z2 = zl + z2.
b. z1z2 = z1 · z2.
c. P(z) = P(z̄), for any polynomial P with real coefficients.
d. ¯̄z = z.

5. Suppose P is a polynomial with real coefficients. Show that P(z) = 0 if and only if P(z̄) = 0 [i.e.,
zeroes of “real” polynomials come in conjugate pairs].

6. Verify that |z2| = |z|2 using rectangular coordinates and then using polar coordinates.
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7. Show
a. |zn | = |z|n .
b. |z|2 = zz̄.
c. |Re z|, |Im z| ≤ |z| ≤ |Re z| + |Im z|.

(When is equality possible?)

8. a. Fill in the details of the following proof of the triangle inequality:

|z1 + z2|2 = (z1 + z2)(z1 + z2)

= |z1|2 + |z2|2 + z1z2 + z1z2

= |z1|2 + |z2|2 + 2 Re(z1z2)

≤ |z1|2 + |z2|2 + 2|z1||z2|
= (|z1| + |z2|)2.

b. When can equality occur?
c. Show: |z1 − z2| ≥ |z1| − |z2|.

9.* It is an interesting fact that a product of two sums of squares is itself a sum of squares. For example,

(12 + 22)(32 + 42) = 125 = 52 + 102 = 22 + 112.

a. Prove the result using complex algebra. That is, show that for any two pairs of integers {a, b} and
{c, d}, we can find integers u, v with

(a2 + b2)(c2 + d2) = u2 + v2

b. Show that, if a, b, c, d are all nonzero and at least one of the sets {a2, b2} and {c2, d2} consists
of distinct positive integers, then we can find u2, v2 as above with u2 and v2 both positive.

c. Show that, if a, b, c, d are all nonzero and both of the sets {a2, b2} and {c2, d2} consist of distinct
positive integers, then there are two different sets {u2, v2} and {s2, t2} with

(a2 + b2)(c2 + d2) = u2 + v2 = s2 + t2.

d. Give a geometric interpretation and proof of the results in b) and c), above.

10.* Prove: |z1 + z2|2+ |z1 − z2|2 = 2(|z1|2 + |z2|2) and interpret the result geometrically.

11. Let z = x + iy. Explain the connection between Arg z and tan−1(y/x). (Warning: they are not
identical.)

12. Solve the following equations in polar form and locate the roots in the complex plane:
a. z6 = 1.
b. z4 = −1.
c. z4 = −1 + √

3i .

13. Show that the n-th roots of 1 (aside from 1) satisfy the “cyclotomic” equation zn−1 + zn−2 + · · · +
z + 1 = 0. [Hint: Use the identity zn − 1 = (z − 1)(zn−1 + zn−2 + · · · + 1).]

14. Suppose we consider the n − 1 diagonals of a regular n-gon inscribed in a unit circle obtained by
connecting one vertex with all the others. Show that the product of their lengths is n. [Hint: Let the
vertices all be connected to 1 and apply the previous exercise.]
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15. Describe the sets whose points satisfy the following relations. Which of the sets are regions?

a. |z − i| ≤ 1. b.

∣∣∣∣ z − 1

z + 1

∣∣∣∣ = 1.

c. |z − 2| > |z − 3|. d. |z| < 1 and Im z > 0.

e.
1

z
= z̄. f. |z|2 = Im z.

g. |z2 − 1| < 1. [Hint: Use polar coordinates.]

16.* Identify the set of points which satisfy
a. |z| = Rez + 1 b. |z − 1| + |z + 1| = 4 c. zn−1 = z

17. Let Arg w denote that value of the argument between −π and π (inclusive). Show that

Arg

(
z − 1

z + 1

)
=

{
π/2 if Im z > 0

−π/2 if Im z < 0

where z is a point on the unit circle |z| = 1.

18.* Find the three roots of x3 − 6x = 4 by finding the three real-valued possibilities for 3√2 + 2i +
3√2 − 2i .(Note: You can find the three cube roots of 2 + 2i , or you can simplify the problem by first

applying the identity: a + b = (a3 + b3)/(a2 − ab + b2).

19.* Prove that x3 + px = q has three real roots if and only if 4p3 < −27q2. (Hint: Find the local
minimum and local maximum values of x3 + px − q.)

20.* a. Let P(z) = 1 + 2z + 3z2 + · · · + nzn−1. By considering (1 − z)P(z), show that all the zeroes
of P(z) are inside the unit disc.

b. Show that the same conclusion applies to any polynomial of the form: a0 +a1z+a2z2+···+an zn,

with all ai real and 0 ≤ a0 ≤ a1 ≤ · · · ≤ an

21. Show that

a. f (z) = ∑∞
k=0 kzk is continuous in |z| < 1.

b. g(z) = ∑∞
k=1 1/(k2 + z) is continuous in the right half-plane Re z > 0.

22. Prove that a polygonally connected set is connected.

23. Let

S =
{

x + iy : x = 0 or x > 0, y = sin
1

x

}
.

Show that S is connected, even though there are points in S that cannot be connected by any curve
in S.

24. Let S = {(ξ, η, ζ ) ∈ ∑
: ζ ≥ ζ0}, where 0 < ζ0 < 1 and let T be the corresponding set in C. Show

that T is the exterior of a circle centered at 0.

25. Suppose T ⊂ C. Show that the corresponding set S ⊂ ∑
is

a. a circle if T is a circle.
b. a circle minus (0, 0, 1) if T is a line.

26. Let P be a nonconstant polynomial in z. Show that P(z) → ∞ as z → ∞.

27. Suppose that z is the stereographic projection of (ξ, η, ζ ) and 1/z is the projection of (ξ ′, η′, ζ ′).
a. Show that (ξ ′, η′, ζ ′) = (ξ,−η, 1 − ζ ).
b. Show that the function 1/z, z ∈ C, is represented on

∑
by a 180◦ rotation about the diameter

with endpoints (− 1
2 , 0, 1

2 ) and ( 1
2 , 0, 1

2 ).

28. Use exercise (27) to show that f (z) = 1/z maps circles and lines in C onto other circles and lines.



Chapter 2
Functions of the Complex Variable z

Introduction

We wish to examine the notion of a “function of z” where z is a complex variable. To
be sure, a complex variable can be viewed as nothing but a pair of real variables so
that in one sense a function of z is nothing but a function of two real variables. This
was the point of view we took in the last section in discussing continuous functions.
But somehow this point of view is too general. There are some functions which are
“direct” functions of z = x + iy and not simply functions of the separate pieces x
and y.

Consider, for example, the function x2 − y2 + 2i xy. This is a direct function of
x + iy since x2 − y2 + 2i xy = (x + iy)2; it is the function squaring. On the other
hand, the only slightly different-looking function x2 + y2 − 2i xy is not expressible
as a polynomial in x + iy. Thus we are led to distinguish a special class of functions,
those given by direct or explicit or analytic expressions in x + iy. When we finally
do evolve a rigorous definition, these functions will be called the analytic functions.
For now we restrict our attention to polynomials.

2.1 Analytic Polynomials

2.1 Definition

A polynomial P(x, y) will be called an analytic polynomial if there exist (complex)
constants αk such that

P(x, y) = α0 + α1(x + iy) + α2(x + iy)2 + · · · + αN (x + iy)N .

We will then say that P is a polynomial in z and write it as

P(z) = α0 + α1z + α2z2 + · · · + αN zN .

21
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Indeed, x2 − y2 + 2i xy is analytic. On the other hand, as we mentioned above,
x2 + y2 − 2i xy is not analytic, and we now prove this assertion. So suppose

x2 + y2 − 2i xy ≡
N∑

k=0

αk(x + iy)k .

Setting y = 0, we obtain

x2 ≡
N∑

k=0

αk xk

or

α0 + α1x + (α2 − 1)x2 + · · · + αN x N ≡ 0.

Setting x = 0 gives α0 = 0; dividing out by x and again setting x = 0 shows α1 = 0,
etc. We conclude that

α1 = α3 = α4 = · · · = αN = 0

α2 = 1,

and so our assumption that

x2 + y2 − 2i xy ≡
N∑

k=0

αk(x + iy)k

has led us to

x2 + y2 − 2i xy ≡ (x + iy)2 = x2 − y2 + 2i xy,

which is simply false!
A bit of experimentation, using the method described above (setting y = 0 and

“comparing coefficients”) will show how rare the analytic polynomials are. A ran-
domly chosen polynomial, P(x, y), will hardly ever be analytic.

EXAMPLE

x2 + iv(x, y) is not analytic for any choice of the real polynomial v(x, y). For
a polynomial in z can have a real part of degree 2 in x only if it is of the form
az2 + bz + c with a �= 0. In that case, however, the real part must contain a y2 term
as well. ♦

Another Way of Recognizing Analytic Polynomials We have seen, in our method of
comparing coefficients, a perfectly adequate way of determining whether a given
polynomial is or is not analytic. This method, we point out, can be condensed to the
statement: P(x, y) is analytic if and only if P(x, y) = P(x+iy, 0). Looking ahead to
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the time we will try to extend the notion of “analytic” beyond the class of polynomials,
however, we see that we can expect trouble! What is so simple for polynomials is
totally intractable for more general functions. We can evaluate P(x +iy, 0) by simple
arithmetic operations, but what does it mean to speak of f (x + iy, 0)? For example,
if f (x, y) = cos x + i sin y, we observe that f (x, 0) = cos x . But what shall we
mean by cos(x + iy)? What is needed is another means of recognizing the analytic
polynomials, and for this we retreat to a familiar, real-variable situation. Suppose
that we ask of apolynomial P(x, y) whether it is a function of the single variable
x + 2y. Again the answer can be given in the spirit of our previous one, namely:
P(x, y) is a function of x +2y if and only if P(x, y) = P(x +2y, 0). But it can also
be given in terms of partial derivatives! A function of x + 2y undergoes the same
change when x changes by ∈ as when y changes ε/2 and this means exactly that its
partial derivative with the respect to y is twice its partial derivative with respect to x .
That is, P(x, y) is a function of x + 2y if and only if Py = 2Px .

Of course, the “2” can be replaced by any real number, and we obtain the more
general statement: P(x, y) is a function of x + λy if and only if Py = λPx .

Indeed for polynomials, we can even ignore the limitation that λ be real, which
yields the following proposition.

2.2 Definition

Let f (x, y) = u(x, y)+iv(x, y) where u and v are real-valued functions. The partial
derivatives fx and fy are defined by ux + ivx and uy + ivy respectively, provided
the latter exist.

2.3 Proposition

A polynomial P(x, y) is analytic if and only if Py = i Px .

Proof

The necessity of the condition can be proven in a straightforward manner. We leave
the details as an exercise. To show that it is also sufficient, note that if

Py = i Px ,

the condition must be met separately by the terms of any fixed degree. Suppose then
that P has n-th degree terms of the form

Q(x, y) = C0xn + C1xn−1y + C2xn−2y2 + · · · + Cn yn.

Since
Qy = i Qx ,

C1xn−1 + 2C2xn−2 y + · · · + nCn yn−1

= i [nC0xn−1 + (n − 1)C1xn−2y + · · · + Cn−1 yn−1].
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Comparing coefficients,

C1 = inC0 = i

(
n
1

)
C0

C2 = i(n − 1)

2
C1 = i2 n(n − 1)

2
C0 = i2

(
n
2

)
C0,

and in general

Ck = i k
(

n
k

)
C0

so that

Q(x, y) =
n∑

k=0

Ck xn−k yk = C0

n∑
k=0

(
n
k

)
xn−k(iy)k = C0(x + iy)n.

Thus P is analytic. �

The condition fy = i fx is sometimes given in terms of the real and imaginary
parts of f . That is, if f = u + iv, then

fx = ux + ivx

fy = uy + ivy

and the equation fy = i fx is equivalent to the twin equations

ux = vy ; uy = −vx . (1)

These are usually called the Cauchy-Riemann equations.

EXAMPLES

1. A non-constant analytic polynomial cannot be real-valued, for then both Px and
Py would be real and the Cauchy-Riemann equations would not be satisfied.

2. Using the Cauchy-Riemann equations, one can verify that x2 − y2 + 2i xy is
analytic while x2 + y2 − 2i xy is not. ♦

Finally, we note that polynomials in z have another property which distinguishes
them as functions of z: they can be differentiated directly with respect to z. We will
make this more precise below.

2.4 Definition

A complex-valued function f , defined in a neighborhood of z, is said to be differen-
tiable at z if

lim
h→0

f (z + h) − f (z)

h

exists. In that case, the limit is denoted f ′(z).
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It is important to note that in Definition 2.4, h is not necessarily real. Hence the
limit must exist irrespective of the manner in which h approaches 0 in the complex
plane. For example, f (z) = z̄ is not differentiable at any point z since

f (z + h) − f (z)

h
= h̄

h

which equals +1 if h is real and −1 if h is purely imaginary.

2.5 Proposition

If f and g are both differentiable at z, then so are

h1 = f + g

h2 = f g

and, if g(z) �= 0,

h3 = f

g
.

In the respective cases,

h′
1(z) = f ′(z) + g′(z)

h′
2(z) = f ′(z)g(z) + f (z)g′(z)

h′
3(z) = [ f ′(z)g(z) − f (z)g′(z)]/g2(z).

Proof

Exercise 6. �

2.6 Proposition

If P(z) = α0 + α1z + · · · + αN zN , then P is differentiable at all points z and
P ′(z) = α1 + 2α2z + · · · + NαN zN−1.

Proof

See Exercise 7. �

2.2 Power Series

We now consider a wider class of direct functions of z–those given by infinite poly-
nomials or “power series” in z.
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2.7 Definition

A power series in z is an infinite series of the form
∑∞

k=0 Ckzk .
To study the convergence of a power series, we recall the notion of the lim of a

positive real-valued sequence. That is,

lim
n→∞ an = lim

n→∞

(
sup
k≥n

ak

)
.

Since supk≥n ak is a non-increasing function of n, the limit always exists or equals
+∞. The properties of the lim which will be of interest to us are the following.

If limn→∞an = L,

i. for each N and for each ε > 0, there exists some k > N such that ak ≥ L − ε;
ii. for each ε > 0, there is some N such that ak ≤ L + ε for all k > N .

iii. lim can = cL for any nonnegative constant c.

2.8 Theorem

Suppose lim|Ck |1/k = L.

1. If L = 0,
∑

Ckzk converges for all z.
2. If L = ∞,

∑
Ckzk converges for z = 0 only.

3. If 0 < L < ∞, set R = 1/L. Then
∑

Ckzk converges for |z| < R and diverges
for |z| > R. (R is called the radius of convergence of the power series.)

Proof

1. L = 0.
Since lim|Ck |1/k = 0, lim|Ck |1/k|z| = 0 for all z. Thus, for each z, there is some
N such that k > N implies

|Ckzk| ≤ 1

2k
,

so that
∑ |Ckzk| converges; therefore, by the Absolute Convergence Test,

∑
Ckzk

converges.
2. L = ∞.

For any z �= 0,

|Ck |1/k ≥ 1

|z|
for infinitely many values of k. Hence |Ckzk | ≥ 1, the terms of the series do
not approach zero, and the series diverges. (The fact that the series converges for
z = 0 is obvious.)
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3. 0 < L < ∞, R = 1/L.
Assume first that |z| < R and set |z| = R(1 − 2δ). Then since lim|Ck |1/k|z| =
(1 − 2δ), |Ck|1/k|z| < 1 − δ for sufficiently large k and

∑
Ckzk is absolutely

convergent. On the order hand, if |z| > R, lim|Ck |1/k|z| > 1, so that for in-
finitely many values of k, Ckzk has absolute value greater than 1 and

∑
Ckzk

diverges. �

Note that if
∑∞

k=0 Ckzk has radius of convergence R, the series converges uni-
formly in any smaller disc: |z| ≤ R − δ. For then

∞∑
k=0

|Ckzk | ≤
∞∑

k=0

|Ck |(R − δ)k,

which also converges. Hence a power series is continuous throughout its domain of
convergence. (See Theorem 1.9.)

All three cases above can be combined by noting that a power series always
converges inside a disc of radius

R = 1/lim|Ck |1/k.

Here R = 0 means that the series converges at z = 0 only and R = ∞ means that
the series converges for all z. In the cases where 0 < R < ∞, while the theorem
assures us that the series diverges for |z| > R, it says nothing about the behavior of
the power series on the circle of convergence |z| = R. As the following examples
demonstrate, the series may converge for all or some or none of the points on the
circle of convergence.

EXAMPLES

1. Since n1/n → 1,
∑∞

n=1 nzn converges for |z| < 1 and diverges for |z| > 1. The
series also diverges for |z| = 1 for then |nzn | = n → ∞. (See Exercise 8.)

2.
∑∞

n=1(z
n/n2) also has radius of convergence equal to 1. In this case, however,

the series converges for all points z on the unit circle since∣∣∣∣ zn

n2

∣∣∣∣ = 1

n2
for |z| = 1.

3.
∑∞

n=1(z
n/n)has radius of convergence equal to 1. In this case, the series converges

at all points of the unit circle except z = 1. (See Exercise 12.)
4.

∑∞
n=0(z

n/n!) converges for all z since

1

(n!)1/n
→ 0.

(See Exercise 13.)
5.

∑∞
n=0 [1 + (−1)n]nzn has radius of convergence 1

2 since lim[1 + (−1)n] =
lim 2 = 2.
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6.
∑∞

n=0 zn2 = 1 + z + z4 + z9 + z16 + · · · has radius of convergence 1. In this case
lim|Cn |1/n = lim 1 = 1.

7. Any series of the form
∑

Cnzn with Cn = ±1 for all n has radius of convergence
equal to 1. ♦
It is easily seen that the sum of two power series is convergent wherever both

of the original two power series are convergent. In fact, it follows directly from the
definition of infinite series that

∞∑
n=0

(an + bn)z
n =

∞∑
n=0

anzn +
∞∑

n=0

bnzn.

Similarly if
∑∞

n=0 anzn = A and
∑∞

n=0 bnzn = B , the Cauchy product
∑∞

n=0 cnzn

defined by cn = ∑n
k=0 akbn−k converges for appropriate values of z to the product

AB . The proof is the same as that for “real” power series and is outlined in Exercises
17 and 18.

2.3 Differentiability and Uniqueness of Power Series

We now show that power series, like polynomials, are differentiable functions of
z. Suppose then that

∑
Cnzn converges in some disc D(0; R), R > 0. Then the

series
∑

nCnzn−1 obtained by differentiating
∑

Cnzn term by term is convergent in
D(0; R), since

lim|nCn |1/(n−1) = lim(|nCn|1/n)n/(n−1) = lim|Cn |1/n.

2.9 Theorem

Suppose f (z) = ∑∞
n=0 Cnzn converges for |z| < R. Then f ′(z) exists and equals∑∞

n=0 nCnzn−1 throughout |z| < R.

Proof

We will prove the theorem in two stages. First, we will assume that R = ∞, then
we will consider the more general situation. Of course, the second case contains the
first, so the eager reader may skip the first proof. We include it since it contains the
key ideas with less cumbersome details.

Case (1): Assume
∑∞

n=0 Cnzn converges for all z. Then

f (z + h) − f (z)

h
=

∞∑
n=0

Cn
[(z + h)n − zn]

h

and

f (z + h) − f (z)

h
−

∞∑
n=0

nCnzn−1 =
∞∑

n=2

Cnbn
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where

bn = (z + h)n − zn

h
− nzn−1

=
n∑

k=2

(
n
k

)
hk−1zn−k ≤ |h|

n∑
k=0

(
n
k

)
|z|n−k = |h|(|z| + 1)n

for |h| ≤ 1. Hence, for |h| ≤ 1,∣∣∣∣∣ f (z + h) − f (z)

h
−

∞∑
n=0

nCnzn−1

∣∣∣∣∣ ≤ |h|
∞∑

n=0

|Cn|(|z| + 1)n ≤ A|h|

since
∑∞

n=0 |Cn |zn converges for all z. Letting h → 0, we conclude that

f ′(z) =
∑

nCnzn−1.

Case (2): 0 < R < ∞.
Let |z| = R − 2δ, δ > 0, and assume |h| < δ. Then |z + h| < R and, as in the

previous case. we can write

f (z + h) − f (z)

h
−

∞∑
n=0

nCnzn−1 =
∞∑

n=2

Cnbn,

where

bn =
n∑

k=2

(
n
k

)
hk−1zn−k .

If z = 0, bn = hn−1 and the proof follows easily. Otherwise, to obtain a useful
estimate for bn we must be a little more careful. Note then that(

n
k

)
= n(n − 1) · · · (n − k + 1)

k!
≤ n2

(
n

k − 2

)
for k ≥ 2.

Hence, for z �= 0,

|bn| ≤ n2|h|
|z|2

n∑
k=2

(
n

k − 2

)
|h|k−2|z|n−(k−2)

≤ n2|h|
|z|2

n∑
j=0

(
n
j

)
|h| j |z|n− j

= n2|h|
|z|2 (|z| + |h|)n

≤ n2|h|
|z|2 (R − δ)n
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and ∣∣∣∣∣ f (z + h) − f (z)

h
−

∞∑
n=0

nCnzn−1

∣∣∣∣∣ ≤ |h|
|z|2

∞∑
n=0

n2|Cn |(R − δ)n ≤ A|h|,

since z �= 0 is fixed and since
∑∞

n=0 n2|Cn|zn also converges for |z| < R. Again,
letting h → 0, we conclude that f ′(z) = ∑∞

n=0 nCnzn−1. �

EXAMPLE

f (z) = ∑∞
n=0(z

n/n!) is convergent for all z and, according to Theorem 2.9,

f ′(z) =
∞∑

n=0

nzn−1

n!
=

∞∑
n=0

zn

n!
= f (z).

♦
2.10 Corollary

Power series are infinitely differentiable within their domain of convergence.

Proof

Applying the above results to f ′(z) = ∑∞
n=0 nCn zn−1 which has the same radius

of convergence as f, we see that f is twice differentiable. By induction, f (n) is
differentiable for all n. �

2.11 Corollary

If f (z) = ∑∞
n=0 Cnzn has a nonzero radius of convergence,

Cn = f (n)(0)

n!
f or all n.

Proof

By definition f (0) = C0. Differentiating the power series term-by-term gives

f ′(z) = C1 + 2C2z + 3C3z2 + · · ·
so that

f ′(0) = C1.

Similarly

f (n)(z) = n!Cn + (n + 1)!Cn+1z + (n + 2)!

2!
Cn+2z2 + · · · ,

and the result follows by setting z = 0. �
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According to Corollary 2.11, if a power series is equal to zero throughout a
neighborhood of the origin, it must be identically zero. For then all its derivatives at
the origin–and hence all the coefficients of the power series–would equal 0. By the
same reasoning, if a power series were equal to zero throughout an interval containing
the origin, it would be identically zero. An even stronger result is proven below.

2.12 Uniqueness Theorem for Power Series

Suppose
∑∞

n=0 Cnzn is zero at all points of a nonzero sequence {zk} which converges
to zero. Then the power series is identically zero.

[Note: If we set f (z) = ∑
Cnzn , it follows from the continuity of power series

that f (0) = 0. We can show by a similar argument that f ′(0) = 0; however, a
slightly different argument is needed to show that the higher coefficients are also 0.]

Proof

Let
f (z) = C0 + C1z + C2z2 + · · · .

By the continuity of f at the origin

C0 = f (0) = lim
z→0

f (z) = lim
k→∞ f (zk) = 0.

But then

g(z) = f (z)

z
= C1 + C2z + C3z2 + · · ·

is also continuous at the origin and

C1 = g(0) = lim
z→0

f (z)

z
= lim

k→∞
f (zk)

zk
= 0.

Similarly, if C j = 0 for 0 ≤ j < n, then

Cn = lim
z→0

f (z)

zn
= lim

k→∞
f (zk)

zn
k

= 0,

so that the power series is identically zero. �

2.13 Corollary

If a power series equals zero at all the points of a set with an accumulation point at
the origin, the power series is identically zero.

Proof

Exercise 18. �

The Uniqueness Theorem derives its name from the following corollary.
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2.14 Corollary

If
∑

anzn and
∑

bnzn converge and agree on a set of points with an accumulation
point at the origin, then an = bn for all n.

Proof

Apply 2.13 to the difference: ∑
(an − bn)z

n.

�
Power Series Expansion about z = α All of the previous results on power series are
easily adapted to power series of the form∑

Cn(z − α)n .

By the simple substitution w = z − α, we see, for example, that series of the above
form converge in a disc of radius R about z = α and are differentiable throughout
|z − α| < R where R = 1/lim|Cn |1/n . (See Exercises 22 and 23.)

Exercises

1. Complete the proof of Proposition 2.3 by showing that for an analytic polynomial P, Py = i Px .
[Hint: Prove it first for the monomials.]

2.* a. Suppose f (z) is real-valued and differentiable for all real z. Show that f ′(z) is also real-valued
for real z.

b. Suppose f (z) is real-valued and differentiable for all imaginary points z. Show that f ′(z) is
imaginary for at all imaginary points z.

3. By comparing coefficients or by use of the Cauchy-Riemann equations, determine which of the
following polynomials are analytic.
a. P(x + iy) = x3 − 3xy2 − x + i(3x2 y − y3 − y).
b. P(x + iy) = x2 + iy2.
c. P(x + iy) = 2xy + i(y2 − x2).

4. Show that no nonconstant analytic polynomial can take imaginary values only.

5. Find the derivative P ′(z) of the analytic polynomials in (3). Show that in each case P ′(z) = Px .
Explain.

6. Prove Proposition 2.5 by arguments analogous to those of real-variable calculus.

7. Prove Proposition 2.6. [Hint: Prove it for monomials and apply Proposition 2.5.]

8. Show Sn = n1/n → 1 as n → ∞ by considering log Sn .

9. Find the radius of convergence of the following power series:
a.

∑∞
n=0 zn!, b.

∑∞
n=0(n + 2n)zn .

10. Suppose
∑

cn zn has radius of convergence R. Find the radius of convergence of
a.

∑
n pcn zn , b.

∑ |cn |zn ,
c.

∑
c2

n zn .
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11. Suppose
∑

an zn and
∑

bn zn have radii of convergence R1 and R2, respectively. What can be said
about the radius of convergence of

∑
(an +bn)zn? Show, by example, that the radius of convergence

of the latter may be greater than R1 and R2.

12. Show that
∑∞

n=1(zn/n) converges at all points on the unit circle except z = 1. [Hint: Let z = cis θ

and analyze the real and imaginary parts of the series separately.]
13. a. Suppose {an} is a sequence of positive real numbers and

lim
n→∞

an+1

an
= L .

Show then that limn→∞ a1/n
n = L .

b. Use the result above to prove (
1

n!

)1/n
→ 0.

14. Use Exercise (13a) to find the radius of convergence of

a.
∑∞

n=0
(−1)n zn

n!
, b.

∑∞
n=0

z2n+1

(2n + 1)!
,

c.
∑∞

n=1
n!zn

nn , d.
∑∞

n=0
2n zn

n!
.

15.* Find the radius of convergence of

a.
∑

sin n zn , b.
∑

e−n2
zn ,

16.* Find the radius of convergence of
∑

cn zn if c2k = 2k ; c2k−1 = (1 + 1/k)k2
, k = 1, 2, ...

17. Suppose
∑∞

k=0 ak = A and
∑∞

k=0 bk = B . Suppose further that each of the series is absolutely
convergent. Show that if

ck =
k∑
j=0

a j bk− j

then ∞∑
k=0

ck = AB.

Outline: Use the fact that
∑ |ak | and

∑ |bk | converge to show that
∑

dk converges where

dk =
k∑
j=0

|a j ||bk− j |.

In particular,
dn+1 + dn+2 + · · · → 0 as n → ∞.

Note then that if

An = a0 + a1 + · · · + an
Bn = b0 + b1 + · · · + bn
Cn = c0 + c1 + · · · + cn ,

An Bn = Cn + Rn , where |Rn | ≤ dn+1 +dn+2 +· · ·+d2n , and the result follows by letting n → ∞.
18. Suppose

∑
an zn and

∑
bn zn have radii of convergence R1 and R2 respectively. Show that the

Cauchy product
∑

cn zn converges for |z| < min(R1, R2).
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19. a. Using the identity

(1 − z)(1 + z + z2 + · · · + z N ) = 1 − z N+1

show that
∞∑

n=0

zn = 1

1 − z
for |z| < 1.

b. By taking the Cauchy product of
∑∞

n=0 zn with itself, find a closed form for
∑∞

n=0 nzn .
20. Prove Corollary 2.13 by showing that if a set S has an accumulation point at 0, it contains a sequence

of nonzero terms which converge to 0.

21. Show that there is no power series f (z) = ∑∞
n=0 Cn znsuch that

i. f (z) = 1 for z = 1
2 , 1

3 , 1
4 , . . . ,

ii. f ′(0) > 0.

22. Assume lim|Cn |1/n < ∞. Show that if we set

f (z) =
∞∑

n=0

Cn(z − α)n,

then

Cn = f (n)(α)

n!
.

23. Find the domain of convergence of

a.
∑∞

n=0 n(z − 1)n , b.
∑∞

n=0
(−1)n

n!
(z + 1)n ,

c.
∑∞

n=0 n2(2z − 1)n .



Chapter 3
Analytic Functions

3.1 Analyticity and the Cauchy-Riemann Equations

The direct functions of z which we have studied so far—polynomials and conver-
gent power series—were shown to be differentiable functions of z. We now take a
closer look at the property of differentiability and its relation to the Cauchy-Riemann
equations.

As we mentioned earlier (after Definition 2.4), if f is differentiable,

lim
h→0

f (z + h) − f (z)

h

must exist regardless of the manner in which h approaches 0 through complex values.
An immediate consequence is that the partial derivatives of f must satisfy the Cauchy-
Riemann equations.

3.1 Proposition

If f = u + iv is differentiable at z, fx and fy exist there and satisfy the Cauchy-
Riemann equation

fy = i fx

or, equivalently,

ux = vy

uy = −vx .

Proof

Suppose first that h → 0 through real values. Then

f (z + h) − f (z)

h
= f (x + h, y) − f (x, y)

h
→ fx .

35
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On the other hand, if h → 0 along the imaginary axis, h = iη and

f (z + h) − f (z)

h
= f (x, y + η) − f (x, y)

iη
→ fy

i
.

(See Exercise 1.) Since the two limits must be equal,

fy = i fx .

As we mentioned in Chapter 2, setting f = u + iv, the equation fy = i fx takes the
form

uy + ivy = i(ux + ivx)

and hence

ux = vy

uy = −vx . �

The converse of the above proposition is not true. There are functions which are
not differentiable at a point despite the fact that the partial derivatives exist and satisfy
the Cauchy-Riemann equations there.

For example, consider

f (z) = f (x, y) =
⎧⎨
⎩

xy(x + iy)

x2 + y2 z �= 0

0 z = 0.

f = 0 on both axes so that fx = fy = 0 at the origin but

lim
z→0

f (z) − f (0)

z
= lim

(x,y)→(0,0)

xy

x2 + y2

does not exist. For on the line y = αx

f (z) − f (0)

z
≡ α

1 + α2
for z �= 0

and hence the limit depends on α!
The following partial converse, however, is true.

3.2 Proposition

Suppose fx and fy exist in a neighborhood of z. Then if fx and fy are continuous
at z and fy = i fx there, f is differentiable at z.

Proof

Let f = u + iv, h = ξ + iη.
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We will show that

f (z + h) − f (z)

h
→ fx (z) = ux (z) + ivx (z)

as h → 0. By the Mean-Value Theorem (for real functions of a real variable)

u(z + h) − u(z)

h
= u(x + ξ, y + η) − u(x, y)

ξ + iη

= u(x + ξ, y + η) − u(x + ξ, y)

ξ + iη

+ u(x + ξ, y) − u(x, y)

ξ + iη

= η

ξ + iη
uy(x + ξ, y + θ1η)

+ ξ

ξ + iη
ux(x + θ2ξ, y),

and

v(z + h) − v(z)

h
= η

ξ + iη
vy(x + ξ, y + θ3η)

+ ξ

ξ + iη
vx (x + θ4ξ, y)

for some θk ,
0 < θk < 1, k = 1, 2, 3, 4.

Thus

f (z + h) − f (z)

h
= η

ξ + iη
[uy(z1) + ivy(z2)]

+ ξ

ξ + iη
[ux (z3) + ivx (z4)]

where |zk − z| → 0 as h → 0, k = 1, 2, 3, 4. Since fy = i fx at z we can subtract
fx (z) in the form of

η

ξ + iη
fy + ξ

ξ + iη
fx

to obtain

f (z + h) − f (z)

h
− fx (z) = η

ξ + iη
[(uy(z1) − uy(z)) + i(vy(z2) − vy(z))]

+ ξ

ξ + iη
[(ux(z3) − ux (z)) + i(vx (z4) − vx (z))].
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Finally, since ∣∣∣∣ η

ξ + iη

∣∣∣∣ ,
∣∣∣∣ ξ

ξ + iη

∣∣∣∣ ≤ 1,

while each of the bracketed expressions approaches 0 as h → 0,

lim
h→0

f (z + h) − f (z)

h
= fx (z).

�

EXAMPLE

Let f (z) = |z|2 = x2 + y2. Then fx = 2x, fy = 2y so that f has continuous partial
derivatives for all z. By the previous proposition, then f is differentiable if and only
if fy = i fx . Hence f is differentiable only at the point z = 0. ♦

To avoid pathologies such as that given in the example above, we adopt the
following definition.

3.3 Definition

f is analytic at z if f is differentiable in a neighborhood of z. Similarly, f is analytic
on a set S if f is differentiable at all points of some open set containing S.

Note that this definition is consistent with Definition 2.1 for analytic polynomials.
For we have already noted (Proposition 2.6) that “polynomials in z” are everywhere
differentiable. Conversely, if a polynomial P is analytic at a point z, its partial deriv-
atives must satisfy the Cauchy-Riemann equations throughout a neighborhood of z.
Hence, as in Proposition 2.3, it follows that P must be a “polynomial in z.”

Functions, such as polynomials or everywhere convergent power series, that are
everywhere differentiable are called entire functions.

As we saw in Propositions 2.5 and 2.6, many of the properties of differentiability
are analogous to those of differentiable functions of a real variable. Similarly, the
composition of differentiable functions is differentiable (see Exercise 3). As in the
“real” case, the inverse of a differentiable function need not even be continuous.
Under the appropriate hypothesis, however, we can establish the differentiability of
inverse functions.

3.4 Definition

Suppose that S and T are open sets and that f is 1-1 on S with f (S) = T . g is the
inverse of f on T if f (g(z)) = z for z ∈ T . g is the inverse of f at z0 if g is the
inverse of f in some neighborhood of z0.

Note that an inverse function must be 1-1 for if f −1(z) = f −1(z0), f ( f −1(z)) =
f ( f −1(z0)); i.e., z = z0.
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3.5 Proposition

Suppose that g is the inverse of f at z0 and that g is continuous there. If f is
differentiable at g(z0) and if f ′(g(z0)) �= 0, then g is differentiable at z0 and

g′(z0) = 1

f ′(g(z0))
.

Proof

g(z) − g(z0)

z − z0
= 1

f (g(z)) − f (g(z0))

g(z) − g(z0)

for all z �= z0 in a neighborhood of z0. Since g is continuous at z0, g(z) → g(z0) as
z → z0, and by the differentiability of f,

lim
z→z0

g(z) − g(z0)

z − z0
= 1

f ′(g(z0))
.

�
As we shall see in the coming chapters, the property of analyticity is a very

far-reaching one. Some immediate consequences are proven below.

3.6 Proposition

If f = u + iv is analytic in a region D and u is constant, then f is constant.

Proof

Since u is constant, ux = uy = 0; therefore, by the Cauchy-Riemann equations,
vx = vy = 0. According to Theorem 1.10, u and v are each constant in D; hence f is
constant. �

3.7 Proposition

If f is analytic in a region and if | f | is constant there, then f is constant.

Proof

If | f | = 0, the proof is immediate. Otherwise

u2 + v2 ≡ C �= 0.

Taking the partial derivatives with respect to x and y, we see that

uux + vvx ≡ 0

uuy + vvy ≡ 0.
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Making use of the Cauchy-Riemann equations, we obtain

uux − vuy ≡ 0

vux + uuy ≡ 0,

so that
(u2 + v2)ux ≡ 0

and ux = vy ≡ 0. Similarly, uy and vx are identically zero, hence f is constant. �

3.2 The Functions ez, sin z, cos z

We wish to define an exponential function of the complex variable z; that is, we seek
an analytic function f such that

f (z1 + z2) = f (z1) f (z2), (1)

f (x) = ex for all real x . (2)

According to (1) and (2) we must have

f (z) = f (x + iy) = f (x) f (iy) = ex f (iy).

Setting f (iy) = A(y) + i B(y), it follows that

f (z) = ex A(y) + iex B(y).

For f to be analytic, the Cauchy-Riemann equations must be satisfied; therefore
A(y) = B ′(y) and A′(y) = −B(y), so that A′′ = −A. Thus we consider

A(y) = α cos y + β sin y

B(y) = −A′(y) = −β cos y + α sin y.

Since f (x) = ex , however, A(0) = α = 1 and B(0) = −β = 0, so that, finally, we
are led to examine

f (z) = ex cos y + iex sin y.

Indeed, it is easy to verify that f is an entire function with the desired properties
(1) and (2). (See Exercise 11.) Hence f is an entire “extension” of the real exponential
function and we write f (z) = ez .

The following properties of ez are easily proven:

i. |ez| = ex .
ii. ez �= 0.

This follows from (i) since ex �= 0. Also, according to (1), above, eze−z=e0=1.
iii. eiy = cis y.
iv. ez = α has infinitely many solutions for any α �= 0.
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Proof

Set α = r cis θ = reiθ , r > 0. Since ez = exeiy , we will have ez = α if x = log r
and eiy = eiθ . Hence ez = α for all points z = x + iy with x = log r , y = Arg α =
θ ± 2kπ, k = 0, 1, 2 . . .. �

v. (ez)′ = ez .
Recall that (ez)′ = (ez)x = ez .

To define sin z and cos z, note that for real y

eiy = cos y + i sin y

e−iy = cos y − i sin y

so that

sin y = 1

2i
(eiy − e−iy)

and

cos y = 1

2
(eiy + e−iy).

Thus we can define entire extensions of sin x and cos x by setting

sin z = 1

2i
(eiz − e−iz)

cos z = 1

2
(eiz + e−iz).

Many of the familiar properties of the sin and cos functions remain valid in the larger
setting of the complex plane. For example,

sin 2z = 2 sin z cos z

sin2 z + cos2z = 1

(sin z)′ = cos z.

These identities are easily verified and are left as an exercise. Moreover, in Section 6.3,
we will see that, in general, functional equations of the above form, known to be true
on the real axis, remain valid throughout the complex plane.

On the other hand, unlike sin x , sin z is not bounded in modulus by 1. For example,
| sin 10i | = 1

2 (e10 − e−10) > 10, 000.

Exercises

1. Show that

fx = lim
h→0
h real

f (z + h) − f (z)

h
; f y = lim

h→0
h real

f (z + ih) − f (z)

h
,

provided the limits exist.
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2. a. Show that f (z) = x2 + iy2 is differentiable at all points on the line y = x .
b. Show that it is nowhere analytic.

3. Prove that the composition of differentiable functions is differentiable. That is, if f is differentiable
at z, and if g is differentiable at f (z), then g ◦ f is differentiable at z. [Hint: Begin by noting

g( f (z + h)) − g( f (z)) = [g′( f (z)) + ε][ f (z + h) − f (z)]

where ε → 0 as h → 0.]

4. Suppose that g is a continuous “
√

z” (i.e., g2(z) = z) in some neighborhood of z. Verify that
g′(z) = 1/2

√
z. [Hint: Use

1 = g2(z) − g2(z0)

z − z0

to evaluate

lim
z→z0

g(z) − g(z0)

z − z0
.]

5. Suppose f is analytic in a region and f ′ ≡ 0 there. Show that f is constant.

6. Assume that f is analytic in a region and that at every point, either f = 0 or f ′ = 0. Show that f is
constant. [Hint: Consider f 2.]

7. Show that a nonconstant analytic function cannot map a region into a straight line or into a circular
arc.

8. Find all analytic functions f = u + iv with u(x, y) = x2 − y2.

9. Show that there are no analytic functions f = u + iv with u(x, y) = x2 + y2.

10. Suppose f is an entire function of the form

f (x, y) = u(x) + iv(y).

Show that f is a linear polynomial.

11. a. Show that ez is entire by verifying the Cauchy-Riemann equations for its real and imaginary
parts.

b. Prove:
ez1+z2 = ez1 ez2 .

12. Show: |ez | = ex .

13. Discuss the behavior of ez as z → ∞ along the various rays from the origin.

14. Find all solutions of
a. ez = 1, b. ez = i,
c. ez = −3, d. ez = 1 + i .

15. Verify the identities

a. sin 2z = 2 sin z cos z,
b. sin2 z + cos2 z = 1,

c. (sin z)′ = cos z.

16.* Show that

a. sin( π
2 + iy) = 1

2 (ey + e−y) = cosh y

b. | sin z| ≥ 1 at all points on the square with vertices ±(N + 1
2 )π ± (N + 1

2 )π i , for any positive
integer N .

c. | sin z| → ∞, as Imz = y → ±∞.
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17. Find (cos z)′.
18. Find sin−1(2)– that is, find the solutions of sin z = 2. [Hint: First set w = eiz and solve for ω.]

19.* Find all solutions of the equation:

eez = 1.

20. Show that sin(x + iy) = sin x cosh y + i cos x sinh y.

21. Show that the power series

f (z) = 1 + z + z2

2!
+ . . . =

∞∑
n=0

zn

n!

is equal to ez . [Hint: First show that f (z) f (w) = f (z + w), then show

f (x) = ex

f (iy) = cos y + i sin y

using the power series representations for the real functions

ex , cos x, sin x .]

22. Show:

g(z) = z − z3

3!
+ z5

5!
− + . . .

is equal to sin z. [Hint: Use the power series representation for ez given in (21) to show that

g(z) = 1

2i
(eiz − e−iz ).]

23. Find a power series representation for cos z.





Chapter 4
Line Integrals and Entire Functions

Introduction

Recall that, according to Theorem 2.9, an everywhere convergent power series
represents an entire function. Our main goal in the next two chapters is the somewhat
surprising converse of that result: namely, that every entire function can be expanded
as an everywhere convergent power series. As an immediate corollary, we will be
able to prove that every entire function is infinitely differentiable. To arrive at these
results, however, we must begin by discussing integrals rather than derivatives.

4.1 Properties of the Line Integral

4.1 Definition

Let f (t) = u(t) + iv(t) be any continuous complex-valued function of the real
variable t , a ≤ t ≤ b.

∫ b

a
f (t)dt =

∫ b

a
u(t)dt + i

∫ b

a
v(t)dt .

4.2 Definition

a. Let z(t) = x(t) + iy(t), a ≤ t ≤ b. The curve determined by z(t) is called
piecewise differentiable and we set

ż(t) = x ′(t) + iy ′(t)

if x and y are continuous on [a, b] and continuously differentiable on each subin-
terval [a, x1], [x1, x2], . . . , [xn−1, b] of some partition of [a, b].

b. The curve is said to be smooth if, in addition, ż(t) �= 0 (i.e., x ′(t) and y ′(t) do not
both vanish) except at a finite number of points.

45
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Throughout the remainder of the text, all curves will be assumed to be smooth
unless otherwise stated.

Finally, we define the important concept of a line integral.

4.3 Definition

Let C be a smooth curve given by z(t), a ≤ t ≤ b, and suppose f is continuous at
all the points z(t). Then, the integral of f along C is

∫
C

f (z)dz =
∫ b

a
f (z(t))ż(t)dt .

Note that the integral along the curve C depends not only on the points of C but on
the direction as well. However, we will show that it is independent of the particular
parametrization. Intuitively, if z(t), a ≤ t ≤ b, and ω(t), c ≤ t ≤ d , trace the same
curve in the same direction, then λ = z−1 ◦ ω will be a 1-1 mapping of [c, d] onto
[a, b] such that

ω(t) = z(λ(t)). (1)

However, if z is not 1-1, it is difficult to define z−1. Instead, we take the existence of
some λ that satisfies (1) as the definition for equivalent curves.

a b

ω

c d

z

C

4.4 Definition

The two curves
C1 : z(t), a ≤ t ≤ b

and
C2 : ω(t), c ≤ t ≤ d

are smoothly equivalent if there exists a 1-1 C1 mapping λ(t) : [c, d] → [a, b] such
that λ(c) = a, λ(d) = b, λ′(t) > 0 for all t , and

ω(t) = z(λ(t)).

(It is easy to verify that the above is an equivalence relation. See Exercise 1.)

4.5 Proposition

If C1 and C2 are smoothly equivalent, then∫
C1

f =
∫

C2

f.
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Proof

Suppose f (z) = u(z) + iv(z), C1 and C2 as above. Then, by definition

∫
C1

f =
∫ b

a
u(z(t))x ′(t)dt −

∫ b

a
v(z(t))y ′(t)dt

+ i
∫ b

a
u(z(t))y ′(t)dt + i

∫ b

a
v(z(t))x ′(t)dt (1)

while ∫
C2

f =
∫ d

c
[u(z(λ(t))) + iv(z(λ(t)))][x ′(λ(t)) + iy ′(λ(t))]λ′(t)dt . (2)

Expanding the integrand in (2) and analyzing the four terms separately, we find that
they are exactly equal to the four corresponding terms in (1).

For example

∫ d

c
u(z(λ(t)))x ′(λ(t))λ′(t)dt =

∫ b

a
u(z(t))x ′(t)dt,

by the change-of-variable theorem for ordinary real integrals, and the proof is
complete. �

The following proposition points out the dependence of the line integral on the
direction of the curve.

4.6 Definition

Suppose C is given by z(t), a ≤ t ≤ b. Then −C is defined by z(b + a − t),
a ≤ t ≤ b. (Intuitively, −C is the point set of C traced in the opposite direction.)

4.7 Proposition

∫
−C

f =
∫

C
f.

Proof

∫
−C

f = −
∫ b

a
f (z(b + a − t))ż(b + a − t)dt .

Again, expanding the integral into real and imaginary parts and applying the change-
of-variable theorem to each (real) integral, we find∫

−C
f =

∫ a

b
f (z(t))ż(t)dt = −

∫
C

f. �
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EXAMPLE 1
Suppose f (z) = x2 + iy2 (where x and y denote the real and imaginary parts of z,
respectively), and consider

C : z(t) = t + i t, 0 ≤ t ≤ 1.

Then
ż(t) = 1 + i

and

∫
C

f (z)dz =
∫ 1

0
(t2 + i t2)(1 + i)dt = (1 + i)2

∫ 1

0
t2dt = 2i/3.

♦

EXAMPLE 2
Let

f (z) = 1

z
= x

x2 + y2 − i
y

x2 + y2 ,

and set
C : z(t) = R cos t + i R sin t, 0 ≤ t ≤ 2π, R �= 0.

Then ∫
C

f (z)dz =
∫ 2π

0

(
cos t

R
− i

sin t

R

)
(−R sin t + i R cos t)dt

=
∫ 2π

0
idt = 2π i (See Exercise 8.)

That is, the integral of 1/z around any circle centered at the origin (traversed coun-
terclockwise) is 2π i . ♦

EXAMPLE 3
Suppose f (z) ≡ 1, and let C be any smooth curve. Then

∫
C

f (z)dz =
∫ b

a
ż(t)dt = z(b) − z(a).

♦

The integrals defined above are natural generalizations of the definite integral and,
not too surprisingly, they share many of the same properties.

4.8 Proposition

Let C be a smooth curve; let f and g be continuous functions on C; and let α be any
complex number. Then
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I.
∫

C [ f (z) + g(z)]dz = ∫
C f (z)dz + ∫

C g(z)dz

II.
∫

C α f (z)dz = α
∫

C f (z)dz.

Proof

Exercise 4. �

Notation: If α and β are complex numbers, the symbol α � β will be used to denote
the inequality |α| ≤ |β|.

4.9 Lemma

Suppose G(t) is a continuous complex-valued function of t . Then

∫ b

a
G(t)dt �

∫ b

a
|G(t)|dt .

Proof

Suppose ∫ b

a
G(t)dt = Reiθ , R ≥ 0. (1)

By Proposition 4.8, then ∫ b

a
e−iθ G(t)dt = R. (2)

Suppose further that e−iθ G(t) = A(t) + i B(t), with A and B real-valued. Then,
according to (2),

R =
∫ b

a
A(t)dt =

∫ b

a
Re (e−iθ G(t))dt .

But Re z ≤ |Re z| ≤ |z|, hence

R ≤
∫ b

a
|G(t)|dt . (3)

A comparison of (1) and (3) then gives the desired result. �

4.10 M-L Formula

Suppose that C is a (smooth) curve of length L, that f is continuous on C, and that
f � M throughout C . Then ∫

C
f (z)dz � M L .
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Proof

Suppose C is given by z(t) = x(t)+ iy(t), a ≤ t ≤ b. Then, by the previous lemma,

∫
C

f (z)dz =
∫ b

a
f (z(t))żdt �

∫ b

a
| f (z(t))ż(t)|dt .

According to the Mean-Value Theorem for Integrals applied to the positive functions
| f (z(t))| and |ż(t)|

∫
C

f (z)dz) � max
z∈C

| f (z)|
∫ b

a
|ż(t)|dt . (4)

Finally, recall that for any curve given parametrically by (x(t), y(t)), a ≤ t ≤ b,
the arc length L is given by

L =
∫ b

a

√
(x ′(t))2 + (y ′(t))2dt =

∫ b

a
|ż(t)|dt,

so that according to (4)
∫

C f (z)dz � M L. �

EXAMPLE

Let C be the unit circle and suppose f � 1 on C . Then M = 1, L = 2π , and∫
C

f (z)dz � 2π.

To see that the upper bound of 2π can actually be achieved, consider Example 2
above. ♦

4.11 Proposition

Suppose { fn} is a sequence of continuous functions and fn → f uniformly on the
smooth curve C . Then ∫

C
f (z)dz = lim

n→∞

∫
C

fn(z)dz.

Proof

∫
C

f (z)dz −
∫

C
fn(z)dz =

∫
C

[ f (z) − fn(z)]dz

by Proposition 4.8. Taking n large enough so that | f (z) − fn(z)| < ε for all z ∈ C ,
and applying Proposition 4.10, shows that∫

C
f (z) −

∫
C

fn(z)dz � ε · (length of C)
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for any pre-assigned ε > 0, and hence that

�lim
n→∞

∫
C

fn(z)dz =
∫

C
f (z)dz.

The following generalization of the Fundamental Theorem of Calculus will be
crucial in the development of this chapter.

4.12 Proposition

Suppose f is the derivative of an analytic function F–that is, f (z) = F ′(z), where
F is analytic on the smooth curve C . Then∫

C
f (z)dz = F(z(b)) − F(z(a)).

Proof

The proof depends on a complex analogue of the chain-rule for differentiation. Letting

γ (t) = F(z(t)), a ≤ t ≤ b,

we wish to show that
γ̇ (t) = f (z(t))ż(t)

at the all-but-finite number of points where ż(t) exists and is nonzero.
Note first that for any smooth curve λ(t), by considering the real and imaginary

parts of λ separately, it is easily seen that

λ̇(t) = lim
h→0
h real

λ(t + h) − λ(t)

h
.

Hence

γ̇ (t) = lim
h→0

F(z(t + h)) − F(z(t))

h

= lim
h→0

F(z(t + h)) − F(z(t))

z(t + h) − z(t)
· z(t + h) − z(t)

h
.

[Since ż(t) �= 0, we can find δ > 0 so that |h| < δ implies z(t + h) − z(t) �= 0.]
Thus

γ̇ (t) = f (z(t))ż(t).

Proposition 4.12 follows then by noting that

�

∫
C

f (z)dz =
∫ b

a
f (z(t))ż(t)dt =

∫ b

a
γ̇ (t)dt

= γ (b) − γ (a) = F(z(b)) − F(z(a)).
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4.2 The Closed Curve Theorem for Entire Functions

4.13 Definition

A curve C is closed if its initial and terminal points coincide–i.e., if C is given by
z(t), a ≤ t ≤ b, with z(a) = z(b). C is a simple closed curve if no other points
coincide; i.e., if z(t1) = z(t2) with t1 < t2 implies t1 = a and t2 = b.

The following theorem is the first of several which show that, under rather gen-
eral conditions, the integral of an analytic function along a closed curve is zero.
Of course, Example 2 showed that this is not always the case. We begin cautiously,
by considering entire functions.

Note: Throughout the text, the boundary of a rectangle will mean a simple closed
curve parametrized so that the rectangle it bounds lies on the left as the curve is
traced out for increasing t .

4.14 Rectangle Theorem

Suppose f is entire and � is the boundary of a rectangle R. Then∫
�

f (z)dz = 0.

Lemma

If f is a linear function and if � is as above, then∫
�

f (z)dz = 0.

Proof of Lemma

Let f (z) = α + βz and let � be given by

� : z(t), a ≤ t ≤ b.

Since f (z) is everywhere the derivative of the analytic function F(z) = αz +βz2/2,∫
�

f (z)dz =
∫

�
F ′(z)dz = F(z(b)) − F(z(a)) = 0

by Proposition 4.12 and the observation that � is a closed curve. (An alternate, more
direct proof is outlined in Exercise 7.) �

Proof of Theorem 4.14

Let
∫
� f (z)dz = I . To show that I = 0, we use the method of continued

bisection. That is, we split the rectangle R into four congruent subrectangles, by
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bisecting each of the sides. If we let �1, �2, �3, �4 denote the boundaries of the four
subrectangles ∫

�
f =

4∑
i=1

∫
�i

f

Γ1Γ2

Γ3 Γ4

since the integrals along the interior lines appear in opposite directions and thus
cancel, by Proposition 4.7. Hence for some �k, 1 ≤ k ≤ 4, which we will denote �(1),∫

�(1)
f (z)dz � I

4
.

Let R(1) be the rectangle bounded by �(1). Continuing in this manner, dividing
R(k) into four congruent rectangles, we obtain a sequence of rectangles

R(1) ⊃ R(2) ⊃ R(3) ⊃ · · ·
and their boundaries

�(1), �(2), �(3), . . .

such that diam R(k+1) = 1
2 diamR(k) and such that

∫
�(k)

f (z)dz � I

4k
. (1)

Let z0 ∈ ∩∞
k=1 R(k). The proof will follow by considering the analyticity of f at z0.

That is, since
f (z) − f (z0)

z − z0
→ f ′(z0)

we can write
f (z) = f (z0) + f ′(z0)(z − z0) + εz(z − z0)

where εz → 0 as z → z0.
Note, then, that∫

�(n)
f (z)dz =

∫
�(n)

[ f (z0) + f ′(z0)(z − z0) + εz · (z − z0)]dz

=
∫

�(n)
εz · (z − z0)dz by the lemma.
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To estimate the integral, let us assume that the largest side of the original boundary �
was of length s. Then, by elementary geometric considerations,∫

�(n)
|dz| = length of �(n) ≤ 4s

2n

and

|z − z0| ≤
√

2 · s

2n for all z ∈ �(n).

Given ε > 0, we choose N so that

|z − z0| ≤
√

2 · s

2N implies that εz � ε.

Then for n ≥ N , we have by the M-L formula (Proposition 4.10)

∫
�(n)

f (z)dz � ε · 4
√

2s2

4n
. (2)

A combination of (1) and (2) shows that for n ≥ N

I

4n
� ε

4
√

2s2

4n

or
I � ε · 4

√
2s2.

Since this holds for all ε > 0, we may conclude that I = 0. �
Note: Although the orientation of � was chosen to be counterclockwise, the same
result would hold with the opposite orientation. This follows from Proposition 4.7.
The counterclockwise orientation was chosen primarily to fix a direction. In later
chapters, we will see that the counterclockwise direction along the boundary is also
the more “natural” one in a sense for functions analytic inside a region. Hence, unless
otherwise specified, the integral around any convex curve will always be taken in the
counterclockwise direction.

4.15 Integral Theorem

If f is entire, then f is everywhere the derivative of an analytic function. That is,
there exists an entire F such that F ′(z) = f (z) for all z.

Proof

We define F(z) as ∫ z

0
f (ζ )dζ

where
∫ z

0 denotes the integral along the straight lines from 0 to Re z and from Re z
to z.
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Note that

F(z + h) = F(z) +
∫ z+h

z
f (ζ )dζ

where the integral denotes the integral along the line segments from z to z +Re h and
from z +Re h to z +h. This follows since the difference between the two approaches
is equal to the integral of f around a closed rectangle and is thus equal to zero. (See
diagrams below.)

z z + Re h

z + h

0

zz + Re h

z + h

0

Hence

F(z + h) − F(z) =
∫ z+h

z
f (ζ )dζ

and since

1

h

∫ z+h

z
1dz = 1

h
(z + h − z) = 1,

(see Example 3 after Proposition 4.7)

F(z + h) − F(z)

h
− f (z) = 1

h

∫ z+h

z
[ f (ζ ) − f (z)]dζ.

Finally, for each ε ≥ 0, if h is small enough, | f (ζ )− f (z)| � ε throughout the path
of integration. Applying the M-L formula, we obtain

F(z + h) − F(z)

h
− f (z) � 1

h
· 2hε = 2ε.

Hence
F ′(z) = f (z).

�
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4.16 Closed Curve Theorem

If f is entire and if C is a (smooth) closed curve,∫
C

f (z)dz = 0.

Proof

Since f is entire, by the Integral Theorem f (z) = F ′(z) for some entire function F
so that ∫

C
f (z)dz =

∫
C

F ′(z)dz = F(z(b)) − F(z(a))

by Proposition 4.12. Since C is closed, z(b) = z(a), F(z(b)) = F(z(a)), and∫
C

f (z)dz = 0.

�

Remarks

While Theorem 4.16 was proven for entire functions f , the only fact we needed was
that f (z) is the derivative of an analytic function on C . Thus, for example,∫

C

1

z2 dz = 0

if C is any smooth closed curve not passing through the origin. For although 1/z2 is
not entire, it is the derivative of F(z) = −1/z which is analytic except at the origin.
Similarly, ∫

C
zkdz = 0

if k is any integer except −1. Recall Example 2 which showed that k = −1 is an
exception to the above. (See Exercise 8.)

Exercises

1. Prove that “equivalence” of smooth curves has the familiar reflexive, symmetric, and transitive prop-
erties of an equivalence relation.

2. Evaluate
∫

C f where f (z) = x2 + iy2 as in Example 1, but where C is given by z(t) = t2 + it2,
0 ≤ t ≤ 1.

3. Evaluate
∫

C f where f (z) = 1/z as in Example 2, and C is given by z(t) = sin t+i cos t, 0 ≤ t ≤ 2π .
Why is the result different from that of Example 2?

4. Prove Proposition 4.8. [Hint: Divide the integrals into real and imaginary parts.]

5. Prove the uniqueness of the integral. That is, show that F ′ ≡ 0 implies that F is a constant.
[Hint: Use Proposition 4.12 to get an expression for F(b) − F(a).]
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6. Show that, if f is a continuous real-valued function and f � 1, then

∫
|z|=1

f � 4.

[Hint: Show that
∫

f � ∫ 2π
0 | sin t|dt .]

7. Give a direct proof of the lemma to Theorem 4.14. That is, given any rectangle with vertices
(a, c), (b, c), (b, d) and (a, d), parameterize the boundary � and verify directly that

∫
�

dz =
∫
�

zdz = 0.

8. Show that
∫

C zkdz = 0 for any integer k �= −1 and C : z = Re iθ , 0 ≤ θ ≤ 2π

a. by showing that zk is the derivative of a function analytic throughout C ,
b. directly, using the parametrization of C.

9. Evaluate
∫

C (z − i)dz where C is the parabolic segment:

z(t) = t + it2, −1 ≤ t ≤ 1

a. by applying Proposition 4.12,
b. by integrating along the straight line from −1+ i to 1+ i and applying the Closed Curve Theorem.

10.* Evaluate

a.
∫ i

0 ezdz

b.
∫ π/2+i
π/2 cos 2z dz

11.* Suppose f is analytic in a convex region D and | f ′| ≤ 1 throughout D. Prove that f is a "contraction";
i.e., show that | f (b) − f (a)| ≤ |b − a| for all a, b ∈ D.

12.* Let a, b be two complex numbers in the left half-plane. Prove that |ea − eb | < |a − b|.





Chapter 5
Properties of Entire Functions

5.1 The Cauchy Integral Formula and Taylor Expansion
for Entire Functions

We now show that if f is entire and if

g(z) =

⎧⎪⎨
⎪⎩

f (z) − f (a)

z − a
z �= a

f ′(a) z = a

then the Integral Theorem (4.15) and Closed Curve Theorem (4.16) apply to g as
well as to f . (Note that since f is entire, g is continuous; however, it is not obvious
that g is entire.) We begin by showing that the Rectangle Theorem applies to g.

5.1 Rectangle Theorem II

If f is entire and if

g(z) =

⎧⎪⎨
⎪⎩

f (z) − f (a)

z − a
z �= a

f ′(a) z = a

then
∫
� g(z)dz = 0, where � is the boundary of a rectangle R.

Proof

We consider three cases.

I. a ∈ ext R.
In this case, g is analytic throughout R and the proof is exactly the same as

that of Theorem 4.14. Note that the proof required only that the integrand be
analytic throughout R and �.

59
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II. a ∈ �.
Divide R into six subrectangles as indicated and note that because of the

cancellations involved ∫
�

g =
6∑

k=1

∫
�k

g (1)

where �k, 1 ≤ k ≤ 6, denote the boundaries of the subrectangles. Since g is
continuous in the compact domain R̄, g � M for some constant M . If we take
the boundary of the rectangle containing a (call it �1) to have length less than ε,∫

�1

g � Mε by the M-L formula

while ∫
�k

g = 0, k �= 1

as in case (I). Hence by (1) ∫
�

g � Mε

for any ε > 0 and the proof is complete.
III. a ∈ int R.

a
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Here, as in the previous case, we subdivide R–this time into nine rectangles.
Along the boundaries of the eight rectangles (not containing a)∫

�k

g = 0,

while the integral along the boundary of the remaining subrectangle can be
made arbitrarily small by choosing its length to be as small as required. As in
the previous case, we conclude

∫
�

g =
9∑

k=1

∫
�k

g = 0. �

5.2 Corollary

Suppose g is as above. Then the Integral Theorem and the Closed Curve Theorem
apply to g.

Proof

We observe that since g is continuous, the proofs of Theorems 4.15 and 4.16 apply,
without any modification, to g. �

5.3 Cauchy Integral Formula

Suppose that f is entire, that a is some complex number, and that C is the curve

C : Reiθ , 0 ≤ θ ≤ 2π, with R > |a|.
Then

f (a) = 1

2π i

∫
C

f (z)

z − a
dz.

Proof

By Corollary 5.2 ∫
C

f (z) − f (a)

z − a
dz = 0

so that

f (a)

∫
C

dz

z − a
=

∫
C

f (z)

z − a
dz

and the proof follows once we show that∫
C

dz

z − a
= 2π i.

This lemma is proven below in somewhat greater generality. �
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5.4 Lemma

Suppose a is contained in the circle Cρ : that is, Cρ has center α, radius ρ, and
|a − α| < ρ. Then ∫

Cρ

dz

z − a
= 2π i.

Proof

First we note that ∫
Cρ

dz

z − α
=

∫ 2π

0

iρeiθ

ρeiθ
dθ = 2π i,

while ∫
Cρ

dz

(z − α)k+1
= 0 for k = 1, 2, 3, . . . .

The second equality follows not only from a direct evaluation of the integral

∫
Cρ

dz

(z − α)k+1 = i

ρk

∫ 2π

0
e−ikθ dθ = 0

but also from the fact that 1/(z − α)k+1 is equal to the derivative of the analytic
function −1/k(z − α)k .

To evaluate
∫

Cρ
(1/(z − a))dz, write

1

z − a
= 1

(z − α) − (a − α)
= 1

(z − α)[1 − (a − α)/(z − α)]

= 1

(z − α)
· 1

1 − ω

where

ω = a − α

z − α
has fixed modulus

|a − α|
ρ

< 1 throughout Cρ. (1)

By (1) and the fact that 1/(1 − ω) = 1 + ω + ω2 + · · · , we obtain

1

z − a
= 1

z − α

[
1 + a − α

z − α
+ (a − α)2

(z − α)2
+ · · ·

]

= 1

z − α
+ a − α

(z − α)2
+ (a − α)2

(z − α)3
+ · · · .

Since the convergence is uniform throughout Cρ ,

∫
Cρ

1

z − a
dz =

∫
Cρ

1

z − α
dz +

∞∑
k=1

∫
Cρ

(a − α)k

(z − α)k+1
dz = 2π i. �
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5.5 Taylor Expansion of an Entire Function

If f is entire, it has a power series representation. In fact, f (k)(0) exists for k =
1, 2, 3, . . . , and

f (z) =
∞∑

k=0

f (k)(0)

k!
zk

for all z.

Proof

Suppose a �= 0, R = |a|+1 and let C be the circle: |ω| = R. By the Cauchy Integral
Formula

f (z) = 1

2π i

∫
C

f (ω)

w − z
dω

for all z � a.
As before, note that

1

ω − z
= 1

ω
(

1 − z

ω

) = 1

ω
+ z

ω2 + z2

ω3 + · · · ,

and since the convergence is uniform throughout C

f (z) = 1

2π i

∫
C

f (ω)

[
1

ω
+ z

ω2
+ z2

ω3
+ · · ·

]
dω

= 1

2π i

∫
C

f (ω)

ω
dω +

(
1

2π i

∫
C

f (ω)

ω2 dω

)
z +

(
1

2π i

∫
C

f (ω)

ω3 dω

)
z2 + · · ·

=
∞∑

k=0

Ck zk

where

Ck = 1

2π i

∫
C

f (ω)

ωk+1
dω. (1)

Since for each z, there exists some a � z, the proof of the first part of the theorem
appears to be complete. There is, however, one wrinkle. The contour C–and hence
the coefficients of the power series–depended on a, for the radius R had to be chosen
larger than |a| to insure the uniform convergence of the power series for 1/(ω − z).
On the other hand, if we think of a as being fixed, we have shown that there exist
coefficients C0(a), C1(a), C2(a), . . . , such that

f (z) =
∑

Ck(a)zk (2)

for all z � a. To see that this is sufficient we note that although, a priori, the coef-
ficients could change as we consider complex numbers a of increasing magnitude,
they are in fact constant.
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For, as we saw in Chapter 2 (Corollary 2.11), it follows from (2) that f is infinitely
differentiable at 0 and that

Ck(a) = f (k)(0)

k!
.

Hence the coefficients are independent of a. Note, finally, that although the every-
where convergence of the series ∑ f (k)(0)

k!
zk

is not proven explicitly, it is implicit in the fact that the series equals f (z) for
all z. �

5.6 Corollary

An entire function is infinitely differentiable.

Proof

Since f has a power series expansion, we may invoke Corollary 2.10–an everywhere
convergent power series is infinitely differentiable. �

5.7 Corollary

If f is entire and if a is any complex number, then

f (z) = f (a) + f ′(a)(z − a) + f ′′(a)

2!
(z − a)2 + · · · for all z.

Proof

Consider g(ζ ) = f (ζ + a) which is likewise entire. By 5.5

g(ζ ) = g(0) + g′(0)ζ + g′′(0)

2!
ζ 2 + · · · ,

so that

f (ζ + a) = f (a) + f ′(a)ζ + f ′′(a)

2!
ζ 2 + · · · .

Setting ζ = z − a, the corollary follows. �

5.8 Proposition

If f is entire and if

g(z) =
⎧⎨
⎩

f (z) − f (a)

z − a
z �= a

f ′(a) z = a

then g is entire.
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Proof

By the previous corollary, for z �= a

g(z) = f ′(a) + f ′′(a)

2!
(z − a) + f (3)(a)

3!
(z − a)2 + · · · , (1)

and by the definition of g, (1) is also valid at z = a. Since g is equal to an everywhere
convergent power series, g is entire. �

5.9 Corollary

Suppose f is entire with zeroes at a1, a2, . . . , aN . Then if g is defined by

g(z) = f (z)

(z − a1)(z − a2) . . . (z − aN )
for z �= ak,

limz→ak g(z) exists for k = 1, 2, . . . , N, and if g(ak) is defined by these limits, then
g is entire.

Proof

Let f0(z) = f (z) and let

fk(z) = fk−1(z) − fk−1(ak)

z − ak
= fk−1(z)

z − ak
, z �= ak .

Assuming that fk−1 is entire, it follows from Proposition 5.8 that fk(z) has a limit
as z → ak and if we define fk(ak) to be this limit, fk is entire. Since f0 is entire by
hypothesis, the proof follows by induction. �

5.2 Liouville Theorems and the Fundamental Theorem of
Algebra; The Gauss-Lucas Theorem

5.10 Liouville’s Theorem

A bounded entire function is constant.

Proof

Let a and b represent any two complex numbers and let C be any positively oriented
circle centered at 0 and with radius R > max(|a|, |b|). Then according to the
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Cauchy Integral Formula (5.3)

f (b) − f (a) = 1

2π i

∫
C

f (z)

z − b
dz − 1

2π i

∫
C

f (z)

z − a
dz

= 1

2π i

∫
C

f (z)(b − a)

(z − a)(z − b)
dz

� M|b − a| · R

(R − |a|)(R − |b|) (1)

using the usual estimate, where M represents the supposed upper bound for | f |. Since
R may be taken as large as desired and since the expression in (1) approaches 0 as
R → ∞, f (b) = f (a) and f is constant. �

5.11 The Extended Liouville Theorem

If f is entire and if, for some integer k ≥ 0, there exist positive constants A and B
such that

| f (z)| ≤ A + B|z|k,
then f is a polynomial of degree at most k.

Proof

Note that the case k = 0 is the original Liouville Theorem. The general case follows
by induction. Thus, we consider

g(z) =

⎧⎪⎨
⎪⎩

f (z) − f (0)

z
z �= 0

f ′(0) z = 0.

By 5.8, g is entire and by the hypothesis on f ,

|g(z)| ≤ C + D|z|k−1.

Hence g is a polynomial of degree at most k − 1 and f is a polynomial of degree at
most k. �

5.12 Fundamental Theorem of Algebra

Every non-constant polynomial with complex coefficients has a zero in C.

Proof

Let P(z) be any polynomial. If P(z) �= 0 for all z ∈ C, f (z) = 1/P(z) is an
entire function. Furthermore if P is non-constant, P → ∞ as z → ∞ and f is
bounded. But then, by Liouville’s Theorem, f is constant, and so is P , contrary to
our assumption. �
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Remarks

1. If α is a zero of an n-th degree polynomial Pn, Pn(z) = (z − α)Pn−1(z), where
Pn−1 is a polynomial of degree n − 1. This can be seen by the usual Euclidean
Algorithm or by noting that ∣∣∣∣ Pn(z)

z − α

∣∣∣∣ ≤ A + B|z|n−1

and hence is equal to an (n − 1)-st degree polynomial by the Extended Liouville
Theorem.

2. α is called a zero of multiplicity k (or order k) if P(z) = (z − α)k Q(z), where
Q is a polynomial with Q(α) �= 0. Equivalently, α is a zero of multiplicity k if
P(α) = P ′(α) = · · · = P(k−1)(α) = 0, P(k)(α) �= 0. The equivalence of the
two definitions is easily established and is left as an exercise.

3. Although the Fundamental Theorem of Algebra only assures the existence of a
single zero, an induction argument shows that an n-th degree polynomial has n
zeroes (counting multiplicity). For, assuming every k-th degree polynomial can
be written

Pk(z) = A(z − z1) · · · (z − zk),

it follows that
Pk+1(z) = A(z − z0)(z − z1) · · · (z − zk).

By the above remark, any polynomial

Pn(z) = anzn + an−1zn−1 + · · · + a0 (2)

can also be expressed as

Pn(z) = an(z − z1)(z − z2) · · · (z − zn), (3)

where z1, z2, ...zn are the zeroes of Pn . A comparison of (2) and (3) yields the
well-known relations between the zeroes of a polynomial and its coefficients. For
example, ∑

zk = −an−1/an. (4)

There are many entire functions, such as ez − 1, which have infinitely many
zeroes, and whose derivatives are never zero. So there is no general analytic analogue
of Rolle’s Theorem. However, for polynomials, the Gauss-Lucas Theorem, below,
offers a striking analogy and, in some ways a stronger form, of Rolle’s Theorem.

Recall that a convex set is one that contains the entire line segment connecting any
two of its points. Hence, if z1 and z2 belong to a convex set, so does every complex
number of the form tz1 + (1− t)z2, for 0 ≤ t ≤ 1. We leave it as an exercise to show
that if z1, z2, ..., zn belong to a convex set, so does every “convex” combination of
the form

a1z1 + a2z2 + · · · + anzn ; ai ≥ 0 for all i , and
∑

ai = 1. (5)
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5.13 Definition

The convex hull of a set S of complex numbers is the smallest convex set
containing S.

5.14 Gauss-Lucas Theorem

The zeroes of the derivative of any polynomial lie within the convex hull of the
zeroes of the polynomial.

Proof

Assume that the zeroes of P are z1, z2, ..., zn and that α is a zero of P ′ but not a zero
of P , Then

P ′(α)

P(α)
= 1

α − z1
+ 1

α − z2
+ · · · + 1

α − zn
= 0 (6)

Rewriting
1

α − zi
= α − zi

|α − zi |2
we can apply (6) to obtain

α =
∑

ai zi , with ai = 1

|α − zi |2
/∑ 1

|α − zi |2 . (7)

Finally, by taking conjugates in (7), we obtain an identical expression for α in
terms of z1, z2, ..., zn . Hence α is in the convex hull of {z1, z2, ..., zn}. �

A final remark

The Fundamental Theorem of Algebra can be considered a “nonexistence theorem”
in the following sense. Recall that the complex numbers come into consideration
when the reals are supplemented to include a solution of the equation x2 + 1 = 0.
One might have supposed that further extensions would arise as we sought zeroes of
other polynomials with real or complex coefficients. By the Fundamental Theorem
of Algebra, all such solutions are already contained in the field of complex numbers,
and hence no such further extensions are possible. This is usually expressed by saying
that the field of complex numbers is algebraically closed.

5.3 Newton’s Method and Its Application to Polynomial
Equations

I. Introduction We saw in Chapter 1 that solutions of quadratic and cubic equa-
tions can be found in terms of square roots and cube roots of various expressions
involving the coefficients. A similar formula is also available for fourth degree poly-
nomial equations. On the other hand, one of the highlights of modern mathematics is
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the famous theorem that no such solution, in terms of n-th roots, can be given for the
general polynomial equation of degree five or higher. In spite of this, there are many
graphing calculators that allow the user to input the coefficients of a polynomial of
any degree and then almost immediately output all of its zeroes, correct to eight or
nine decimal places. The explanation for this magic is that, although there are no
formulas for solving all polynomial equations, there are many algorithms which can
be used to find arbitrarily good approximations to the solutions.

One extremely popular and effective method for approximating solutions to equa-
tions of the form f (z) = 0, variations of which are incorporated in many calculators,
is known as Newton’s Method. It can be informally described as follows:

i) Choose a point z0 “sufficiently close” to a solution of the equation, which we
will call s.

ii) Define z1 = z0 − f (z0)/ f
′
(z0) and continue recursively, defining zn+1 =

zn − f (zn)/ f ′(zn).

Then, if z0 is sufficiently close to the root s, the sequence {zn} will converge to s.
In fact, the convergence is usually extremely rapid.

If we are trying to approximate a real solution s to the “real” equation f (x) = 0,
the algorithm has a very nice geometric interpretation. That is, suppose (x0, f (x0))
is a point P on the graph of the function y = f (x).Then the tangent to the graph
at point P is given by the equation L(x) = f (x0) + f ′(x0)(x − x0). Hence x1 =
x0 − f (x0)/ f

′
(x0) is precisely the point where the tangent line crosses the x-axis.

y

y = f (x)

x

f (xk)
f ' (xk)

xk xk+1

xk+1 = xk — 

Similarly, xn+1 is the zero of the tangent to y = f (x) at the point (xn, f (xn)).
Thus, there is a very clear visual insight into the nature of the sequence generated
by the algorithm and it is easy to convince oneself that the sequence converges to
the solution s in most cases. However, the geometric argument leaves many ques-
tions unanswered. For example, how do we know if x0 is sufficiently close to the
root s? Furthermore, if the sequence does converge, how quickly does it converge?
Experimenting with simple examples will verify the assertion made earlier that the
convergence is, in fact, very quick, but why is it? Finally, and of special interest to us,
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why does the method work in the complex plane, where the geometric interpretation
is no longer applicable? The answer to all these questions can be found by taking a
slight detour into the topic of fixed-point iteration.

II. Fixed-Point Iteration Suppose we are given an equation in the form z = g(z).
Then a solution s is a “fixed-point” of the function g. As we will see below, un-
der the proper conditions, approximating such a fixed point can often be accom-
plished by recursively defining zn+1 = g(zn), a process known as fixed point
iteration.

5.15 Lemma

Let s denote a root of the equation z = g(z), for some analytic function g. Suppose
that z0 belongs to a disc of the form D(s; r) throughout which |g′(z)| ≤ K , and let
z1 = g(z0). Then |z1 − s| ≤ K |z0 − s|.

Proof

Note that |z1 − s| = |g(z0) − g(s)|. Using the complex version of the Fundamental
Theorem of Calculus,

g(z0) − g(s) =
∫ z0

s
g′(z)dz

where we choose the path of integration to be the straight line from s to z0. The result
then follows immediately from the M − L formula. �

5.16 Theorem

Let s denote a root of the equation z = g(z),for some analytic function g. Suppose
that z0 belongs to a disc of the form D(s; r) throughout which |g′(z)| ≤ K < 1
and define the sequence {zn} recursively as: zn+1 = g(zn); n = 0, 1, 2, .... Then
{zn} → s as n → ∞.

Proof

Note that, as in Lemma 5.15,

|zn+1 − s| ≤ K |zn − s|
and hence, by induction, zn ∈ D(s; r) for all n and |zn − s| ≤ K n|z0 − s|. Since
K < 1, the result follows immediately. �

5.17 Corollary

Let s denote a root of the equation z = g(z), for some analytic function g and assume
that |g′(s)| < 1. Then there exists a disc of the form D(s; r) such that if z0 ∈ D(s:r)
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and if we define the sequence {zn} recursively as: zn+1 = g(zn); n = 0, 1, 2, ....,
{zn} → s as n → ∞.

Proof

Since |g′(s)| < 1, there exists a constant K with |g′(s)| < K < 1. But then,
since g′ is analytic, there must exist exist a disc D(s; r) throughout which
|g′(z)| < K . �

Suppose we let εn = |zn − s| denote the n-th error, i.e. the absolute value of the
difference between the n-th approximation zn and the desired solution, s. Then the
above results show that, with an appropriate starting value z0, the sequence of errors
satisfies the inequality

εn+1 ≤ K εn (1)

If, e.g. K = 1
2 , the error will be reduced by a factor of 1

10 for every 3 or 4 iterations.
An iteration scheme which satisfies inequality (1) for any value of K , 0 < K < 1,
is said to converge linearly. In that case, the number of iterations required to obtain
n decimal place accuracy is roughly proportional to n.

Corollary 5.17 shows that an important condition for the convergence of fixed-
point iteration is that |g′(s)| < 1 This raises the following practical problem. An
equation in the familiar form f (z) = 0 can certainly be rewritten as an equivalent
equation in the fixed point form z = g(z). For example, one could simply add the
monomial z to both sides of the equation. But how can we rewrite f (z) = 0 in the
form z = g(z) with the additional condition that |g′(s)| < 1 at the unknown solution
s ? One answer to this problem will provide the insight to Newton’s method that
we are looking for. That is, suppose the equation f (z) = 0 is rewritten in the form
z = g(z) = z − f (z)/ f ′(z). Then the fixed point iteration algorithm is precisely
Newton’s Method. Moreover, we can find the exact value of g′(s)!!

5.18 Lemma

If f is analytic and has a zero of order k at z = s, and if g(z) = z − f (z)/ f ′(z),
then g is also analytic at s and g′(s) = 1− 1

k .

Proof

By hypothesis, f (z) = (z − s)kh(z), with h(s) �= 0. Hence

f (z)/ f ′(z) = (z − s)h(z)

kh(z) + (z − s)h′(z)

Thus f/ f ′ is analytic at s (with the appropriate value of 0 at s), and its power series
expansion about the point s is of the form 1

k (z − s) + a2(z − s)2 + · · ·. Hence
g′(s) = 1− 1

k �
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Applying Corollary 5.17 then yields

5.19 Theorem

Let s denote a root of the equation f (z) = 0. Let g(z) = z − f (z)/ f ′(z), and
define the sequence {zn} recursively as: zn+1 = g(zn); n = 0, 1, 2, .. Then there
exists a disc of the form D(s; r) such that z0 ∈ D(s; r) guarantees that {zn} → s as
n → ∞. �

If f (z) has a simple zero at s, according to Lemma 5.18, g(z) = z − f (z)/ f ′(z)
will have g′(s) = 0. In this case, the iteration scheme will converge especially
rapidly.

5.20 Lemma

Let s denote a root of the equation z = g(z), for some analytic function g such that
g′(s) = 0. Suppose that z0 belongs to a disc of the form D(s; r) throughout which

|g′′(z)| ≤ M

and let z1 = g(z0). Then |z1 − s| ≤ 1
2 M|z0 − s|2.

Proof

As in lemma 5.15, we begin by noting that z1 − s = g(z0) − g(s) = ∫ z0
s g′(z)dz.

But for any value of z on the line segment [s, z0], we can write:

|g′(z)| = |g′(z) − g′(s)| = |
∫ z

s
g′′(z)dz| ≤ M|z − s| (2)

Let �z = (z0 − s)/n and write∫ z0

s
g′(z)dz =

∫ s+�z

s
g′ +

∫ s+2�z

s+�z
g′ + .... +

∫ z0

z0−�z
g′ (3)

Then applying the M-L formula to each of the integrals in (3) and using the estimates
for g′ given by (2) show that

∫ z0
s g′(z)dz is bounded by

n∑
k=1

Mk(�z)2 = M
n(n + 1)

2

|z0 − s|2
n2

and the lemma follows by letting n → ∞. �

5.21 Definition

If εn = |zn − s| satisfies εn+1 ≤ K ε2
n , we say that the sequence {zn} converges

quadratically to s.
Note that in the case of quadratic convergence, once the sequence of iterations

is close to its limit, each iteration virtually doubles the number of decimal places
which are accurate. If, for example, at some point the error is in the 10th decimal
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place, then at that point, εn is approximately 10−10, so that εn+1 = K ε2
n will be

approximately 10−20.
Lemmas 5.18 and 5.20 combine then to give us

5.22 Theorem

If f (z) has a simple zero at a point s, and if z0 is sufficiently close to s, Newton’s
Method will produce a sequence which converges quadratically to s. �

III. Newton’s Method Applied to Polynomial Equations While Newton’s Method
can be (and is) applied to all sorts of equations, it works especially well for polynomial
equations. For one thing, we don’t have to worry about the existence of solutions; they
are guaranteed by the Fundamental Theorem of Algebra. That may be one reason
why Newton himself applied his method only to polynomial equations. According
to Theorems 5.19 and 5.22, as long as the initial approximation z0 is sufficiently
close to one of the roots, Newton’s Method will converge to it. If we are looking
for a simple zero of a polynomial, the method will actually converge quadratically.
Of course, there are starting points which will not yield a convergent sequence. For
example, if z0 is a zero of the derivative of the polynomial, z1will not be defined!
On the other hand, the set of “successful” starting points is surprisingly robust.

Modern technology has been applied to identifying what have been labeled “New-
ton basins”, the distinct regions in the complex plane from which a starting value
will yield a sequence converging to the distinct zeroes of a polynomial. If these re-
gions are shaded in different colors, they yield remarkably interesting sketches. Aside
from the example below, interested readers can generate their own sketches of the
Newton basins for various polynomials at http://aleph0.clarku.edu/∼djoyce/newton/
technical.html

The sketch below shows the Newton basins for the eight zeroes of the polynomial
P(z) = (z4 − 1)(z4 + 4). The eight roots: ±1,±i,±(1 + i),±(1 − i) are at the
corners and the midpoints of the sides of the displayed square. The black regions
contain the starting points which do not yield a convergent sequence.
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Exercises

1. Find the power series expansion of f (z) = z2 around z = 2.

2. Find the power series expansion for ez about any point a.

3. f is called an odd function if f (z) = − f (−z) for all z; f is called even if f (z) = f (−z).
a. Show that an odd entire function has only odd terms in its power series expansion about z = 0.

[Hint: show f odd ⇒ f ′ even, etc., or use the identity

f (z) = f (z) − f (−z)

2
.]

b. Prove an analogous result for even functions.

4. By comparing the different expressions for the power series expansion of an entire function f , prove
that

f (k)(0) = k!

2π i

∫
C

f (ω)

ωk+1
dω, k = 0, 1, 2, . . .

for any circle C surrounding the origin.

5. (A Generalization of the Cauchy Integral Formula). Show that

f (k)(a) = k!

2π i

∫
C

f (ω)

(ω − a)k+1
dω, k = 1, 2, . . .

where C surrounds the point a and f is entire.
6. a. Suppose an entire function f is bounded by M along |z| = R. Show that the coefficients Ck in

its power series expansion about 0 satisfy

|Ck | ≤ M

Rk
.

b. Suppose a polynomial is bounded by 1 in the unit disc. Show that all its coefficients are bounded
by 1.

7. (An alternate proof of Liouville’s Theorem). Suppose that | f (z)| ≤ A + B|z|k and that f is entire.
Show then that all the coefficients C j , j > k, in its power series expansion are 0. (See Exercise 6a.)

8. Suppose f is entire and | f (z)| ≤ A + B|z|3/2. Show that f is a linear polynomial.

9. Suppose f is entire and | f ′(z)| ≤ |z| for all z. Show that f (z) = a + bz2 with |b| ≤ 1
2 .

10. Prove that a nonconstant entire function cannot satisfy the two equations
i. f (z + 1) = f (z)

ii. f (z + i) = f (z)

for all z. [Hint: Show that a function satisfying both equalities would be bounded.]

11. A real polynomial is a polynomial whose coefficients are all real. Prove that a real polynomial of
odd degree must have a real zero. (See Exercise 5 of Chapter 1.)

12. Show that every real polynomial is equal to a product of real linear and quadratic polynomials.

13. Suppose P is a polynomial such that P(z) is real if and only if z is real. Prove that P is linear. [Hint:
Set P = u + iv, z = x + iy and note that v = 0 if and only if y = 0.

Conclude that:
a. either vy ≥ 0 throughout the real axis or vy ≤ 0 throughout the real axis;
b. either ux ≥ 0 or ux ≤ 0 for all real values and hence u is monotonic along the real-axis;
c. P(z) = α has only one solution for real-valued α.]
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14. Show that α is a zero of multiplicity k if and only if

P(α) = P ′(α) = · · · = P(k−1)(α) = 0,

and P(k)(α) �= 0.

15. Suppose that f is entire and that for each z, either | f (z)| ≤ 1 or | f ′(z)| ≤ 1. Prove that f is a
linear polynomial. [Hint: Use a line integral to show

| f (z)| ≤ A + |z| where A = max(1, | f (0)|).]

16.* Let (z1 + z2 +· · ·+ zn )/n denote the centroid of the complex numbers z1, z2, ..., zn . Use formula
(4) in section 5.2 to show that the centroid of the zeroes of a polynomial is the same as the centroid
of the zeroes of its derivative.

17.* Use induction to show that if z1, z2, ..., zn belong to a convex set, so does every "convex" combi-
nation of the form

a1z1 + a2z2 + · · · + an zn ; ai ≥ 0 for all i , and
∑

ai = 1.

18.* Let Pk(z) = 1 + z + z2/2! + · · · + zk/k!, the kth partial sum of ez .

a. Show that, for all values of k ≥ 1,the centroid of the zeroes of Pk is −1.
b. Let zk be a zero of Pk with maximal possible absolute value. Prove that {|zk |} is an increasing

sequence.

19.* Let P(z) = 1 + 2z + 3z2 + · · · + nzn−1. Use the Gauss-Lucas theorem to show that all the zeroes
of P(z) are inside the unit disc. (See exercise 20 of Chapter 1 for a more direct proof.)

20.* Find estimates for
√

i by applying Newton’s method to the polynomial equation z2 = i , with
z0 = 1.





Chapter 6
Properties of Analytic Functions

Introduction

In the last two chapters, we studied the connection between everywhere convergent
power series and entire functions. We now turn our attention to the more general
relationship between power series and analytic functions. According to Theorem 2.9
every power series represents an analytic function inside its circle of convergence.
Our first goal is the converse of this theorem: we will show that a function analytic
in a disc can be represented there by a power series. We then turn to the question of
analytic functions in arbitrary open sets and the local behavior of such functions.

6.1 The Power Series Representation for Functions Analytic
in a Disc

6.1 Theorem

Suppose f is analytic in D = D(α; r). If the closed rectangle R and the point a are
both contained in D and � represents the boundary of R,∫

�
f (z)dz =

∫
�

f (z) − f (a)

z − a
dz = 0.

Proof

The proof is exactly the same as those of Theorems 4.14 and 5.1. The only requirement
there was that f be analytic throughout R, and this is satisfied since R ⊂ D. �

To simplify notation, we adopt the following convention. If f (z) is analytic in a
region D, including the point α, the function

g(z) = f (z) − f (a)

z − a

77
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will denote the function given by

g(z) =
⎧⎨
⎩

f (z) − f (a)

z − a
z ∈ D, z �= a

f ′(a) z = a.

The fact that g is analytic at a is proven in Proposition 6.7. (Compare with Proposi-
tion 5.8.)

6.2 Theorem

If f is analytic in D(α; r), and a ∈ D(α; r), there exist functions F and G, analytic
in D and such that

F ′(z) = f (z), G′(z) = f (z) − f (a)

z − a
.

Proof

We define

F(z) =
∫ z

α
f (ζ )dζ

and

G(z) =
∫ z

α

f (ζ ) − f (a)

ζ − a
dζ

where the path of integration consists of the horizontal and then vertical segments
from α to z. Note that for any z ∈ D(α; r) and h small enough, z + h ∈ D(α; r) so
that, as in 4.15, we may apply the Rectangle Theorem to the respective difference
quotients to conclude

F ′(z) = f (z)

and

G′(z) = f (z) − f (a)

z − a
. �

6.3 Theorem

If f and a are as above and C is any (smooth) closed curve contained in D(α; r),∫
C

f (z)dz =
∫

C

f (z) − f (a)

z − a
dz = 0.

Proof

According to Theorem 6.2, there exists G, analytic in D(α; r) and such that

G′(z) = f (z) − f (a)

z − a
.
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Hence, ∫
C

f (z) − f (a)

z − a
dz =

∫
C

G′(z)dz = G(z(b)) − G(z(a)) = 0

since the initial and terminal points z(a) and z(b) coincide. Similarly,∫
C f (z)dz = 0. �

6.4 Cauchy Integral Formula

Suppose f is analytic in D(α; r), 0 < ρ < r , and |a − α| < ρ. Then

f (a) = 1

2π i

∫
Cρ

f (z)

z − a
dz

where Cρ represents the circle α + ρeiθ , 0 ≤ θ ≤ 2π .

a

α ρ

ρ

r

C

Proof

∫
Cρ

f (z) − f (a)

z − a
dz = 0

so that

f (a)

∫
Cρ

dz

z − a
=

∫
Cρ

f (z)

z − a
dz.

Moreover, according to Lemma 5.4,∫
Cρ

dz

z − a
= 2π i

and the proof is complete. �
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6.5 Power Series Representation for Functions Analytic in a Disc

If f is analytic in D(α; r) there exist constants Ck such that

f (z) =
∞∑

k=0

Ck(z − α)k

for all z ∈ D(α; r).

Proof

Pick a ∈ D(α; r) and ρ > 0 such that |a − α| < ρ < r .
By the previous integral formula, if |z − α| < |a − α|

f (z) = 1

2π i

∫
Cρ

f (ω)

ω − z
dω

and using the fact that

1

ω − α
+ z − α

(ω − α)2 + (z − α)2

(ω − α)3 + · · ·

converges uniformly to 1/(ω − z) throughout Cρ (see Lemma 5.4)

f (z) = 1

2π i

∫
Cρ

f (ω)

[
1

ω − α
+ z − α

(ω − α)2
+ (z − α)2

(ω − α)3
+ · · ·

]
dω

= C0(ρ) + C1(ρ)(z − α) + C2(ρ)(z − α)2 + · · · (1)

where

Ck(ρ) = 1

2π i

∫
Cρ

f (ω)

(ω − α)k+1 dω.

Note, then, that the coefficients Ck(ρ) are actually independent of ρ. For once again,
as in 5.5, we can apply (1) to conclude that f is infinitely differentiable at α and

Ck(ρ) = f (k)(α)

k!
for each ρ, 0 < ρ < r, and all k.

Hence, for all z ∈ D(α; r)

f (z) =
∞∑

k=0

Ck(z − α)k

with

Ck = f (k)(α)

k!
= 1

2π i

∫
Cρ

f (z)

(z − α)k+1 dz. �
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6.2 Analytic in an Arbitrary Open Set

The methods used above cannot be generalized to find a single power series equal
to a given analytic function in an arbitrary open set. In fact no such generalization
is possible even to the most elementary of domains–e.g., a square. The breakdown
in the previous strategy arises when, given a point a in the square, we try to find a
contour C surrounding a and the center α of the square such that∣∣∣∣ a − α

ω − α

∣∣∣∣ < 1 for all ω ∈ C

(see the diagram). As we shall soon see, this is not simply a technical difficulty but
a reflection of the fact that in general, no such power series exists! However, we can
apply our previous results to obtain the following general theorem.

a

α

6.6 Theorem

If f is analytic in an arbitrary open domain D, then for each α ∈ D, there exist
constants Ck such that

f (z) =
∞∑

k=0

Ck(z − α)k

for all points z inside the largest disc centered at α and contained in D.

Proof

This is a simple reformulation of Theorem 6.5. �

EXAMPLES

i. f (z) = 1/(z − 1) is analytic at z = 2 and in a disc of radius 1 centered at z = 2.
To find a power series representation for f in that disc, we write

1

z − 1
= 1

1 + (z − 2)
= 1 − (z − 2) + (z − 2)3 − (z − 2)3 + − · · · (1)

which converges as long as |z − 2| < 1.
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Note that the power series diverges throughout |z − 2| > 1 despite the fact
that f (z) = 1/(z − 1) is analytic everywhere except at the single point z = 1.

Furthermore, according to Theorem 2.14 any other power series
∑

ak(z −2)k

which equals 1/(z − 1) in any disc around z = 2 would have to be identical with
the power series in (1). Hence, there is no power series

∑
ak(z − 2)k equal to

1/(z − 1) throughout its domain of analyticity.
ii. To find a power series representation for 1/z2 near z = 3, we set

1

z2
=

[
1

3 + (z − 3)

]2

= 1

9

[
1

1 + (z − 3)/3

]2

= 1

9

[
1 − (z − 3)

3
+ (z − 3)2

9
− (z − 3)3

27
+ − · · ·

]2

= 1

9

[
1 − 2(z − 3)

3
+ 3(z − 3)2

9
− 4(z − 3)3

27
+ − · · ·

]

=
∞∑

k=0

(−1)k

9

(k + 1)

3k
(z − 3)k .

Note again that the radius of convergence

1/ lim sup |Ck |1/k = lim

(
9 · 3k

k + 1

)1/k

= 3

represents the radius of the largest disc centered at z = 3 in which 1/z2 is analytic.
iii. To find the first three terms of the power series for f (z) = sin(1/z) around

z = 1, because no immediate formula suggests itself, we evaluate the coefficients
directly using the formula

Ck = f (k)(1)

k!
.

Thus we find

f (z) = sin
1

z
= sin 1 − cos 1(z − 1) + (2 cos 1 − sin 1)

2
(z − 1)2 + · · · ♦

6.3 The Uniqueness, Mean-Value, and Maximum-Modulus
Theorems; Critical Points and Saddle Points

We now consider some of the implications of the power series representations
discussed in Theorem 6.6. We begin with a local version of Proposition 5.8.
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6.7 Proposition

If f is analytic at α, so is

g(z) =
⎧⎨
⎩

f (z) − f (α)

z − α
z �= α

f ′(α) z = α.

Proof

By Theorem 6.6, in some neighborhood of α,

f (z) = f (α) + f ′(α)(z − α) + f ′′(α)

2!
(z − α)2 + · · · .

Thus g has the power series representation

g(z) = f ′(α) + f ′′(α)

2!
(z − α) + f (3)(α)

3!
(z − α)2 + · · ·

in the same neighborhood, and by 2.9, g is analytic at α. �

6.8 Theorem

If f is analytic at z, then f is infinitely differentiable at z.

Proof

We need only recall that, by definition, f is analytic at a point z if it is analytic in an
open set containing z. By 6.6, then, in some disc containing z, f may be expressed as a
power series. This completes the proof, since power series are infinitely differentiable
(Corollary 2.10). �

6.9 Uniqueness Theorem

Suppose that f is analytic in a region D and that f (zn) = 0 where {zn} is a sequence
of distinct points and zn → z0 ∈ D. Then f ≡ 0 in D.

Proof

Since f has a power series representation around z0, by the Uniqueness Theorem
for Power Series, f = 0 throughout some disc containing z0. To show that f ≡ 0 in
the whole domain D, we split D into two sets:

A = {z ∈ D: z is a limit of zeroes of f },
B = {z ∈ D: z �∈ A}.

By definition, A ∩ B = ∅. A is open by the Uniqueness Theorem for power series:
if z is a limit of zeroes of f, f ≡ 0 in an entire disc around z and that disc is
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contained in A. B is open since for each z ∈ B , there must be some δ > 0 such that
f (ω) �= 0 for 0 < |z − ω| < δ. The disc D(z; δ) would then be contained in B .
By the connectedness of D, then, either A or B must be empty. But, by hypothesis,
z0 ∈ A. Thus B is empty and every z ∈ D is a limit of zeroes of f . By the continuity
of f , then, f ≡ 0 in D. �

6.10 Corollary

If two functions f and g, analytic in a region D, agree at a set of points with an
accumulation point in D, then f ≡ g through D.

Proof

Consider f − g. �

Note that a non-trivial analytic function may have infinitely many zeroes. For ex-
ample, sin z, which is entire, is equal to 0 at all the points z = nπ, n = 0,±1,±2, . . . .
In fact, sin(1/z) = 0 on the set{

1

nπ
: n = ±1,±2, . . .

}

which has an accumulation point at 0! Because this limit point is not in the
domain of analyticity of sin(1/z), however, sin(1/z) does not satisfy the hypoth-
esis of Theorem 6.9.

6.11 Theorem

If f is entire and if f (z) → ∞ as z → ∞, then f is a polynomial.

Proof

By hypothesis, there is some M > 0 such that |z| > M implies that | f (z)| > 1. We
conclude that f has at most a finite number of zeroes α1, α2, . . . , αN . Otherwise, the
set of zeroes would have an accumulation point in D(0; M), and by the Uniqueness
Theorem f would be identically zero, contradicting the original hypothesis. If we
divide out the zeroes of f ,

g(z) = f (z)

(z − α1)(z − α2) · · · (z − αN )

is likewise entire (Corollary 5.9), and never equal to zero; hence

h(z) = 1

g(z)
= (z − α1)(z − α2) · · · (z − αN )/ f (z)

is also entire. Since f → ∞ as z → ∞, |h(z)| ≤ A + |z|N ; therefore, by
Theorem 5.11, h is a polynomial. But h = 1/g �= 0, hence according to the
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Fundamental Theorem of Algebra, h is a constant k. Thus

f (z) = 1

k
(z − α1)(z − α2) · · · (z − αN ). �

The Uniqueness Theorem is often used to demonstrate the validity in the complex
plane of functional equations known to be true on the real line. For example, to prove
the identity

ez1+z2 = ez1ez2 (2)

we first take z2 to be a fixed real number. Then ez1+z2 and ez1 · ez2 represent two
entire functions of z1 which agree at all real points and hence by the Uniqueness
Theorem, they agree for all complex z1 as well. Finally, for any fixed z1, we con-
sider the two sides of (2) as analytic functions in z2 which agree for real z2, and
again applying the Uniqueness Theorem, we conclude that they agree for all com-
plex z2 as well. Hence (2) is valid for all complex z1 and z2. Similarly, equations
such as

tan2 z = sec2 z − 1,

which are known to be true for real z, are valid throughout their domains of
analyticity.

In general, if there is an “analytic” relationship among analytic functions: that is,
a functional equation of the form

F( f, g, h, . . .) = 0

which is satisfied by the analytic function F( f, g, h, . . .) on a set with an accu-
mulation point in its region of analyticity, then the equation holds throughout the
region.

We now examine the local behavior of analytic functions.

6.12 Mean Value Theorem

If f is analytic in D and α ∈ D, then f (α) is equal to the mean value of f taken
around the boundary of any disc centered at α and contained in D. That is,

f (α) = 1

2π

∫ 2π

0
f (α + reiθ )dθ

when D(α; r) ⊂ D.

Proof

This is a reformulation of the Cauchy Integral Formula (6.4) with a = α. That is,

f (α) = 1

2π i

∫
Cr

f (z)

z − α
dz,
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and introducing the parameterization z = α + reiθ , we see that

f (α) = 1

2π

∫ 2π

0
f (α + reiθ )dθ. �

In analogy with the real case, we will call a point z a relative maximum of f if
| f (z)| ≥ | f (ω)| for all complex ω in some neighborhood of z. A relative minimum
is defined similarly.

6.13 Maximum-Modulus Theorem

A non-constant analytic function in a region D does not have any interior maximum
points: For each z ∈ D and δ > 0, there exists some ω ∈ D(z; δ) ∩ D, such that
| f (ω)| > | f (z)|.

Proof

The fact that
| f (ω)| ≥ | f (z)|

for some ω near z follows immediately from the Mean-Value Theorem. Since for
r > 0 such that D(z; r) ⊂ D we have

f (z) = 1

2π

∫ 2π

0
f (z + reiθ )dθ,

it follows that

| f (z)| ≤ 1

2π

∫ 2π

0
| f (z + reiθ )|dθ ≤ max

θ
| f (z + reiθ )|. (3)

Similarly, we may deduce that | f (ω) | > | f (z)| for some ω ∈ D(z; r). For, to obtain
equality in (3), | f | would have to be constant throughout the circle C(z; r) and since
this holds for all sufficiently small r > 0, | f | would be constant throughout a disc.
But then by Theorem 3.7, f would be constant in that disc, and by the Uniqueness
Theorem, f would be constant throughout D. �

Ironically, the Maximum-Modulus Theorem actually asserts that an analytic
function has no relative maximum. It is sometimes given a more positive flavor
as follows.

Suppose a function f is analytic in a bounded region D and continuous on
D̄. (We will, henceforth, use the expression “ f is C-analytic in D” to denote
this hypothesis.) Somewhere in the compact domain D̄, the continuous function
| f | must assume its maximum value. The Maximum-Modulus Theorem may then
be invoked to assert that this maximum is always assumed on the boundary of
the domain.
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6.14 Minimum Modulus Theorem

If f is a non-constant analytic function in a region D, then no point z ∈ D can be a
relative minimum of f unless f (z) = 0.

Proof

Suppose that f (z) �= 0 and consider g = 1/ f . If z were a minimum point for f , it
would be a maximum point for g. Hence g would be constant in D, contrary to our
hypothesis on f . �

Remark

We can also prove the Maximum-Modulus Theorem by analyzing the local power
series representation for an analytic function. That is, for any point α, consider the
power series

f (z) = C0 + C1(z − α) + C2(z − α)2 + · · · ,

which is convergent in some disc around α. To find z near α and such that
| f (z)| > | f (α)|, we first assume C1 �= 0 and set z = α + δeiθ , with δ > 0
“small”, and θ chosen so that C0 and C1δeiθ have the same argument. Then

| f (α)| = |C0|
| f (z)| ≥ |C0 + C1(z − α)| − |C2(z − α)2 + C3(z − α)3 + · · · |

≥ |C0| + |C1δ| − δ2|C2 + C3(z − α) + · · · |.
Since the last expression represents a convergent series,

| f (z)| ≥ |C0| + |C1δ| − Aδ2 ≥ |C0| + 1

2
|C1δ| > | f (α)|

as long as δ < |C1|/2A. Hence α cannot be a maximum point. Note that if
C1 = 0, the same argument can be applied by focusing on the first non-zero co-
efficient Ck .

This technique of studying the local behavior of an analytic function by consid-
ering the first terms of its power series expansion can be used to derive the following
result.

Recall that in calculus, relative maximum points were found among the critical
points (those points at which f ′ = 0) of a differentiable function f . The proposition
below shows a somewhat surprising contrast in the behavior of an analytic function
at a point where it assumes its maximum modulus.

6.15 Theorem

Suppose f is nonconstant and analytic on the closed disc D, and assumes its maxi-
mum modulus at the boundary point z0. Then f ′(z0) �= 0.
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Proof (G. Pólya and G. Szegő)

Assume that f ′(z0) = 0. For any complex number ξ of sufficiently small modulus
we have

f (z0 + ξ) = f (z0) + f (k)(z0)

k!
ξ k + · · · ,

where k is the least integer with f (k)(z0) �= 0 and the omitted terms are all of higher
order in ξ than ξ k . Multiplying the above expression by its conjugate shows

| f (z0 + ξ)|2 = f (z0 + ξ) f (z0 + ξ)

= | f (z0)|2 + 2

k!
Re

(
f (z0) f (k)(z0)ξ

k
)

+ · · · .

Since | f (z0)| = maxz∈D | f (z)|, f (z0) �= 0. Write f (z0) f (k)(z0) = Aeiα with
A > 0, and let eiθ = ξ/ |ξ |. Then

| f (z0 + ξ)|2 = | f (z0)|2 + 2A

k!
|ξ |k cos(kθ + α) + · · · ,

and, for ξ of sufficiently small modulus, | f (z0 + ξ)| − | f (z0)| has the same sign as
cos(kθ + α). It follows that

| f (z)| > | f (z0)| if z is in any of the k wedges of the form{
z0 + rθeiθ : θ ∈

(−π + 4π j − 2α

2k
,
π + 4π j − 2α

2k

)
and rθ ∈ (0, εθ )

}
(4)

for some positive εθ and j = 0, 1, . . . , k − 1 (and | f (z)| < | f (z0)| if z is in any of
the alternate wedges).

Since f ′(z0) = 0, k ≥ 2. To complete the proof, note that at least one of the k
wedges described in (4) must intersect D. Hence | f (z0)| cannot be the maximum
value of | f | on D. �

Remarks

1. While the theorem asserts that | f | cannot achieve an absolute maximum value at
a critical point, it is equally true that | f | cannot have a minimum value other than
zero at a critical point. This is obvious from the parenthetical remark after (4),
above. It can also be proven by considering 1/ f (which is analytic on an open set
containing D if f is nonvanishing on D).

2. Theorem 6.15 is easily generalized to a wide range of compact sets K , including
those which do not have smooth boundaries. The key is that, along with each
boundary point z0, K must also contain a wedge (or “cone”) of the form{

z0 + reiθ : θ ∈ [α, β] , r ∈ (0, ε)
}
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with ε > 0 and β − α > π/2. This is sufficient since each of the wedges
in (4) has a maximum vertex angle of π/2. Thus, the theorem would be equally
valid for a polygon all of whose vertex angles were obtuse. Without this “cone
condition”, however, the theorem is no longer valid. For example, in the unit
square {z : Re z, Im z ∈ [0, 1]}, z2 + i has both an absolute minimum and a crit-
ical point at 0, and 1/(z2 + i) has both an absolute maximum and a critical
point at 0.

3. The ideas in the proof of Theorem 6.15 can be applied to show that the set
of interior critical points of an analytic function (except for those which are
also zeroes) is identical with the set of its “saddle points”. The details are
given below.

6.16 Definition

z0 is a saddle point of an analytic function f if it is a saddle point of the real-valued
function g = | f |; that is, if g is differentiable at z0,with gx(z0) = gy(z0) = 0, but
z0 is neither a local maximum nor a local minimum of g.

6.17 Theorem

z0 is a saddle point of an analytic function f if and only if f ′(z0) = 0 and
f (z0) �= 0.

Proof

Let f = u + iv, where u and v are real, and let g = | f |.
First, suppose that z0 is a saddle point of f . Then g = | f | is differentiable at z0,

and obviously g (z0) �= 0. Note that

gx = (uux + vvx )

g
, gy =

(
uuy + vvy

)
g

. (5)

Since gx(z0) = gy(z0) = 0,

u(z0)ux(z0) + v(z0)vx (z0) = 0,

u(z0)uy(z0) + v(z0)vy(z0) = 0.

u(z0) and v(z0) are not both 0, so the above equations imply that

det

(
ux (z0) vx (z0)

uy (z0) vy (z0)

)
= 0.

From the Cauchy-Riemann equations, it follows that u2
x (z0)+v2

x (z0) = 0, and hence
that f ′(z0) = 0.

Conversely, if f ′(z0) = 0, then ux(z0) and vx(z0) are both zero, and by the
Cauchy-Riemann equations, the same is true for uy(z0) and vy(z0). It follows
from (5) that g is differentiable with gx(z0) = gy(z0) = 0. However, as in the
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proof of Theorem 6.15, the facts that f ′(z0) = 0 and f (z0) �= 0 guarantee that z0 is
not an extremal point of g. �

Note: Of course, if f (z0) = 0, | f | has an absolute minimum at z0. If, in addition,
f ′(z0) = 0, then it follows from the power series expansion of f about z0 that, for
z sufficiently close to z0 and for some positive constant M ,

|| f (z)| − | f (z0)|| ≤ | f (z) − f (z0)| ≤ M |z − z0|2 ,

showing that g = | f | is differentiable at z0 with gx = gy = 0 there. If f (z0) = 0
but f ′(z0) �= 0, it can be shown that | f | is not differentiable at z0. (See Bak-Ding-
Newman)

These observations can be illustrated by f (z) = (z − 1) (z − 4)2, which has a
simple zero at z = 1, a critical point but not a zero at z = 2, and a critical point at
the double zero z = 4. The graph of | f | is shown in Figure 1. Note that | f | has a
saddle point at z = 2 and is not differentiable at z = 1.
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Exercises

1. Find a power series expansion for 1/z around z = 1 + i .

2.* Find a power series, centered at the origin, for the function f (z) = 1
1−z−2z2 by first using partial

fractions to express f (z) as a sum of two simple rational functions.

3. Using the identity 1/(1 − z) = 1 + z + z2 + · · · for |z| < 1, find closed forms for the sums
∑

nzn

and
∑

n2zn .

4. Show that if f is analytic in |z| ≤ 1, there must be some positive integer n such that f (1/n) �=
1/(n + 1).

5. Prove that sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2.

6. Suppose an analytic function f agrees with tan x, 0 ≤ x ≤ 1. Show that f (z) = i has no solution.
Could f be entire?
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7. Suppose that f is entire and that | f (z)| ≥ |z|N for sufficiently large z. Show that f must be a
polynomial of degree at least N .

8. Suppose f is C-analytic in |z| ≤ 1, f � 2 for |z| = 1, Im z ≥ 0 and f � 3 for |z| = 1, Im z ≤ 0.
Show then that | f (0)| ≤ √

6. [Hint: Consider f (z) · f (−z).]

9. Show directly that the maximum and minimum moduli of ez are always assumed on the boundary
of a compact domain.

10. Find the maximum and minimum moduli of z2 − z in the disc: |z| ≤ 1.

11.* (A proof, due to Landau, of the maximum modulus theorem) Suppose f is analytic inside and on a
circle C with | f (z)| ≤ M on C, and suppose z0 is a point inside C. Use Cauchy’s integral formula
to show that | f (z0)|n ≤ K Mn , where K is independent of n, and deduce that | f (z0)| ≤ M.

12. Suppose f and g are both analytic in a compact domain D. Show that | f (z)| + |g(z)| takes its
maximum on the boundary. [Hint: Consider f (z)eiα + g(z)eiβ for appropriate α and β.]

13. Show that the Fundamental Theorem of Algebra may be derived as a consequence of the Minimum-
Modulus Theorem.

14. Suppose Pn(z) = a0 + a1z + · · · + an zn is bounded by 1 for |z| ≤ 1. Show that |P(z)| ≤ |z|n for
all z � 1. [Hint: Use Exercise 6 of Chapter 5 to show |an | ≤ 1 and then consider P(z)/zn in the
annulus: 1 ≤ |z| ≤ R for “large” R.]

15.* Let f (z) = (z −1)(z −4)2. Find the lines (through z = 2) on which | f (z)| has a relative maximum,
and the ones on which | f (z)| has a relative minimum, at z = 2. (See the figure at the end of the
chapter.)

16.* Find the saddle point of f (z) = (z+1)2

z and identify the lines on which it is a relative maximum or
a relative minimum of | f |.

17.* a. Find the saddle points z1, z2 of

f (z) = (z − 1)2(z + 1)

z2

b. Show that, for i = 1, 2

| f (zi )| = Max| f (z)| on the circle |z| = |zi |.

c. Find lines through zi on which | f | has a relative maximum or a relative minimum at zi .





Chapter 7
Further Properties of Analytic Functions

7.1 The Open Mapping Theorem; Schwarz’ Lemma

The Uniqueness Theorem (6.9) states that a non-constant analytic function in a region
cannot be constant on any open set. Similarly, according to Proposition 3.7, | f | cannot
be constant. Thus a non-constant analytic function cannot map an open set into a
point or a circular arc. By applying the Maximum-Modulus Theorem, we can derive
the following sharper result on the mapping properties of an analytic function.

7.1 Open Mapping Theorem

The image of an open set under a nonconstant analytic mapping is an open set.

Proof

(due to Carathéodory). We will show that if f is non-constant and analytic at α, the
image under f of some (small) disc containing α will contain a disc about f (α).
Without loss of generality, assume f (α) = 0. (Otherwise, consider f (z) − f (α).)
By the Uniqueness Theorem, there is a circle C around α such that f (z) �= 0 for
z ∈ C . Let 2ε = minz∈C | f (z)|. It will follow that the image of the disc bounded by
C contains the disc D(0; ε). For assume that ω ∈ D(0; ε) and consider f (z) − ω.

For z ∈ C
| f (z) − ω| ≥ | f (z)| − |ω| ≥ ε,

while at α
| f (α) − ω| = | − ω| < ε.

93
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C

0

f(C)

fα

ω

ε

Hence | f (z) − ω| assumes its minimum somewhere inside C , and by the Minimum
Modulus Theorem, f (z) − ω must equal zero somewhere inside C . Thus ω is in the
range of f . �

The Maximum-Modulus Theorem can also be used in conjunction with other
given information about a function to obtain stronger estimates for the modulus of
f in its domain of analyticity. The following example is typical.

7.2 Schwarz’ Lemma

Suppose that f is analytic in the unit disc, that f � 1 there and that f (0) = 0. Then

i. | f (z)| ≤ |z|
ii. | f ′(0)| ≤ 1

with equality in either of the above if and only if f (z) = eiθ z.

Proof

We apply the Maximum-Modulus Theorem to the analytic function

g(z) =
⎧⎨
⎩

f (z)

z
0 < |z| < 1

f ′(0) z = 0.

(See Proposition 6.7.)
Since g � 1/r on the circle of radius r , by letting r → 1 and applying the

Maximum-Modulus Theorem, we find that |g(z)| ≤ 1 throughout the unit disc,
proving (i) and (ii). Furthermore, if |g(z0)| = 1 for some z0 such that |z0| < 1, then
by the Maximum-Modulus Theorem, g would be a constant (of modulus 1), and
f (z) = eiθ z. �
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A class of functions analytic in the unit disc and bounded there by 1 is given by
the set of bilinear transformations

Bα(z) = z − α

1 − ᾱz

where |α| < 1. Note that ∣∣∣∣ 1

ᾱ

∣∣∣∣ > 1,

so that Bα is analytic throughout |z| ≤ 1. On |z| = 1

|Bα|2 =
(

z − α

1 − ᾱz

)(
z̄ − ᾱ

1 − αz̄

)
= |z|2 − αz̄ − ᾱz + |α|2

1 − αz̄ − ᾱz + |α|2|z|2 = 1

so that |Bα| ≡ 1 on the boundary. For this reason, the functions Bα can be used,
in variations of Schwarz’ Lemma, to solve various extremal problems for analytic
functions.

EXAMPLE 1
Suppose that f is analytic and bounded by 1 in the unit disc and that f ( 1

2 ) = 0. We
wish to estimate | f ( 3

4 )|. Since f ( 1
2 ) = 0,

g(z) =

⎧⎪⎨
⎪⎩

f (z)

/(
z− 1

2

1− 1
2 z

)
z �= 1

2

3
4 f ′

(
1
2

)
z = 1

2

is likewise analytic in |z| < 1. Letting |z| → 1, we find that |g| ≤ 1; so that

| f (z)| ≤
∣∣∣∣∣ z − 1

2

1 − 1
2 z

∣∣∣∣∣
throughout the disc. In particular, ∣∣∣∣ f

(
3

4

)∣∣∣∣ ≤ 2

5
.

Note that the maximum value, 2
5 , is achieved by

B 1
2
(z) = z − 1

2

1 − 1
2 z

.

♦

EXAMPLE 2
Next we show that among all functions f which are analytic and bounded by 1 in
the unit disc, max | f ′( 1

3 )| is assumed when f ( 1
3 ) = 0.
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Suppose f ( 1
3 ) �= 0 and consider

g(z) = f (z) − f ( 1
3 )

1 − f ( 1
3 ) f (z)

.

Again, since ∣∣∣∣∣∣
ω − f ( 1

3 )

1 − f ( 1
3 )ω

∣∣∣∣∣∣ = 1

when |ω| = 1, while | f | < 1 in |z| < 1, the Maximum-Modulus Theorem assures
us that g, like f , is bounded by 1. A direct calculations shows that

g′
(

1

3

)
= f ′

(
1

3

)/(
1 −

∣∣∣∣ f

(
1

3

)∣∣∣∣
2
)

so that ∣∣∣∣g′
(

1

3

)∣∣∣∣ >

∣∣∣∣ f ′
(

1

3

)∣∣∣∣ .
We note that max | f ′( 1

3 )| is assumed by the function B1/3(z). [See Exercises 10
and 11.] ♦

Example 2 has an interesting physical interpretation. Given the constraint on f
that it must map the unit disc into the unit disc, the way to maximize | f ′( 1

3 )| is by

a. mapping 1
3 into 0 and

b. mapping the boundary of the unit disc onto itself.

It is as though by thus allowing the maximum room for expansion around f ( 1
3 ), we

obtain max | f ′( 1
3 )|. We will see a similar phenomenon when we study the Riemann

Mapping Theorem.
Returning once again to entire functions, the Maximum-Modulus Theorem may

be used to derive further extensions of Liouville’s Theorem.

7.3 Proposition

If f is an entire function satisfying

| f (z)| ≤ 1/|Im z|
for all z, then f ≡ 0.

Proof

By hypothesis f � 1 throughout |Im z| > 1 but f could be unbounded near the real
axis. To estimate | f | on the circle |z| = R, we introduce the auxiliary function

g(z) = (z2 − R2) f (z).
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For any z such that |z| = R and Re z ≥ 0

|(z − R) f (z)| ≤ |z − R|/|Im z| = sec θ

for some θ , 0 ≤ θ ≤ π/4 (see the following diagram), so that

|(z − R) f (z)| ≤ √
2.

0

z

R

θ

Similarly, if |z| = R and Re z ≤ 0, then

|(z + R) f (z)| ≤ √
2.

Thus
|g(z)| = |z + R||z − R|| f (z)| ≤ 3R

for all z with |z| = R. By the Maximum-Modulus Theorem, the same upper bound
holds throughout |z| < R. Hence

|g(z)| = |z2 − R2|| f (z)| ≤ 3R

and

| f (z)| ≤ 3R

|z2 − R2|
as long as R � z. Letting R → ∞, we see that f (z) = 0. Since this holds for all z,
the theorem is proven. �



98 7 Further Properties of Analytic Functions

7.2 The Converse of Cauchy’s Theorem: Morera’s Theorem;
The Schwarz Reflection Principle and Analytic Arcs

The key result in our study of analytic functions so far has been the Rectangle
Theorem (6.1). Thus, it may not come as a surprise that the property described there
is almost equivalent to analyticity.

7.4 Morera’s Theorem

Let f be a continuous function on an open set D. If∫
�

f (z)dz = 0

whenever � is the boundary of a closed rectangle in D, then f is analytic on D.

Since line integrals are unaffected by the value of the integrand at a single point,
the continuity of f is a necessary hypothesis. Note also that in the proof, we actually
require only that

∫
� f = 0 for rectangles whose sides are parallel to the horizontal

and vertical axes.

Proof

In a small disc about any point z0 ∈ D, we can define a primitive

F(z) =
∫ z

z0

f (ζ )dζ

where the path of integration is the horizontal followed by the vertical segments from
z0 to z. If we then consider a difference quotient of F and apply the fact that

∫
� f = 0

around any rectangle, we may conclude (as in Theorems 4.15 and 6.2) that

F(z + h) − F(z)

h
= 1

h

∫ z+h

z
f (ζ )dζ → f (z)

as h → 0. (Here we are using the continuity of f .) Hence F is analytic in a neighbor-
hood of z0. Since analytic functions are infinitely differentiable and F ′(z) = f (z), f
is analytic at z0. Finally, since z0 was arbitrary, f is analytic in D. �

Morera’s Theorem is often used to establish the analyticity of functions given in
integral form. For example, consider

f (z) =
∫ ∞

0

ezt

t + 1
dt .

If Re z = x < 0, ∫ ∞

0

|ezt |
t + 1

dt <

∫ ∞

0
extdt = − 1

x
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so that the integral is absolutely convergent and | f (z)| ≤ 1/|x |. To show that f is
analytic in the left half-plane D : Re z < 0, we may consider∫

�
f (z)dz =

∫
�

(∫ ∞

0

ezt

t + 1
dt

)
dz,

where � is the boundary of some closed rectangle in D.
Since ∫

�

∫ ∞

0

|ezt |
t + 1

dt dz

converges, we can interchange the order of integration; hence∫
�

f =
∫ ∞

0

∫
�

ezt

t + 1
dz dt =

∫ ∞

0
0 dt = 0

by the analyticity of ezt/(t + 1) as a function of z. By Morera’s Theorem, then, f is
analytic in D.

7.5 Definition

Suppose { fn} and f are defined in D. We will say fn converges to f uniformly on
compacta if fn → f uniformly on every compact subset K ⊂ D.

The following theorem asserts that analyticity is preserved under uniform limits,
in marked contrast to the property of differentiability on the real line. There, the
uniform limit of differentiable functions may be nowhere differentiable.

7.6 Theorem

Suppose { fn} represents a sequence of functions, analytic in an open domain D and
such that fn → f uniformly on compacta. Then f is analytic in D.

Proof

In some compact neighborhood K of each point z0, f is the uniform limit of con-
tinuous functions; hence f is continuous in D. Furthermore, for every rectangle
� ⊂ K ∫

�
f =

∫
�

lim fn = lim
n

∫
�

fn = 0,

since fn → f uniformly on �. Hence, by Morera’s theorem, f is analytic in D. �

7.7 Theorem

Suppose f is continuous in an open set D and analytic there except possibly at the
points of a line segment L. Then f is analytic throughout D.
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Proof

Without loss of generality, we may assume the exceptional points lie on the real axis.
Otherwise, we could begin by considering g(z) = f (Az + B) where Az + B maps
the real axis onto the line containing L. (See Exercise 15.) Of course, the analyticity
of f on D is equivalent to the analyticity of g on the corresponding region. Moreover,
since analyticity is a local property, we may assume D is a disc.

To show
∫
� f = 0 for every closed rectangle in D with boundary � (and with

sides parallel to the real and imaginary axes), we consider three cases.

i. L doesn’t meet the rectangle bounded by �.
Here

∫
� f = 0 by the analyticity of f throughout the interior of � (Theorem 6.1).

ii. One side of � coincides with L.
In this case, we let �ε be the rectangle composed of the sides of � with the

bottom (or top) side shifted up (or down) by ε in the positive

0

(ii)

D

a b

Γ
Γ

0

1

(iii)

Γ

2Γ

ε

(or negative) y-direction. Then∫
�

f = lim
ε→0

∫
�ε

f,
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since ∫ b

a
f (x + iε)dx →

∫ b

a
f (x)dx

by the continuity of f . Hence ∫
�

f = 0,

iii. If � surrounds L, we write ∫
�

f =
∫

�1

f +
∫

�2

f

where �1 and �2 are as in (ii). Again we conclude∫
�

f = 0.

Finally, By Morera’s Theorem, f is analytic in D. �

A wide range of results, all of which are known as the Schwarz Reflection Prin-
ciple, are typified by the following theorem.

7.8 Schwarz Reflection Principle

Suppose f is C-analytic in a region D that is contained in either the upper or lower
half plane and whose boundary contains a segment L on the real axis, and suppose
f is real for real z. Then we can define an analytic “extension” g of f to the region
D ∪ L ∪ D∗ that is symmetric with respect to the real axis by setting

g(z) =
{

f (z) z ∈ D ∪ L

f (z̄) z ∈ D∗

where D∗ = {z : z̄ ∈ D}.

D

D*

L
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Proof

At points in D, g = f and hence g is analytic there. If z ∈ D∗ and h is small enough
so that z + h ∈ D∗

g(z + h) − g(z)

h
= f (z̄ + h̄) − f (z̄)

h
=

[
f (z̄ + h̄) − f (z̄)

h̄

]

which approaches f ′(z̄) as h approaches 0. Hence g is analytic in D∗. Since f is
continuous on the real axis, so is g and we can apply Theorem 7.7 to conclude that
g is analytic throughout the region D ∪ L ∪ D∗. �

By invoking the Uniqueness Theorem, we obtain the following immediate corol-
lary:

7.9 Corollary

If f is analytic in a region symmetric with respect to the real axis and if f is real for
real z, then

f (z) = f (z̄).

The Schwarz reflection principle can be applied in more general situations. The
key is to extend the concept of reflection across other curves.

7.10 Definition

A curve γ : [a, b] → C will be called a regular analytic arc if γ is an analytic,
one-to-one function on [a, b] with γ ′ �= 0.

Note that, by the definition of analyticity, γ is the restriction to [a, b] of a function
γ (z) which is analytic in an open set S containing [a, b]. Moreover, if all points of
S are sufficiently close to [a, b], γ ′ �= 0 and γ will remain one-to-one throughout
S. (Otherwise, the original curve would fail to be one-to-one or γ ′ would be zero at
some point of [a, b].) So assume that γ (z) is analytic and one-to-one in such an open
set S which is also symmetric with respect to the interval [a, b]. Then we can define
the reflection w∗ of a point w in γ (S), across the curve γ , as γ (γ −1(w)). That is, if
w = γ (z), w∗ = γ (z). It follows immediately that (w∗)∗ = w, that points on the
original curve are reflected into themselves, and that points not on the curve γ are
reflected onto other points not on γ . In fact, the arc formed by taking the image under
γ of the vertical line from any nonreal z to its conjugate z must intersect the original
curve γ (i.e. γ (t), a ≤ t ≤ b) orthogonally, by the conformality of γ . Hence w and
w∗ are on opposite sides of γ.

For example, if γ (t) = i t, −∞ < t < ∞, and w = u + iv, then w∗ =
γ

(
v − iu

) = −u + iv = −w̄, which is the reflection of w across the imaginary
axis. Similarly, suppose γ is an arc of the circle γ (t) = Reit . Then γ (z) = Reiz =
Re−yeix . If w = γ (z) = reiθ , Re−y = r and x = θ, so that w∗ = γ (x − iy) =
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R2

r
eiθ = R2

w̄
. Note that w∗ is on the same ray as w, and |ww∗| = R2, so that w and

w∗ are on opposite sides of the circle of radius R.

Suppose then that f is analytic in a region S and continuous to the boundary,
which includes the regular analytic curve γ , and assume that f (γ ) ⊂ λ, another
regular analytic curve. Let z∗ denote the reflection of z across γ , and let wˆ denote
the reflection of w across λ. Then f can be extended to S∗ by defining f (z) at a
point z ∈ S∗ as ( f (z∗))ˆ. This defines an analytic extension of f to S∗ since it is
equal to the composition: λ ◦ λ−1 ◦ f ◦ γ ◦ γ −1. As in our proof of the original form
of the Schwarz reflection principle, the analyticity of f follows from the fact that
h(z) is analytic at z (and has a derivative equal to h′(z) ) whenever h is analytic at z.

S f(S)f

λγ

Example 1: Suppose f is analytic in the unit disc and continuous to the boundary,
which it maps into itself. Then f can be extended by defining f (z) = 1/ f (1/z) at
points z outside the unit circle. Note that the extended function is analytic everywhere
except at the reflections of the zeroes of f inside the unit circle, which the extended
function would map into ∞. Thus if we were looking for a bilinear function f
mapping the unit circle into itself, with f (α) = 0, it would follow that f (1/α) = ∞,
so that we might consider f (z) = (z − α)/ (z − 1/α) . However, in its current form
f does not map the unit circle into itself. In particular, | f (1)| = |α|, so we must
multiply our function by a constant of magnitude 1/|α|, which leads us to consider
functions of the form f (z) = (z −α)/ (1 − αz). As we saw in the last section, these
bilinear functions do, in fact, map the unit circle into itself. ♦

Example 2: Suppose f is an analytic map of a rectangle R onto another rectangle
S, which maps each side of R onto a side of S. Then f can be extended analytically
across the sides of R, mapping rectangles adjacent to R onto rectangles adjacent
to S. Continuing in this manner, f can be extended to an entire function! It is
easily seen, moreover, that the extended entire function has “linear growth”; i.e.
| f (z)| ≤ A|z| + B , for some positive constants A and B. Hence, according to the
Extended Liouville Theorem, f must be a linear polynomial. ♦



104 7 Further Properties of Analytic Functions

Exercises

1. Show that if f is analytic and non-constant on a compact domain, Re f and Im f assume their maxima
and minima on the boundary.

2. Prove that the image of a region under a non-constant analytic function is also a region.

3. a. Suppose f is nonconstant and analytic on S and f (S) = T . Show that if f (z) is a boundary point
of T , z is a boundary point of S.

b. Let f (z) = z2 on the set S which is the union of the semi-discs S1 = {z : |z| ≤ 2; Re z ≤ 0} and
S2 = {z : |z| ≤ 1; Re z ≥ 0}. Show that there are points z on the boundary of S for which f (z) is
an interior point of f (S).

4. Suppose f is C-analytic in D(0; 1) and maps the unit circle into itself. Show then that f maps the
entire disc onto itself. [Hint: Use the Maximum-Modulus Theorem to show that f maps D(0; 1) into
itself. Then apply the previous exercise to conclude that the mapping is onto.]

5. Suppose f is entire and | f | = 1 on |z| = 1. Prove f (z) = Czn . [Hint: First use the maximum and
minimum modulus theorem to show

f (z) = C
n∏

i=1

z − αi

1 − ᾱi z
.]

6.* Show that for any given rational function f (z), with poles in the unit disc, it is possible to find another
rational function g(z), with no poles in the unit disc, and such that | f (z)| = |g(z)| if |z| = 1.

7.* a. Suppose |α| < R. Show that ∣∣∣∣ R(z − α)

R2 − αz

∣∣∣∣
is analytic for |z| ≤ R, and maps the circle |z| = R into the unit circle.

b. Suppose |αk | < R for k = 1, 2, ...n. Prove that (unless |αk | = 0 for all k)

n
√|z − α1| · |z − α2| · · · |z − αn |

assumes a maximum value greater than R, and a minimum value less than R, at some points z

on |z| = R. [Hint: Apply the maximum and minimum modulus theorems to
n∏

k=1

(R2 − αk z).]

8. Suppose that f is analytic in the annulus: 1 ≤ |z| ≤ 2, that | f | ≤ 1 for |z| = 1 and that | f | ≤ 4 for
|z| = 2. Prove | f (z)| ≤ |z|2 throughout the annulus.

9. Given f analytic in |z| < 2, bounded there by 10, and such that f (1) = 0. Find the best possible
upper bound for | f ( 1

2 )|.
10. Suppose that f is analytic and bounded by 1 in the unit disc with f (α) �= 0 for some α � 1. Show

that there exists a function g, analytic and bounded by 1 in the unit disc, with |g′(α)| > | f ′(α)|.
11. Find max f | f ′(α)| where f ranges over the class of analytic functions bounded by 1 in the unit disc,

and α is a fixed point of |z| < 1. [Hint: By the previous exercise, you may assume f (α) = 0.]
Show that

f ′(α) = lim
z→α

f (z)

z − α
� lim

z→α

Bα(z)

z − α
= B ′

α(α).

12. Suppose f is entire and | f (z)| ≤ 1/|Re z|2 for all z. Show that f ≡ 0.
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13. Show that

f (z) =
∫ 1

0

sin zt

t
dt

is an entire function.

a. by applying Morera’s Theorem,
b. by obtaining a power series expansion for f .

14. With f as in (13) show that

f ′(z) =
∫ 1

0
cos ztdt

a. by writing

f (z) =
∫ 1

0

∫ z

0
cos zt dz dt

=
∫ z

0

(∫ 1

0
cos zt dt

)
dz, etc.,

b. by using the power series for f .

15. Show that g(z) = z0 + eiθ z, θ = Arg(z1 − z0), maps the real axis onto the line L through z0 and z1.

16. Suppose f is bounded and analytic in Im z ≥ 0 and real on the real axis. Prove that f is constant.

17. Given an entire function which is real on the real axis and imaginary on the imaginary axis, prove that
it is an odd function: i.e., f (z) = − f (−z).

18.* Show that v + iu is the reflection of the point u + iv across the line u = v.

19. Suppose f is analytic in the semi-disc: |z| ≤ 1, Im z > 0 and real on the semi-circle |z| = 1, Im z > 0.
Show that if we set

g(z) =

⎧⎪⎨
⎪⎩

f (z) |z| ≤ 1, Im z > 0

f

(
1
z̄

)
|z| > 1, Im z > 0

then g is analytic in the upper half-plane.

20. Show that there is no non-constant analytic function in the unit disc which is real-valued on the unit
circle.

21. Suppose f is analytic in the upper semi-disc: |z| ≤ 1, Im z > 0 and is continuous to the boundary.
Explain why it is not possible that f (x) = |x| for all real values of x .

22.* Suppose an entire function maps two horizontal lines onto two other horizontal lines. Prove that its
derivative is periodic. [Hint: Assume f = u + iv maps the lines y = y1 and y = y2 onto v = v1 and
v = v2 with y2 − y1 = c and v2 − v1 = d. Show then that f (z + 2ci) = f (z) + 2di , for all z.]

23.* Prove that an entire function which maps a parallelogram onto another parallelogram, and maps each
side of the original parallelogram onto a side of its image, must be a linear polynomial. [Hint: Use
Exercise 22 to prove that f ′ is constant.]





Chapter 8
Simply Connected Domains

8.1 The General Cauchy Closed Curve Theorem

As we have seen, it can happen that a function f is analytic on a closed curve C and
yet

∫
C f �= 0. Perhaps the simplest such example was given by

∫
|z|=1

1

z
dz = 2π i.

On the other hand, the Closed Curve Theorem—6.3—showed that if f is ana-
lytic throughout a disc, the integral around any closed curve is 0. We now seek
to determine the most general type of domain in which the Closed Curve The-
orem is valid. Note that the domain of analyticity of f (z) = 1/z is the punc-
tured plane. We will see that it is precisely the existence of a “hole” at z = 0
which allowed the above counterexample. The property of a domain which as-
sures that it has no “holes” is called simple connectedness. The formal definition
is as follows.

8.1 Definition

A region D is simply connected if its complement is “connected within ε to ∞.”
That is, if for any z0 ∈ D̃ and ε > 0, there is a continuous curve γ (t), 0 ≤ t < ∞
such that

(a) d(γ (t), D̃) < ε for all t ≥ 0,
(b) γ (0) = z0,
(c) limt→∞ γ (t) = ∞.

A curve γ, satisfying (b) and (c), is said to “connect z0 to ∞.” (See Chapter 1.4.)

EXAMPLE 1
The plane minus the real axis is not simply connected since it is not a region; that is,
a simply connected domain must be connected. ♦

107
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EXAMPLE 2
The annulus

A = {z : 1 < |z| < 3}
is not simply connected.

1 3

To prove this, note that 0 ∈ Ã and yet there is no γ which remains within ε = 1
2 of

Ã and connects 0 to ∞. If such a γ existed, by the continuity of |γ (t)|, there would
have to be a point t1 such that |γ (t1)| = 2, but then d(γ (t1), D̃) = 1. ♦

EXAMPLE 3
The unit disc minus the positive real axis is simply connected since for any z0 in the
complement

γ : γ (t) = (t + 1)z0

connects z0 to ∞ and is contained in the complement.

♦
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EXAMPLE 4
The infinite strip S = {z : − 1 < Im z < 1} is simply connected. Note that in this
case, the complement S̃ is not connected.

y

x

i

– i

♦

EXAMPLE 5
Any open convex set is simply connected. See Exercises 1 and 2. ♦

Definition 8.1 requires some explanation. It may seem somewhat simpler to say a
region D is simply connected if every point in its complement can be connected, by
a curve in the complement, to ∞. However, although this is the case in all the above
examples, it is still somewhat too restrictive. For example, suppose the complement
is the (connected) set

D̃ =
{

x + iy:
0 < x ≤ 1

y = sin 1
x

}
∪ {iy : − 1 ≤ y < ∞}.

By Definition 8.1, D would then be simply connected although the points on the
curve y = sin(1/x) cannot be connected to ∞ by a curve in D̃. For a compari-
son of Definition 8.1 with other definitions of simple connectedness, see [Newman,
pp. 164ff]. Also, see Appendix I.

Before proving the general closed curve theorem, we first prove an analogue
for simple closed polygonal paths. Recall that a polygonal path is a finite chain of
horizontal and vertical line segments.

8.2 Definition

Let � be a polygonal path. We define the number of levels of � as the num-
ber of different values y0 for which the line Im z = y0 contains a horizontal
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segment of �.

2 levels
3 levels

4 levels

8.3 Lemma

Let � be a simple closed polygonal path contained in a simply connected domain D.
Suppose the top level of � consists of the points y = y1, x ∈ X1 and the next level
is given by y = y2, x ∈ X2. Then the set R = {z = x + iy: y2≤y≤y1

x∈X1
} is contained

in D.

Proof

Note that R is a finite union of disjoint closed rectangles. We will show that for any
z0 ∈ R and any curve γ connecting z0 to ∞, γ ∩ � �= ∅. Then, since D̃ is closed
and � is compact, d(�, D̃) = δ > 0, and γ would not remain within ε = δ/2 of D.
Thus z0 ∈ D.

z0 L R

γ

To show γ ∩ � �= ∅, we proceed by induction on the number of levels of �.
If � has only two levels, it is the boundary of a single rectangle and the proof is
straightforward (the details are given in Exercise 5). Otherwise we consider

L = {x + iy : y = y2, x ∈ X1\X2}.
Note that z0 is contained in one of the rectangles of R, so γ must intersect the
boundary of R. Thus, if γ doesn’t meet R ∩ �, it must meet L. Setting

t0 = sup{t : γ (t) ∈ R}
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we note that for small enough h > 0, γ (t0 + h) would be between the top two levels
of a simple closed polygonal curve which is a connected component of

�′ = (� ∩ R̃) ∪ L̄

and has one less level than �. But then, by induction γ (t) ∈ �′ for some t > t0 + h.
Finally, since γ (t) �∈ R for t > t0 and since L ⊂ R, γ (t) ∈ � and the proof is
complete. �

8.4 Theorem

Suppose f is analytic in a simply connected region D and � is a simple closed
polygonal path contained in D. Then

∫
� f = 0.

Proof of Theorem 8.4

The proof will again be by induction on the number of levels of �. Define L, R and
�′ as in the lemma. We can write∫

�
f =

∫
∂ R

f +
∫

�′
f

the integral over L being taken in opposite directions. Since ∂ R consists of the
boundaries of rectangles and since f is analytic throughout these rectangles (by the
lemma),

∫
∂ R f = 0 by the Rectangle Theorem (6.1).

Proceeding by induction on the number of levels of �, we may assume∫
�′

f = 0

since it has one less level than �. Hence
∫
� f = 0 and the proof is complete. �

8.5 Theorem

If f is analytic in a simply connected region D, there exists a “primitive” F, analytic
in D and such that F ′ = f .

Proof

Choose z0 ∈ D and define

F(z) =
∫ z

z0

f (ζ )dζ,

where the path of integration is a polygonal path contained in D.
By the previous theorem, F is well-defined for if we take �1 and �2 to be two

such polygonal paths from z0 to z,∫
�1

f −
∫

�2

f =
∫

�
f
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where � is a closed polygonal curve. We leave it as an exercise to show that any
closed polygonal curve can be decomposed into a finite number of simple closed
polygonal curves and line segments traversed twice in opposite directions. Thus it
follows from Lemma 8.3 that

∫
� f = 0 and

∫
�1

f = ∫
�2

f .
To show that F ′ = f , we consider

F(z + h) − F(z)

h
= 1

h

∫ z+h

z
f (ζ )dζ

where now (by taking h small enough), we may take the simplest path of integration:
horizontally and then vertically from z to z + h. It follows, then, as in Theorems 5.2
and 6.2, that F ′(z) = f (z). �

8.6 General Closed Curve Theorem

Suppose that f is analytic in a simply connected region D and that C is a smooth
closed curve contained in D. Then ∫

C
f = 0.

Proof

∫
C

f =
∫

C
F ′(z)dz

where F is the primitive function guaranteed by Theorem 8.5,

= F(z(b)) − F(z(a)) = 0

since the endpoints of the closed curve coincide. �

It might be noted that while Theorem 8.6 is stated for simply connected regions,
it has implications for other domains as well. For example, if f is analytic in the
punctured plane z �= 0 and C is a closed curve in the upper half-plane,

∫
C f = 0

since C may be viewed as a closed curve in the simply connected subset Im z > 0,
where f is analytic. In general, if f is analytic in D and if C is contained in a simply
connected subset of D, then

∫
C f = 0.

EXAMPLE 1
Suppose C is the circle α + reiθ , 0 ≤ θ ≤ 2π and |a − α| > r . Then∫

C

dz

z − a
= 0

since 1/(z − a) is analytic in the simply connected disc: |z − α| < |a − α| which
contains C . (Compare with Lemma 5.4.) ♦
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Cauchy’s Theorem also allows us at times to switch an integral along one closed
contour to another.

EXAMPLE 2
Suppose f is analytic in the annulus: 1 ≤ |z| ≤ 4. Then∫

|z|=2
f (z)dz =

∫
|z|=3

f (z)dz

since, by adding the integrals along the real axis from 2 to 3 and from −2 to −3 in
both directions, we can write∫

|z|=3
f (z)dz −

∫
|z|=2

f (z)dz =
∫

�1

f (z)dz +
∫

�2

f (z)dz

where �1 and �2 are closed curves contained in simply connected subsets of the
annulus. (See below.)

1Γ

2Γ

–3 3–2 2

♦

8.2 The Analytic Function log z

8.7 Definition

We will say f is an analytic branch of log z in a domain D if

(1) f is analytic in D, and
(2) f is an inverse of the exponential function there; i.e., exp( f (z)) = z.

Of course if f is an analytic branch of log z then so is

g(z) = f (z) + 2πki

for any fixed integer k.
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Since eω �= 0 for any ω, log 0 is not defined. However, for any z = Reiθ , R > 0,
if we set

f (z) = log z = u(z) + iv(z)

condition (2) above becomes

exp( f (z)) = eu(z) · eiv(z) = Reiθ

which is possible if and only if

(3) eu(z) = |z| = R

and

(4) v(z) = Arg z = θ + 2kπ .

Hence a function f satisfying (2) can always be found by setting

(5) f (z) = u(z) + iv(z) = log |z| + i Arg z.

However, Arg z is not a well-defined function [see Chapter 1.2] and even if we
adopt a particular convention for Arg z, it is not clear that the function defined in (5) is
analytic (or even continuous) in D. However, if D is a simply connected domain not
containing 0, we may define an analytic branch of log z there. (Recall that according
to Theorem 3.5 if an analytic inverse of ez exists, its derivative must be 1/z. Thus
we proceed as follows.)

8.8 Theorem

Suppose that D is simply connected and that 0 �∈ D. Choose z0 ∈ D, fix a value of
log z0 and set

(6) f (z) =
∫ z

z0

dζ

ζ
+ log z0.

Then f is an analytic branch of log z in D.

Proof

f is well-defined since 1/ζ is an analytic function of ζ in D and hence the integral
along any two paths from z0 to z yield the same value (Theorem 8.5). Furthermore,
f ′(z) = 1/z, so f is analytic in D.

To show that exp( f (z)) = z, we consider

g(z) = ze− f (z).

Since g′(z) = e− f (z) − z f ′(z)e− f (z) = 0, g is constant and

g(z) = g(z0) = z0e− f (z0) = 1.

Hence
e f (z) = z. �
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In an analogous manner, we can define an analytic branch of log f (z) in any
simply connected domain where f is analytic and unequal to 0. We simply fix z0
and a value of log f (z0) and set

log f (z) =
∫ z

z0

f ′(ζ )

f (ζ )
dζ + log f (z0).

In a typical situation, suppose D represents the whole plane minus the non-positive
real axis: x ≤ 0. If we choose z0 = 1 and log 1 = 0 in (6) the resulting function,

f (z) =
∫ z

1

dζ

ζ
,

is an analytic branch of log z with

−π < Im(log z) = Arg z < π.

(This latter inequality can be seen by integrating from 1 to |z| and from |z| to z.)
Similarly, if D is the plane slit along the non-negative real axis and we choose that

branch of log z for which log(−1) = π i , we will have defined an analytic branch of
log z with 0 < Arg z < 2π . [See Exercise 8.]

By proper application of the logarithm, we can also define analytic branches of√
z, z1/3, etc., in the appropriate domains.
For example,

√
z may be defined, in any domain where log z is defined, as

(7)
√

z = exp( 1
2 log z).

Since (
exp

(
1

2
log z

))2

= exp(log z) = z,

this does define a “
√

z” and it is analytic where the logarithm is. Note that different
branches of log z may yield different branches of

√
z. Unlike log z, however, which

has infinitely many different branches

log z + 2πki

for any integer k, there are only two different branches of
√

z. This follows from the
fact that the equation w2 = z has exactly two different solutions for any z �= 0. It
also follows from (7) since

exp

(
1

2
log z

)
= exp

(
1

2
[ log z + 2πki ]

)

if k is even.
The same technique may be used to define arbitrary powers of any nonzero com-

plex number. For example,

i i ≡ ei log i = {. . . e3π/2, e−π/2, e−5π/2, . . .}.
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Exercises

1. A set S is called star-like if there exists a point α ∈ S such that the line segment connecting α and
z is contained in S for all z ∈ S. Show that a star-like region is simply connected. [Hint: Show that
γ : γ (t) = tz + (1 − t)α, t ≥ 1 is contained in the complement for any z in the complement.]

2.* Prove that every convex region is simply connected.

3. Suppose a region S is simply connected and contains the circle C = {z : |z − α| = r}. Show then that
S contains the entire disc D = {z : |z − α| ≤ r}. [Hint: Show that since S is open (by definition) and
C is compact, S contains the annulus B = {z : r − δ ≤ |z − α| ≤ r + δ} for some δ > 0.]

4. Show that if

s̃ =
{

x + iy :
0 < x ≤ 1
y = sin 1

x

}
∪ {iy : − 1 ≤ y < ∞},

S is simply connected.

5.* Show that a polygonal line γ connecting z to ∞ intersects the boundary of every rectangle R containing
z. [Hint: Consider t0 = sup{t : γ (t) ∈ R}.]

6. Define the “inside” of a simple closed polygonal path. Show that if such a path is contained in a simply
connected domain, so is its “inside.”

7. Show that any closed polygonal path can be decomposed into a finite union of simple closed polygonal
paths and line segments traversed twice in opposite directions.

8. Show that πi + ∫ z
−1 dζ/ζ defines an analytic branch of log z in the plane slit along the non-negative

axis with 0 < Im log z = Arg z < 2π .

9.* Define a function f analytic in the plane minus the non-positive real axis and such that f (x) = xx

on the positive axis. Find f (i), f (−i). Show that f (z̄) = f (z) for all z.



Chapter 9
Isolated Singularities of an Analytic Function

9.1 Classification of Isolated Singularities; Riemann’s Principle
and the Casorati-Weierstrass Theorem

Introduction While we have concentrated until now on the general properties of
analytic functions, we now focus on the special behavior of an analytic function in
the neighborhood of an “isolated singularity.”

We will use the term deleted neighborhood of z0 to denote a set of the form
{z : 0 < |z − z0| < d}.

9.1 Definition

f is said to have an isolated singularity at z0 if f is analytic in a deleted neighborhood
D of z0 but is not analytic at z0.

Note that, by Theorem 7.7, f must be discontinuous at an isolated singularity.

EXAMPLES

i. The function defined by f (z) =
{

sin z z �= 2

0 z = 2
has an isolated singularity at z = 2.

ii. g(z) = 1/(z − 3) has an isolated singularity at z = 3.
iii. exp(1/z) has an isolated singularity at z = 0. ♦

As we shall soon see, the above examples represent the different types of isolated
singularities. These may be classified as follows.

9.2 Definition

Suppose f has an isolated singularity at z0.

i. If there exists a function g, analytic at z0 and such that f (z) = g(z) for all z in
some deleted neighborhood of z0, we say f has a removable singularity at z0
(i.e., if the value of f is “corrected” at the point z0, it becomes analytic there).

117
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ii. If, for z �= z0, f can be written in the form f (z) = A(z)/B(z) where A and B
are analytic at z0, A(z0) �= 0, and B(z0) = 0, we say f has a pole at z0. (If B
has a zero of order k at z0, we say that f has a pole of order k.)

iii. If f has neither a removable singularity nor a pole at z0, we say f has an essential
singularity at z0.

The following theorems show how the nature of the singularity possessed by
a function may be determined by its behavior in a deleted neighborhood of the
singularity.

9.3 Riemann’s Principle of Removable Singularities

If f has an isolated singularity at z0 and if limz→z0(z − z0) f (z) = 0, then the
singularity is removable.

Proof

Consider

h(z) =
{

(z − z0) f (z) z �= z0

0 z = z0.

By hypothesis, h is continuous at z0. Since h, like f , is analytic in a deleted
neighborhood of z0, it follows that h is analytic at z0 (Theorem 7.7). Since h(z0) = 0,
g(z) = h(z)/(z − z0) is likewise analytic at z0 and equals f for z �= z0. �

9.4 Corollary

If f is bounded in a deleted neighborhood of an isolated singularity, the singularity
is removable.

9.5 Theorem

If f is analytic in a deleted neighborhood of z0 and if there exists a positive integer
k such that

lim
z→z0

(z − z0)
k f (z) �= 0 but lim

z→z0
(z − z0)

k+1 f (z) = 0,

then f has a pole of order k at z0.

Proof

If we set

g(z) =
{

(z − z0)
k+1 f (z) z �= z0

0 z = z0

then g is continuous and hence analytic at z0. Furthermore, since g(z0) = 0,

A(z) = g(z)

z − z0
= (z − z0)

k f (z)
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is likewise analytic at z0, and by hypothesis A(z0) �= 0. Since

f (z) = A(z)

(z − z0)k
for z �= z0

the proof is complete. �

Note that according to the previous two theorems, there is no analytic function
which approaches ∞ like a fractional power of 1/(z − z0) in the neighborhood of an
isolated singularity z0. For example, if f were analytic in a deleted neighborhoodof 0
and satisfied | f (z)| ≤ 1/

√|z|, then by 9.3, f would be bounded since the singularity
would be removable. Similarly, given that

| f (z)| ≤ 1

|z|5/2
,

we conclude that z2 f (z) has a removable singularity at 0. Hence f has a pole of
order at most 2 at the origin and, in fact, f (z) ≤ A/|z|2.

It also follows that in the neighborhood of an essential singularity, a function f
must be not only unbounded but such that, for each integer N , (z − z0)

N f (z) /→ 0 as
z → z0. It does not follow, however, that f (z) → ∞ as z → z0. In fact, the following
theorem shows that the set of values assumed by a function in the neighborhood of
an essential singularity is “dense” in the whole complex plane. That is, the range of
f intersects every disc in C.

9.6 Casorati-Weierstrass Theorem

If f has an essential singularity at z0 and if D is a deleted neighborhood of z0, then
the range R = { f (z):z ∈ D} is dense in the complex plane.

Proof

Assume there exists some disc with center ω and radius δ which does not intersect R.

ω

δ
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Then | f (z) − ω| > δ and∣∣∣∣ 1

f (z) − ω

∣∣∣∣ <
1

δ
throughout D.

By Riemann’s Principle (9.3), it follows that 1/( f (z)−ω) has (at most) a removable
singularity at z0. Hence

1

f (z) − ω
= g(z)

where g is analytic at z0. But then

f (z) = ω + 1

g(z)

so that f has either a pole (if g(z0) = 0) or a removable singularity (if g(z0) �= 0)
at z0. �

There is, in fact, a much stronger form of the Casorati-Weierstrass Theorem–
known as Picard’s Theorem–which asserts that an analytic function takes every value
with at most a single exception in the neighborhood of an essential singularity.

9.2 Laurent Expansions

In Chapter 6, we saw that functions analytic in a disc could be represented there
by power series. A somewhat similar representation–by “two-sided power series” of
the form

∑∞
k=−∞ ak(z − z0)

k–can be derived for functions analytic in an annulus
R1 < |z − z0| < R2. These two-sided power series, known as Laurent expansions,
are valuable tools in the study of isolated singularities.

9.7 Definition

We say
∑∞

k=−∞ μk = L if both
∑∞

k=0 μk and
∑∞

k=1 μ−k converge and if the sum
of their sums is L.

9.8 Theorem

f (z) = ∑∞
−∞ akzk is convergent in the domain

D = {z : R1 < |z| and |z| < R2}
where

R2 = 1/ lim
k→∞ sup |ak|1/k

R1 = lim
k→∞ sup |a−k|1/k .
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If R1 < R2, D is an annulus and f is analytic in D.

R2R1

Proof

By Theorem 2.8,

f1(z) =
∞∑

k=0

akzk converges for |z| < R2

and similarly

f2(z) =
−1∑
−∞

akzk =
∞∑
1

a−k(
1

z
)k

converges for ∣∣∣∣1

z

∣∣∣∣ <
1

R1
, or |z| > R1.

Hence
∑∞

−∞ akzk converges for all z in the intersection. Also, since f1 is a power
series and f2(z) = g(1/z) where g is a power series, f1 and f2 are both analytic in
their respective domains of convergence. Hence f is analytic in the intersection of
these domains. �

9.9 Theorem

If f is analytic in the annulus A: R1 < |z| < R2, then f has a Laurent expansion,
f (z) = ∑∞

k=−∞ akzk , in A.

Proof

Let C1 and C2 represent circles centered at 0 of radii r1 and r2, respectively, with
R1 < r1 < r2 < R2. Fix z with r1 < |z| < r2. Then

g(w) = f (w) − f (z)

w − z
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is analytic in A, and by Cauchy’s Theorem∫
C2−C1

g(w)dw = 0.

(See Example 2 following Theorem 8.6.) Thus∫
C2−C1

f (z)

w − z
dw =

∫
C2−C1

f (w)

w − z
dw. (1)

Note then that
∫

C2
dw/(w − z) = 2π i , according to Lemma 5.4, while∫

C1
dw/(w − z) = 0 by Cauchy’s Theorem so that

∫
C2−C1

f (z)

w − z
dw = 2π i f (z). (2)

Combining (1) and (2), we have

f (z) = 1

2π i

∫
C2

f (w)

w − z
dw − 1

2π i

∫
C1

f (w)

w − z
dw. (3)

Now, on C2, |w| > |z| so that

1

w − z
= 1

w
(
1 − z

w

) = 1

w
+ z

w2 + z2

w3 + · · ·

while on C1, since |w| < |z|,
1

w − z
= −1

z − w
= −1

z
− w

z2 − w2

z3 − · · · ,

the convergence being uniform in both cases. Substitution into (3), then, yields

f (z) = 1

2π i

∫
C2

( ∞∑
k=0

f (w)zk

wk+1

)
dw + 1

2π i

∫
C1

⎛
⎝ −∞∑

k=−1

f (w)zk

wk+1

⎞
⎠ dw

and switching the order of summation and integration,

f (z) =
∞∑

k=−∞
akzk, ak = 1

2π i

∫
C

f (w)

wk+1 dw

where C is any circle in A centered at 0, for all z ∈ A. For although, in the course
of the proof, we have

C =
{

C2 for k ≥ 0

C1 for k < 0,
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in fact C can be taken as any circle in A centered at 0. This follows again from the
fact that

g(w) = f (w)

wk+1

is analytic in A and from the Cauchy Closed Curve Theorem. �

Note that the Laurent expansion is unique. That is, if

f (z) =
∞∑

−∞
anzn

in an annulus, then

ak = 1

2πi

∫
C

f (z)

zk+1
dz (4)

where C is as above. For if
∑∞

−∞ anzn converges in A, it converges uniformly along
C , and thus ∫

C

f (z)

zk+1
dz =

∞∑
n=−∞

∫
C

anzn−k−1dz. (5)

Since ∫
C

z pdz =
{

2π i p = −1

0 any integer p �= −1,

it follows that ∫
C

f (z)

zk+1
dz = 2πiak,

proving (4).

9.10 Corollary

If f is analytic in the annulus R1 < |z−z0| < R2, then f has a unique representation

f (z) =
∞∑

−∞
ak(z − z0)

k

where

ak = 1

2π i

∫
C

f (z)

(z − z0)k+1 dz

and C = C(z0; R) with R1 < R < R2.

Proof

Simply apply the previous results to g(z) = f (z+z0), which is analytic in an annulus
centered at 0. �
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If we set R1 = 0, we obtain:

9.11 Corollary

If f has an isolated singularity at z0, then for some δ > 0, and 0 < |z − z0| < δ

f (z) =
∞∑

−∞
ak(z − z0)

k,

where the ak are defined as in Corollary 9.10.

EXAMPLES

(i)
(z + 1)2

z
= 1

z
+ 2 + z for all z �= 0.

(ii)

1

z2(1 − z)
= 1

z2
(1 + z + z2 + · · · )

= 1

z2 + 1

z
+ 1 + z + · · · for 0 < |z| < 1.

(iii)

1

z2(1 − z)
= −1

z2(z − 1)
= −1

[1 + (z − 1)]2 (z − 1)

= −1

z − 1
+ 2 − 3(z − 1) + 4(z − 1)2 − + · · ·

for 0 < |z − 1| < 1.

(iv)

exp(1/z) = 1 + 1

z
+ 1

2z2
+ · · · for z �= 0.

♦

9.12 Definition

If f (z) = ∑
ak(z − z0)

k is the Laurent expansion of f about an isolated singularity
z0,

∑−1
−∞ ak(z − z0)

k is called the principal part of f at z0;
∑∞

0 ak(z − z0)
k is

called the analytic part.

Because of the uniqueness of the Laurent expansion, we can derive the following
characterizations of the principal parts around the different types of singularities.

(i) If f has a removable singularity at z0, all the coefficients C−k of its Laurent
expansion about z0, for k > 0, are 0.
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Proof

Since f (z) = g(z) for z �= z0, the Laurent expansion for f must agree with the
Taylor expansion for g around z0. �

EXAMPLE
sin z

z
= 1 − z2

3!
+ z4

5!
− + · · · .

♦

(ii) If f has a pole of order k at z0, C−k �= 0 but C−N = 0 for all N > k.

Proof

Since f (z) = A(z)/B(z) where A(z0) �= 0 and B has a zero of order k at z0,

f (z) = Q(z)

(z − z0)k
,

where Q is analytic and nonzero at z0. Hence if Q(z) = ∑∞
n=0 an(z − z0)

n , then

f (z) =
∞∑

n=0

an
(z − z0)

n

(z − z0)k
=

∞∑
j=−k

C j (z − z0)
j

where C j = a j+k . Thus, C−k = a0 = Q(z0) �= 0. �

(iii) If f has an essential singularity at z0, it must have infinitely many nonzero
terms in its principal part.

Proof

Otherwise (z − z0)
N f (z) would be analytic at z0 for large enough N and f would

have a pole at z0. �

The so-called partial fraction decomposition of proper rational functions can be
derived as a corollary of the theory of Laurent expansions.

9.13 Partial Fraction Decomposition of Rational Functions

Any proper rational function

R(z) = P(z)

Q(z)
= P(z)

(z − z1)k1(z − z2)k2 · · · (z − zn)kn
,

where P and Q are polynomials with deg P < deg Q, can be expanded as a sum of
polynomials in 1/(z − zk), k = 1, 2, . . . , n.
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Proof

Since R has a pole of order at most k1 at z1,

R(z) = P1

(
1

z − z1

)
+ A1(z)

where P1(1/(z − z1)) is the principal part of R around z1 and A1 is the analytic part.
Furthermore

A1(z) = R(z) − P1

(
1

z − z1

)

has a removable singularity at z1 and the same principal parts as R at z2, . . . , zn .
Thus, if we take P2(1/(z − z2)) to be the principal part of R around z2 and proceed
inductively, we find

An(z) = R(z) −
[

P1

(
1

z − z1

)
+ P2

(
1

z − z2

)
+ · · · + Pn

(
1

z − zn

)]

is an entire function (once it is defined “correctly” at z1, z2, . . . zn). Furthermore,
An is bounded since R and all its principal parts approach 0 as z → ∞. Thus, by
Liouville’s Theorem (5.10), An is constant; indeed An ≡ 0. Hence.

R(z) = P1

(
1

z − z1

)
+ P2

(
1

z − z2

)
+ · · · + Pn

(
1

z − zn

)
.

�

Exercises

1. Suppose f (z) → ∞ as z → z0, an isolated singularity. Show that f has a pole at z0.

2. Does there exist a function f with an isolated singularity at 0 and such that | f (z)| ∼ exp(1/|z|) near
z = 0?

3.* Suppose that f is an entire 1 − 1 function. Show that f (z) = az + b.

4. Suppose f is analytic in the punctured plane z �= 0 and satisfies | f (z)| ≤ √|z| + 1/
√|z|. Prove f

is constant.

5.* Suppose f and g are entire functions with | f (z)| ≤ |g(z)| for all z. Prove that f (z) = cg(z), for
some constant c.

6. Verify directly that e1/z takes every value (with a single exception) in the annulus: 0 < |z| < 1.
What is the missing value?

7. Suppose f and g have poles of order m and n, respectively, at z0. What can be said about the
singularity of f + g, f · g, f/g at z0?

8.* Suppose f has an isolated singularity at z0. Show that z0 is an essential singularity if and only if
there exist sequences {an} and {βn} with {an} → z0, {βn} → z0, { f (an)} → 0, and { f (βn )} → ∞.
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9. Classify the singularities of

a.
1

z4 + z2
b. cot z
c. csc z

d.
exp(1/z2)

z − 1
.

10.* Find the principal part of the Laurent expansion of

f (z) = 1

(z2 + 1)2

about the point z = i.

11. Find the Laurent expansion for

a.
1

z4 + z2
about z = 0

b.
exp(1/z2)

z − 1
about z = 0

c.
1

z2 − 4
about z = 2.

12.* Find the Laurent expansion of f (z) = 1

z(z − 1)(z − 2)
(in powers of z) for

a. 0 < |z| < 1
b. 1 < |z| < 2
c. |z| > 2.

13.* Let {a1, a2, ..., ak} be a set of positive integers and

R(z) = 1

(za1 − 1)(za2 − 1) · · · (zak − 1)
.

Find the coefficient c−k in the Laurent expansion for R(z) about the point z = 1.

14. Show that if f is analytic in z �= 0 and “odd” (i.e., f (−z) = − f (z)) then all the even terms in its
Laurent expansion about 0 are 0.

15. Find partial fraction decompositions for

a.
1

z4 + z2
b.

1

z2 + 1
.

16. Suppose f is analytic in a deleted neighborhood D of z0 except for poles at all points of a sequence
{zn} → z0. (Note that z0 is not an isolated singularity.) Show that f (D) is dense in the complex
plane. [Hint: Assume, as in the proof of the Casorati-Weierstrass Theorem, that | f (z) − w| > δ and
consider g(z) = 1/( f (z) − w).]
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17. Show that the image of the unit disc minus the origin under

f (z) = csc 1/z

is dense in the complex plane

a. by noting that sin(1/z) has an essential singularity at z = 0,
b. by applying Exercise 16 to f (z).

18. Prove that the image of the plane under a nonconstant entire mapping is dense in the plane. [Hint: If
f is not a polynomial, consider f (1/z).]



Chapter 10
The Residue Theorem

10.1 Winding Numbers and the Cauchy Residue Theorem

We now seek to generalize the Cauchy Closed Curve Theorem (8.6) to functions
which have isolated singularities. Note that by 9.10 and 9.11, if γ is a circle sur-
rounding a single isolated singularity z0 and f (z) = ∑∞

−∞ Ck(z − z0)
k in a deleted

neighborhood of z0 that contains γ , then∫
γ

f = 2π iC−1.

Thus the coefficient C−1 is of special significance in this context.

10.1 Definition

If f (z) = ∑∞
−∞ Ck(z − z0)

k in a deleted neighborhood of z0, C−1 is called the
residue of f at z0. We use the notation C−1 = Res( f ; z0).

Evaluation of Residues

(i) If f has a simple pole at z0; i.e., if

f (z) = A(z)

B(z)

where A and B are analytic at z0, A(z0) �= 0 and B has a simple zero at z0, then

C−1 = lim
z→z0

(z − z0) f (z) = A(z0)

B ′(z0)
. (1)

Proof

Since

f (z) = C−1

z − z0
+ C0 + C1(z − z0) + · · · ,

(z − z0) f (z) = C−1 + C0(z − z0) + C1(z − z0)
2 + · · · ,

129
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and
lim

z→z0
(z − z0) f (z) = C−1.

The second equality in (1) follows since

lim
z→z0

(z − z0) f (z) = lim
z→z0

(z − z0)
A(z)

B(z)

= lim
z→z0

A(z)

/
B(z) − B(z0)

z − z0
= A(z0)

B ′(z0)
. �

(ii) If f has a pole of order k at z0,

C−1 = 1

(k − 1)!

dk−1

dzk−1

[
(z − z0)

k f (z)
]

evaluated at z0.

Proof

Setting

f (z) = C−k(z − z0)
−k + · · · C−1(z − z0)

−1 + C0 + C1(z − z0) + · · ·
g(z) = (z − z0)

k f (z) = C−k + · · · C−1(z − z0)
k−1 + C0(z − z0)

k + · · ·
dk−1g(z)

dzk−1
= (k − 1)!C−1 + k!C0(z − z0) + · · ·

and the equality follows. �
(iii) In most cases of higher-order poles, as with essential singularities, the most

convenient way to determine the residue is directly from the Laurent expansion.

EXAMPLES

i. Res(csc z; 0) = 1

cos 0
= 1.

ii. Res

(
1

z4 − 1
; i

)
= 1

4i3
= i

4
.

iii. Res

(
1

z3 ; 0

)
= 0.

iv. Res

(
sin

1

z − 1
; 1

)
= 1, since

sin
1

z − 1
= 1

z − 1
− 1

3!(z − 1)3
+ 1

5!(z − 1)5
− + · · · . ♦

Winding Number. To evaluate
∫
γ f when γ is a general closed curve (and when

f may have isolated singularities), we introduce the following concept.
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10.2 Definition

Suppose that γ is a closed curve and that a �∈ γ . Then

n(γ, a) = 1

2π i

∫
γ

dz

z − a

is called the winding number of γ around a.
Note that if γ represents the boundary of a circle (traversed counter-clockwise)

n(γ, a) =
{

1 if a is inside the circle

0 if a is outside the circle.

The first identity was proven in Lemma 5.4. The second was shown in Example 1
following the Cauchy Closed Curve Theorem. Also, if γ circles the point a k times—
i.e., if γ (θ) = a + reiθ , 0 ≤ θ ≤ 2kπ—then

n(γ, a) = 1

2π i

∫ 2kπ

0
idθ = k,

which explains the terminology “winding number.”

10.3 Theorem

For any closed curve γ and a �∈ γ, n(γ, a) is an integer.

Proof

Suppose γ is given by z(t), 0 ≤ t ≤ 1, and set

F(s) =
∫ s

0

ż(t)

z(t) − a
dt, 0 ≤ s ≤ 1.

Then, as we saw in defining the logarithm function (Section 8.2) it follows from

Ḟ(s) = ż(s)

z(s) − a

that
(z(s) − a)e−F(s)

is a constant, and setting s = 0,

(z(s) − a)e−F(s) = z(0) − a.

Hence

eF(s) = z(s) − a

z(0) − a
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and

eF(1) = z(1) − a

z(0) − a
= 1

since γ is closed; i.e., z(1) = z(0). Thus

F(1) = 2πki for some integer k

and

n(γ, a) = 1

2π i
F(1) = k.

�

It follows from Definition 10.2 that if we fix γ and let a vary, n(γ, a) is a continuous
function of a (as long as a �∈ γ ). Since it is always integer-valued, we conclude that
n(γ, a) is constant in the connected components of the complement of γ . Moreover,
n(γ, a) → 0 as a → ∞. Hence n(γ, a) = 0 in the unbounded component of γ (the
set of points which can be connected to ∞ without intersecting γ ). Some typical
examples are illustrated below.

n = 2
n = 2

n = 1

n = 1

n = 1

n = 1

n = 1

n = –1

n = 0

n = 0

n = 0

The Jordan Curve Theorem asserts that any simple closed curve divides the plane
into exactly two components—one bounded, the other unbounded (here the curve
need not necessarily be smooth)—so that if γ is such a “Jordan” curve (and is smooth
besides),

n(γ, a) =
{

k if a ∈ Bounded Component

0 if a ∈ Unbounded Component.

The proof of the Jordan Curve Theorem would lead us too far afield. Nevertheless,
in all future examples when we deal with simple closed curves, we will be able to
verify directly that n(γ, a) = 0 or ±1 for all a �∈ γ . In fact, by choosing the “proper”
orientation, we will be able to show that n(γ, a) = 0 or 1 for all a �∈ γ . (The “proper”
orientation will be easily recognized as that one for which the bounded component
of γ̃ lies to the left of γ.)
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EXAMPLE

Let γ be a semicircle traversed counterclockwise. Then

n(γ, a) =
{

1 if a is inside the semicircle

0 if a is outside.

The first assertion can be seen by citing the Closed Curve Theorem to show∫
γ

dz

z − a
=

∫
C

dz

z − a

a

C

C

γ

γ

where C is the completed circle containing z = a. The second follows from the
analyticity of 1/(z − a) in a half-plane containing γ but not a.

a

γ

♦

To simplify our terminology, we introduce the following definition.

10.4 Definition

γ is called a regular closed curve if γ is a simple closed curve with n(γ, a) = 0 or
1 for all a �∈ γ . In that case, we will call {a : n(γ, a) = 1} the inside of γ . The set
of points a where n(γ, a) = 0 is called the outside of γ .

10.5 Cauchy’s Residue Theorem

Suppose f is analytic in a simply connected domain D except for isolated singulari-
ties at z1, z2, · · · , zm . Let γ be a closed curve not intersecting any of the singularities.
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Then ∫
γ

f = 2π i
m∑

k=1

n(γ, zk)Res( f ; zk).

Proof

(Note that since γ is a “general” curve, we cannot replace it by a finite union of
“familiar” curves. Instead we proceed as in Section 9.2.)

If we subtract the principal parts

P1

(
1

z − z1

)
, · · · , Pm

(
1

z − zm

)

from f , the difference

g(z) = f (z) − P1

(
1

z − z1

)
− P2

(
1

z − z2

)
− · · · − Pm

(
1

z − zm

)

(with the appropriate definitions at z1, . . . , zm ) is an analytic function in D. Hence,
by the Closed Curve Theorem (8.6) ∫

γ
g = 0

and ∫
γ

f =
m∑

k=1

∫
γ

Pk

(
1

z − zk

)
dz. (3)

Furthermore, for any k, ∫
γ

1

(z − zk)n
= 0, if n �= 1 since

(z − zk)
−n is the derivative of

(z − zk)
1−n

1 − n
,

which is analytic along the closed curve γ . Hence if

Pk

(
1

z − zk

)
= C−1

z − zk
+ C−2

(z − zk)2 + · · · ,∫
γ

Pk

(
1

z − zk

)
dz = C−1

∫
γ

dz

z − zk
= 2π i n(γ, zk)Res( f ; zk)

and by (3), the proof is complete. �

10.6 Corollary

If f is as above, and if γ is a regular closed curve in the domain of analyticity of f ,
then

∫
γ f = 2π i

∑
k Res( f ; zk), where the sum is taken over all the singularities of

f inside γ .
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10.2 Applications of the Residue Theorem

10.7 Definition

We say f is meromorphic in a domain D if f is analytic there except at isolated
poles.

10.8 Theorem

Suppose γ is a regular closed curve. If f is meromorphic inside and on γ and
contains no zeroes or poles on γ , and if
Z = number of zeroes of f inside γ (a zero of order k being counted k times),
P = number of poles of f inside γ (again with multiplicity),
then

1

2π i

∫
γ

f ′

f
= Z − P.

Proof

Note that f ′/ f is analytic except at the zeroes or poles of f . If f has a zero of order
k at z = a, that is, if

f (z) = (z − a)kg(z) with g(z) �= 0,

then
f ′(z) = (z − a)k−1 [

kg(z) + (z − a)g′(z)
]

has a zero of order k − 1 at z, and

f ′(z)
f (z)

= k

z − a
+ g′(z)

g(z)

Hence, at each zero of f of order k, f ′/ f has a simple pole with residue k. Similarly,
if

f (z) = (z − a)−k g(z),

then
f ′(z)
f (z)

= −k

z − a
+ g′(z)

g(z)
,

so that at each pole of f, f ′/ f has a simple pole with residue −k. By Corollary 10.6,
then

1

2π i

∫
γ

f ′

f
=

∑
Res

(
f ′

f

)
= Z − P.

�
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If we take f to be analytic, we obtain

10.9 Corollary (Argument Principle)

If f is analytic inside and on a regular closed curve γ (and is nonzero on γ ) then

Z( f ) = the number o f zeroes o f f inside γ = 1

2π i

∫
γ

f ′

f
.

Remarks

1. The above is known as the “Argument Principle” because if γ is given by z(t),
0 ≤ t ≤ 1,

1

2π i

∫
γ

f ′

f
= log f (z(1)) − log f (z(0))

2π i
= 1

2π
� Arg f (z) (1)

as z travels around γ from the starting point z(0) to the terminal point z(1) = z(0).
To prove (1), we split γ into a finite number of simple arcs

γ1: z(t), 0 ≤ t ≤ t1
γ2: z(t), t1 ≤ t ≤ t2

· · ·
γn : z(t), tn−1 ≤ t ≤ tn = 1.

γ2

γ1

γ3γn

Since an analytic branch of log f can be defined in a simply connected domain
containing γ1, ∫

γ1

f ′

f
= log f (z(t1)) − log f (z(0)).

Similarly∫
γk

f ′

f
= log f (z(tk)) − log f (z(tk−1)), k = 2, 3, . . . , n.
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We note that ∫
γ

=
∫

γ1

+
∫

γ2

+ · · · +
∫

γn

,

and the first equality in (1) follows. Note, also, that since z(0) = z(1) and since

log w = log |w| + i Arg ω,

log f (z(1)) − log f (z(0)) = i
[

Arg f (z(1)) − Arg f (z(0))
]
,

and the second equality follows.
2. We may also view

∫
γ f ′/ f as the winding number of the curve f (γ (z)) around

z = 0. (See Definition 10.2.) Thus, if f is analytic inside and on γ , the number
of zeroes of f inside γ is equal to the number of times that the curve f (γ )
winds around the origin. By considering f (z) − a, it follows that the number of
times that f = a inside γ equals the number of times that f (γ ) winds around the
complex number a. As an example, consider the function described in Exercise 3b
of Chapter 7.

10.10 Rouché’s Theorem

Suppose that f and g are analytic inside and on a regular closed curve γ and that
| f (z)| > |g(z)| for all z ∈ γ . Then

Z( f + g) = Z( f ) inside γ.

Proof

Note first that if f (z) = A(z)B(z)

f ′

f
= A′

A
+ B ′

B

so that ∫
γ

f ′

f
=

∫
γ

A′

A
+

∫
γ

B ′

B
.

Thus, if we write

f + g = f

(
1 + g

f

)
,

Z( f + g) = 1

2π i

∫
γ

( f + g)′

f + g
= 1

2π i

∫
γ

f ′

f
+ 1

2π i

∫
γ

(
1 + g

f

)′

1 + g
f

= Z( f ) + 1

2π i

∫
γ

(
1 + g

f

)′

1 + g
f

.
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But this last integral is zero since, by hypothesis, (1 + g/ f )(γ ) remains within a
disc of radius 1 around z = 1. Hence the winding number of (1 + g/ f )(γ ) around
0 is 0 [i.e., setting ω = 1 + g/ f it follows that ω(z) remains in the right half-plane
for z ∈ γ and hence that

∫
γ ∗

dω
ω = 0.] �

(         )

210

1 + (   )
g
f γ

EXAMPLE

Since |4z2| > |2z10 + 1| on |z| = 1, each of the polynomials

2z10 + 4z2 + 1 and 2z10 − 4z2 + 1

has exactly two zeroes in |z| < 1. ♦

Recall that according to the Cauchy Integral Formula (6.4)

f (z) = 1

2π i

∫
C

f (ω)

ω − z
dω

where C is a circle containing z. By application of the Residue Theorem, we can
extend the result as follows.

10.11 Generalized Cauchy Integral Formula

Suppose that f is analytic in a simply connected domain D and that γ is a regular
closed curve contained in D. Then for each z inside γ and k = 0, 1, 2 . . .,

f (k)(z) = k!

2π i

∫
γ

f (ω)

(ω − z)k+1
dω.

Proof

Note that since

f (ω) = f (z) + f ′(z)(ω − z) + · · · + f (k)(z)

k!
(ω − z)k + · · ·
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throughout a neighborhood of z,

Res

(
f (ω)

(ω − z)k+1
; z

)
= f (k)(z)

k!
.

Since f (ω)/(ω − z)k+1 has no other singularities in D, the result follows from
Corollary 10.6. �

We now derive an extension of Theorem 7.6 for the limit of analytic functions.

10.12 Theorem

Suppose a sequence of functions fn , analytic in a region D, converges to f uniformly
on compacta of D. Then f is analytic, f

′
n → f ′ in D and the convergence of f ′

n is
also uniform on compacta of D.

Proof

We proved the analyticity of f in Theorem 7.6. By the Integral Formula 10.11, if we
pick any z0 ∈ D and let C = C(z0; r) for some r < 1,

f ′
n(z) − f ′(z) = 1

2π i

∫
C

fn(ω) − f (ω)

(ω − z)2
dω

for all z in D(z0; r). Moreover, if we take n large enough so that | fn − f | < εr2/4
throughout the compact D(z0; r), it follows that

| f ′
n(z) − f ′(z)| < ε

for all z in D(z0; r/2). Thus, to see that the convergence is uniform on compacta,
we need only note that any compact subset D can be covered by finitely many discs
of the form: |z − z0| < r/2. �

10.13 Hurwitz’s Theorem

Let { fn} be a sequence of non-vanishing analytic functions in a region D and suppose
fn → f uniformly on compacta of D. Then either f ≡ 0 in D or f (z) �= 0 for all
z ∈ D.

Proof

Suppose f (z) = 0 for some z ∈ D. If f �≡ 0, there is some circle C centered at z
and such that f (z) �= 0 on C; hence

f ′
n

fn
→ f ′

f
uniformly on C.
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However
1

2π i

∫
C

f ′

f
= Z( f ) ≥ 1,

while
1

2π i

∫
C

f ′
n

fn
= Z( fn) = 0.

Hence
f ≡ 0. �

[Note that it is possible to have f ≡ 0 despite the fact that fn(z) �= 0 for all n.
Consider, for example, fn(z) = (1/n)ez.]

EXAMPLE

Since sin π = 0, there must be some n0 such that

z − z3

3!
+ z5

5!
− + · · · z2n+1

(2n + 1)!

has a zero in |z − π | < 1 for all n > n0. ♦

10.14 Corollary

Suppose that fn is a sequence of analytic functions in a region D, that fn → f
uniformly on compacta in D, and that fn �= a. Then either f ≡ a or f �= a in D.

Proof

Consider gn(z) = fn(z) − a, etc. �

10.15 Theorem

Suppose that fn is a sequence of analytic functions, and that fn → f uniformly on
compacta in a region D. If fn is 1-1 in D for all n, then either f is constant or f is
1-1 in D.

Proof

Assume z1 �= z2, f (z1) = f (z2) = a and take disjoint discs D1 and D2 (in D)
surrounding z1 and z2, respectively. If f �≡ a, by 10.13, fn(z) = a must have a
solution in D1 once n is large enough. (Otherwise we could find a subsequence
fnk → f with no a-values D1.) But then since fn is 1-1, fn(z) �= a throughout D2
for all large n and hence f (z2) �= a, contradicting our hypothesis. �
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Exercises

1. Determine the singularities and associated residues of

a.
1

z4 + z2
b. cot z

c. csc z d.
exp(1/z2)

z − 1

e.
1

z2 + 3z + 2
f. sin

1

z

g. ze3/z h.
1

az2 + bz + c
, a �= 0.

2. Use the Residue Theorem to evaluate

a.
∫
|z|=1 cot z dz b.

∫
|z|=2

dz

(z − 4)(z3 − 1)

c.
∫
|z|=1 sin

1

z
dz d.

∫
|z|=2 ze3/zdz.

3. Prove that for any positive integer n, Res((1 − e−z )−n ; 0) = 1. [Hint: Consider∫
C

dz

(1 − e−z)n

and make the change of variables ω = 1 − e−z to show

Res((1 − e−z )−n ; 0) = Res

(
1

ωn(1 − ω)
; 0

)
. ]

4.* Show that
∫
|z|=1(z + 1/z)2m+1dz = 2π i

(2m+1
m

)
, for any nonnegative integer m.

5.* Let C be a regular curve enclosing the distinct points ω1, ω2, ...ωn and let p(ω) =
(ω − ω1)(ω − ω2) · · · (ω − ωn). Suppose that f (ω) is analytic in a region that includes C. Show that

P(z) = 1

2π i

∫
C

f (ω)

p(ω)
· p(ω) − p(z)

ω − z
dω

is a polynomial of degree n − 1, with P(ωi ) = f (ωi ), i = 1, 2, ...n.

6. Suppose f is defined by

f (z) =
∫
γ

φ(ω)dω

ω − z
,

where γ is a compact curve, φ is continuous on γ , and z �∈ γ . Show that

f ′(z) =
∫
γ

φ(ω)dω

(ω − z)2

directly by considering
f (z + h) − f (z)

h
.

Give an alternate proof of Theorem 10.11.

7. Suppose that f is entire and that f (z) is real if and only if z is real. Use the Argument Principle to
show that f can have at most one zero. (Compare this with Exercise 13 of Chapter 5.)

8.* a. Show that Rouche’s Theorem remains valid if the condition: | f | > |g| on γ is replaced by:
| f | ≥ |g| and f + g �= 0 on γ.

b. Find the number of zeroes of z5 + 2z4 + 1 in the unit disc.
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9. Find the number of zeroes of

a. f1(z) = 3ez − z in |z| ≤ 1

b. f2(z) = 1

3
ez − z in |z| ≤ 1

c. f3(z) = z4 − 5z + 1 in 1 ≤ |z| ≤ 2

d. f4(z) = z6 − 5z4 + 3z2 − 1 in |z| ≤ 1.

10.* Suppose λ > 1. Show that λ− z − e−z = 0 has exactly one root (which is a real number) in the right
half-plane.

11. Suppose f is analytic inside and on a regular closed curve γ and has no zeroes on γ . Show that if m
is a positive integer then

1

2π i

∫
γ

zm f ′(z)
f (z)

dz =
∑

k

(zk)m

where the sum is taken over all the zeroes of f inside γ .

12. Show that for each R > 0, if n is large enough,

Pn(z) = 1 + z + z2

2!
+ · · · + zn

n!
has no zeroes in |z| ≤ R.

13.* a. Let P(z) be any polynomial of the form: a0 + a1z + a2z2 + · · · + an zn, with all ai real and
0 ≤ a0 ≤ a1 ≤ · · · ≤ an . Prove that all the zeroes of P(z) lie inside the unit disc by applying
Rouche’s Theorem to (1 − z)P(z).

b. Prove that, for any ρ < 1, the polynomial Pn(z) = 1 + 2z + 3z2 +· · ·+ (n + 1)zn has no zeroes
inside the circle |z| < ρ if n is sufficiently large.

14. Derive the Fundamental Theorem of Algebra as a corollary of Rouché’s Theorem.

15. Supply the details of the following proof of Rouché’s Theorem (due to Carathéodory). Set

J (λ) = 1

2π i

∫
γ

( f + λg)′
f + λg

, 0 ≤ λ ≤ 1.

Note that J (λ) is defined for all λ, 0 ≤ λ ≤ 1. Furthermore J (λ) is a continuous function of λ and is
always integer-valued. Hence J is constant; in particular, J (0) = J (1) so that

Z( f ) = Z( f + g).

16. Recall, as in 8.2, that

log(z2 − 1) =
∫ z

√
2

2ζ

ζ 2 − 1
dζ

is analytic in the plane minus the interval (−∞, 1]. Hence, so is

√
z2 − 1 = exp

(
1

2
log(z2 − 1)

)
. (1)

Show that
√

z2 − 1 (as defined in (1)) is analytic in the entire plane minus the interval [−1, 1]. [Hint:

Use the Argument Principle to show that
√

z2 − 1 is continuous along the interval (−∞, −1) and
then apply Morera’s Theorem.]

17. Show that an analytic 3√(z − 1)(z − 2)(z − 3) can be defined in the entire plane minus [1, 3].



Chapter 11
Applications of the Residue Theorem to the
Evaluation of Integrals and Sums

Introduction

In the next section, we will see how various types of (real) definite integrals can
be associated with integrals around closed curves in the complex plane, so that the
Residue Theorem will become a handy tool for definite integration.

11.1 Evaluation of Definite Integrals by Contour Integral
Techniques

I Integrals of the Form
∫ ∞
−∞(P(x)/ Q(x))d x, where P and Q are polynomials.

From real-variable calculus we know that an integral of this type will converge if
Q(x) �= 0 and deg Q − deg P ≥ 2. Making these assumptions, we note that

∫ ∞

−∞
P(x)

Q(x)
dx = lim

R→∞

∫ R

−R

P(x)

Q(x)
dx,

and we seek to estimate the second integral for large values of R.
Let CR be the closed contour consisting of the real line segment from −R to R

and the upper semi-circle �R centered at the origin and of radius R large enough to
enclose all zeroes of Q lying in the upper half-plane.

iR

CR

R–R

143
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By the Residue Theorem∫
CR

P(z)

Q(z)
dz = 2π i

∑
k

Res

(
P

Q
; zk

)

where the points zk are the zeroes of Q in the upper half-plane.
Thus ∫ R

−R

P(x)

Q(x)
dx +

∫
�R

P(z)

Q(z)
dz = 2π i

∑
k

Res

(
P

Q
; zk

)
(1)

To estimate
∫
�R

P/Q, note that since deg Q − deg P ≥ 2, by the usual M − L
estimates ∫

�R

P

Q
� π · R · A

R2

and hence

lim
R→∞

∫
�R

P(z)

Q(z)
dz = 0. (2)

Combining (1) and (2) shows that∫ ∞

−∞
P(x)

Q(x)
dx = 2π i

∑
k

Res

(
P

Q
; zk

)

EXAMPLE ∫ ∞

−∞
dx

x4 + 1
= 2π i

2∑
k=1

Res

(
1

z4 + 1
; zk

)

where z1 = eiπ/4 and z2 = e3π i/4 represent the poles of 1/(z4 + 1) in the upper
half-plane. Since each is a simple pole, the residues are given by the values of 1/4z3

at the poles. Thus

Res

(
1

z4 + 1
; eiπ/4

)
= 1

4z3
1

= −z1

4
= −1

8
(
√

2 + i
√

2)

and

Res

(
1

z4 + 1
; ei3π/4

)
= 1

8
(
√

2 − i
√

2),

so that ∫ ∞

−∞
dx

x4 + 1
= π

√
2

2
. ♦

II. Integrals of the Form
∫ ∞
−∞ R(x) cos x d x or

∫ ∞
−∞ R(x) sin x d x. Assuming

that

R(x) = P(x)

Q(x)

where P and Q are polynomials and Q(x) �= 0 (except perhaps at a zero of cos x or
sin x), the above integrals converge as long as deg Q > deg P .
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IntegratingR(z) cos z along the same contour as in Type I is not appropriate since

lim
M→∞

∫
�M

R(z) cos z dz �= 0.

If we consider ∫
CM

R(z)eizdz,

however, we will be able to show that∫
�M

R(z)eizdz → 0

so that ∫
CM

R(z)eizdz →
∫ ∞

−∞
R(x)eix dx . (3)

∫ ∞

−∞
R(x) cos x dx and

∫ ∞

−∞
R(x) sin x dx

can then be determined as the real and imaginary parts of the limit in (3). Hence,
applying the Residue Theorem in (3), we see that∫ ∞

−∞
R(x) cos xdx = Re

[
2π i

∑
k

Res(R(z)eiz ; zk)

]

and
∫ ∞
−∞ R(x) sin xdx = Im [2π i

∑
k Res(R(z)eiz ; zk)], where the points zk are the

poles of R(z) in the upper half-plane.

To show that
∫
�M

R(z)eizdz → 0, and complete the argument, we split �M into
two subsets:

A = {z ∈ �M : Im z ≥ h}
B = {z ∈ �M : Im z < h}.

iM

ih

A

A

M

BB

–M
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Using the facts that R(z) � K/|z| and |ez| = eRe z , we obtain

∫
A
R(z)eizdz � K

e−h

M
· π M = C1e−h .

But ∫
B
R(z)eizdz � K

M
4h = C2

h

M
,

so ∫
�M

R(z)eizdz � C1e−h + C2
h

M
.

If we now choose h = √
M , for example, we find∫
�M

R(z)eizdz � C1e−√
M + C2√

M

and

lim
M→∞

∫
�M

R(z)eizdz = 0.

EXAMPLE

To evaluate
∫ ∞
−∞(sin x/x)dx , we might write

∫ ∞

−∞
sin x

x
dx = Im

∫ ∞

−∞
eix

x
dx .

The pole of eix/x at x = 0 forces us to modify the technique slightly; we write
instead: ∫ ∞

−∞
sin x

x
dx = Im

∫ ∞

−∞
eix − 1

x
dx .

Note that ∫
CM

eiz − 1

z
dz =

∫ M

−M

eix − 1

x
dx +

∫
�M

eiz − 1

z
dz;

while, according to Cauchy’s Theorem,

∫
CM

eiz − 1

z
dz = 0

since the integrand has no poles! Thus

∫ M

−M

eix − 1

x
dx =

∫
�M

1 − eiz

z
dz =

∫
�M

1

z
dz −

∫
�M

eiz

z
dz

= π i −
∫

�M

eiz

z
dz.
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Since
∫
�M

(eiz/z)dz approaches 0 as M → ∞,

∫ ∞

−∞
eix − 1

x
dx = π i

and ∫ ∞

−∞
sin x

x
dx = π.

♦

III (A) Integrals of the Form
∫ ∞

0 (P(x)/ Q(x))d x As in I, to insure conver-
gence of the integral, we assume that deg Q − deg P ≥ 2 and that Q(x) �= 0
for x ≥ 0. Of course, if the integrand is an even function it can be evaluated as
1
2

∫ ∞
−∞(P(x)/Q(x))dx . In other cases, set R(z) = P(z)/Q(z) and consider the

integral of log z · R(z) around the keyhole-shaped contour Kε,M consisting of

i. the horizontal line segment I1 from iε to
√

M2 − ε2 + iε;
ii. the circular arc CM of radius M traced counterclockwise from√

M2 − ε2 + iε to
√

M2 − ε2 − iε;

iM

i

CM

I1

I2

K  ,M

–M

∋

C  ∋

∋

– i ∋

iii. the horizontal line segment I2 from√
M2 − ε2 − iε to − iε;

iv. the semi-circle Cε of radius ε traced clockwise from −iε to iε.

The inside of Kε,M is a simply connected domain not containing 0 and hence
log z may be defined there as an analytic function. (For simplicity, we choose 0 <
Arg z < 2π .)

By the Residue Theorem

lim
ε→0

M→∞

∫
Kε,M

R(z) log zdz = 2π i
∑

k

Res(R(z) log z; zk). (4)
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Moreover, assuming ε is small enough and M large enough so that all the zeroes of
Q lie inside Kε,M , the contour integral is related to

∫ ∞
0 R(x) dx as follows:

i.
∫

Cε
R(z) log z dz � πε maxCε |R(z) log z| � Aε| log ε| since R is continuous

at 0 and | log z| < log |z| + 2π . Thus

lim
ε→0

∫
Cε

R(z) log z dz = 0.

ii.
∫

CM
R(z) log z dz � 2πM · maxCM | log z||R(z)| ≤ AM log M/M2 since

R(z) � B/|z|2, and thus

lim
M→∞

∫
CM

R(z) log z dz = 0.

iii. lim ε→0
M→∞

∫
I1
R(z) log z dz = ∫ ∞

0 R(x) log xdx and

lim
ε→0

M→∞

∫
I2

R(z) log z dz = −
∫ ∞

0
R(x)(log x + 2π i)dx .

Combining all of the above results we find

lim
ε→0

M→∞

∫
Kε,M

R(z) log z dz = −2π i
∫ ∞

0
R(x)dx,

so that by (4) ∫ ∞

0
R(x)dx = −

∑
k

Res(R(z) log z; zk)

where the sum is taken over all the poles of R.

EXAMPLE

To evaluate
∫ ∞

0 dx/(1 + x3), note that at z1 = eiπ/3,

Res

(
log z

1 + z3 ; z1

)
= − iπ

9

(
1

2
+ i

√
3

2

)
;

at z2 = −1 = eiπ ,

Res

(
log z

1 + z3 ; z2

)
= iπ

3
;

and at z3 = ei5π/3,

Res

(
log z

1 + z3
; z3

)
= −5π i

9

(
1

2
− i

√
3

2

)
;

so that ∑
k

Res

(
log z

1 + z3
; zk

)
= −2π

9

√
3
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and ∫ ∞

0

dx

1 + x3 = 2

9
π

√
3.

♦

(B) Integrals of the form
∫ ∞

a (P(x)/Q(x))dx can be evaluated in a similar manner
by considering ∫

CM

log(z − a)
P(z)

Q(z)
dz

CM

–M a M
0

with CM as indicated. In fact, since∫ ∞

0
−

∫ ∞

a
=

∫ a

0
,

this method can be used to find indefinite integrals of rational functions.

(C) Integration around the “keyhole” contour can also be used to evaluate integrals
of the form ∫ ∞

0

xα−1

P(x)
dx

where 0 < α < 1 and P is a polynomial with deg P ≥ 1.
Throughout the inside of the contour Kε,M , zα−1 = exp [(α − 1) log z] can be

defined as an analytic function (again, with 0 < Arg z < 2π , for example).
As we integrate along I1 (as ε → 0)

zα−1 = exp((α − 1) log x) = xα−1

while, throughout I2

zα−1 = e(α−1)(log x+2π i) = xα−1e2π i(α−1).
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Since the integrals along the two circular segments approach zero as before, the
integral around Kε,M is given by the integrals along I1 and I2 and hence

[
1 − e2π i(α−1)

] ∫ ∞

0

xα−1

P(x)
dx = 2π i

∑
k

Res

(
zα−1

P(z)
; zk

)
,

the sum being taken over the zeroes of P .

EXAMPLE

To evaluate
∫ ∞

0 dx/
√

x(1 + x), note that

Res

(
1√

z(1 + z)
; −1

)
= −i

and (
1 − e−πi

) ∫ ∞

0

x√
x(1 + x)

= 2π

so that ∫ ∞

0

dx√
x(1 + x)

= π.

♦

IV
∫ 2π

0 R(cos θ, sin θ)dθ where R Represents a Rational Function Here we take
a slightly different point of view. Previously, we viewed the definite integrals as
integrals along real line segments which were then supplemented into closed contours
in the complex plane. In this case, we think of the real integral itself as the parametric
representation of a line integral taken around the unit circle.

Recall that ∫
|z|=1

f (z)dz

becomes ∫ 2π

0
f (eiθ )ieiθ dθ

on setting z = eiθ , 0 ≤ θ ≤ 2π .
More specifically, the integral

∫ 2π
0 R(cos θ, sin θ)dθ is equal to

∫
|z|=1

R
(

z + 1
z

2
,

z − 1
z

2i

)
dz

i z
(5)

since with z = eiθ

dθ = dz

i z
,

cos θ = eiθ + e−iθ

2
= 1

2

(
z + 1

z

)
,
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and

sin θ =
(
eiθ − e−iθ

)
2i

= 1

2i

(
z − 1

z

)
.

The contour integral (5), as always, can be evaluated by the Residue Theorem.

EXAMPLE ∫ 2π

0

dθ

2 + cos θ
= 2

i

∫
|z|=1

dz

z2 + 4z + 1

= 4πRes

(
1

z2 + 4z + 1
; √

3 − 2

)

= 2

3
π

√
3. ♦

11.2 Application of Contour Integral Methods to Evaluation
and Estimation of Sums

I To evaluate sums of the form
∑∞

n=−∞ f (n), we seek a function g whose residues
are given by { f (n) : n = 0,±1,±2, . . .}.

Suppose we set g(z) = f (z)ϕ(z). Then the function ϕ should have a simple pole
with residue 1 at every integer. Such a function is given by

ϕ(z) = π
cos πz

sin πz
,

since sin πz has a simple zero at every integer and

Res

(
π cos πz

sin πz
; n

)
= π cos πn

π cos πn
= 1.

(Note that sin z has no other zeroes in the complex plane.)
We first apply the Residue Theorem to the integral∫

CN

f (z) · π cot πzdz (1)

where CN is a simple closed contour enclosing the integers n = 0,±1,±2, . . . ,±N
and the poles of f (which we assume to be finite in number). Thus

∫
CN

π f (z) cot πzdz = 2π i

⎡
⎢⎣ N∑

n=−N
n �=zk

f (n) +
∑

k

Res( f (z)π cot πz; zk)

⎤
⎥⎦ (2)

where {zk} are the poles of f .
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Furthermore, to insure convergence of
∑∞

n=−∞ f (n), we will assume that
| f (z)| ≤ A

z2 so that
lim

z→∞ z f (z) = 0, (3)

and by a proper choice of CN , we will be able to show that

lim
N→∞

∫
CN

f (z)π cot πz dz = 0. (4)

Then by (2)
∞∑

n=−∞
n �=zk

f (n) = −
∑

k

Res( f (z)π cot πz; zk). (5)

To demonstrate the existence of a contour CN satisfying (4), we will let CN be
the square with vertices ±(N + 1

2 ) ± (N + 1
2 )i . Having thus avoided the poles of

cot πz, we can show that | cot πz| < 2 on CN . For example, if Re z = x = N + 1
2

and Im z = y then

cot πz = i
e2π iz + 1

e2π iz − 1
= i

eπ i−2πy + 1

eπ i−2πy − 1

CN

CN

N N + 1

i (N +   )¹
²–

–i (N +   )¹²–

and

| cot πz| =
∣∣∣∣∣1 − e−2πy

1 + e−2πy

∣∣∣∣∣ < 1.

Similarly, if Im z = y = N + 1
2

| cot πz| ≤ 1 + e−π(2N+1)

1 − e−π(2N+1)
< 2

since the latter expression is maximized at N = 0. (The same bounds apply to the
other sides of CN as well, since cot z is an odd function.)
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Since the length of CN is 8N + 4, by the usual estimates,∫
CN

f (z)π cot πz � (8N + 4)2π max
z∈CN

| f (z)|
� A max

cN
|z f (z)|;

thus ∫
CN

f (z)π cot πz dz → 0 by (3).

EXAMPLE

To find ∞∑
n=1

1

n2
,

note that ∞∑
n=1

1

n2 = 1

2

∞∑
n=−∞

n �=0

1

n2

and hence, by (5),
∞∑

n=1

1

n2
= −1

2
Res

(
π cot πz

z2
; 0

)
.

The residue can be determined by using the Laurent expansion for cot z; i.e.,

cot z = 1

z
− z

3
− 1

45
z3 + · · ·

so that
π cot πz

z2
= 1

z3
− π2

3z
− π4z

45
− · · · .

Thus

Res

(
π cot πz

z2
; 0

)
= −π2

3

and ∞∑
n=1

1

n2
= π2

6
. ♦

II To evaluate sums of the form
∑∞

n=−∞(−1)n f (n), where f (z) has a finite number
of poles, we integrate again around the square CN , this time using the auxiliary
function π f (z) csc πz.

Note that

Res

(
π

sin πz
; n

)
= 1

cos πn
= (−1)n,
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and since
csc2 πz = 1 + cot2 πz,

csc πz (like cot πz) is bounded on CN . Thus we may conclude that

lim
N→∞

∫
CN

π f (z) csc πz dz = 0

and, by the Residue Theorem, that

∞∑
n=−∞
n �=zk

(−1)n f (n) = −
∑

k

Res(π f (z) csc πz; zk)

where the zk are the poles of f .

EXAMPLE

1 − 1

4
+ 1

9
− 1

16
+ − · · · = −

∞∑
n=1

(−1)n

n2 = −1

2

∞∑
n=−∞

n �=0

(−1)n

n2

= 1

2
Res

(
π csc πz

z2
; 0

)
= π2

12

since
π csc πz

z2 = 1

z3 + π2

6z
+ 7π4z

360
+ · · · . ♦

III Sums Involving Binomial coefficients The connection between binomial coef-
ficients and contour integration is an immediate corollary of the Residue Theorem
since (

n
k

)
= coefficient of zk in (1 + z)n

and hence (
n
k

)
= 1

2π i

∫
C

(1 + z)n

zk+1 dz (6)

where C is any simple closed contour surrounding the origin. The identity (6) has
some immediate consequences. For example,

(
2n
n

)
= 1

2π i

∫
C

(1 + z)2n

zn+1
dz

and if we choose C to be the unit circle, we find(
2n
n

)
≤ 4n.
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This same identify (6) can be used to evaluate (or estimate) sums involving bino-
mial coefficients.

EXAMPLE 1
To find ∞∑

n=0

(
2n
n

)
1

5n
= 1 + 2

5
+ 6

25
+ · · ·

we set (
2n
n

)
= 1

2π i

∫
C

(1 + z)2n

zn+1
dz

where C is any simple contour surrounding the origin so that

∞∑
n=0

(
2n
n

)
1

5n
= 1

2π i

∞∑
n=0

∫
C

(1 + z)2n

(5z)n

dz

z
. (7)

If we could then interchange the order of summation and integration, we would
conclude ∞∑

n=0

(
2n
n

)
1

5n
= 5

2π i

∫
C

dz

3z − 1 − z2
.

However, we must indicate a contour C (surrounding 0) on which summation under
the integral sign is justified. [Without this caution, C could be an arbitrary circle cen-
tered at 0 and if we let the radius R be large enough, we would conclude erroneously
that ∞∑

n=0

(
2n
n

)
1

5n
= 0. ]

One way to assure the legitimacy of the interchange is to obtain uniform conver-
gence of the series

∑∞
n=0 [(1 + z)2/5z]n throughout C . Thus we pick C to be the

unit circle so that ∣∣∣∣∣ (1 + z)2

5z

∣∣∣∣∣ ≤ 4

5

throughout C and the convergence is uniform. Hence

∞∑
n=0

(
2n
n

)
1

5n
= 5

2π i

∫
|z|=1

dz

3z − 1 − z2

= 5 Res

(
1

3z − 1 − z2
; 3 − √

5

2

)
= √

5.

♦
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EXAMPLE 2
To evaluate

n∑
k=0

(
n
k

)2

, we cast

(
n
k

)
in two roles:

a.

(
n
k

)
= coefficient of zk in (1 + z)n

b.

(
n
k

)
= coefficient of z−k in (1 + 1/z)n

so that
n∑

k=0

(
n
k

)2

= constant term in (1 + z)n
(

1 + 1

z

)n

.

Thus

n∑
k=0

(
n
k

)2

= 1

2π i

∫
C
(1 + z)n

(
1 + 1

z

)n dz

z

= 1

2π i

∫
C

(1 + z)2n

zn+1
dz

= coefficient of zn in (1 + z)2n

=
(

2n
n

)
. ♦

EXAMPLE 3
To estimate

1 −
(

n
1

)(
2n
1

)
+

(
n
2

)(
2n
2

)
− + · · ·

(
n
n

)(
2n
n

)

we again note that since(
n
k

)
= coefficient of zk in (1 + z)n

and since

(−1)k
(

2n
k

)
= coefficient of

1

zk
in

(
1 − 1

z

)2n

,

the sum is equal to the constant term in the product and is given by

n∑
k=1

(−1)k
(

n
k

)(
2n
k

)
= 1

2π i

∫
C

[(z − 1)2(z + 1)]n

z2n+1 dz.
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In this case, however, there is no simple technique for evaluating the integral and
instead we seek to estimate it. If we let C be the unit circle, then throughout C ,

∣∣∣(z − 1)2(z + 1)
∣∣∣ ≤ 16

9

√
3

[see Exercise 15] and hence∣∣∣∣∣
n∑

k=1

(−1)k
(

n
k

)(
2n
k

)∣∣∣∣∣ ≤
(

16

9

√
3

)n

.

Note that this estimate is much smaller than one might guess by estimating the size
of the various terms–the last term of the series alone is of the order of magnitude of
4n . (See Exercise 16.) ♦

A more familiar series whose sum is of much smaller magnitude than its individual
terms is

e−x = 1 − x + x2

2!
− x3

3!
+ · · · .

The fact that e−x → 0 as x → ∞ is in sharp contrast to the growth of its
individual terms. By employing our contour integral technique, we can demonstrate
similar behavior for the series

B(x) = 1 − x

1
+ x2

(2!)2
− x3

(3!)2
+ − · · ·

that is related to the Bessel Function. Since

1

n!
= coefficient in zn the expansion of ez

and

(−x)n

n!
= coefficient of z−n in e−x/z

B(x) = 1

2π i

∫
C

eze−x/z

z
dz

where C is any simple contour surrounding 0.
We seek a contour C on which

|ez−x/z| = eRe (z−x/z)

is small. Setting z = Reiθ , we find

Re(z − x

z
) = R cos θ − x

R
cos θ ;
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hence R = √
x seems a good choice, and we pick C to the circle: |z| = √

x .
Then

B(x) = 1

2π

∫ 2π

0
e2i

√
x sin θdθ

and since the integrand is bounded by 1 for all θ , we conclude

|B(x)| ≤ 1

for all x ≥ 0.
(In fact, a closer analysis would show that B(x) → 0 as x → ∞, but this would

take us too far afield at this point.)

Exercises

1. Evaluate the following definite integrals

a.
∫ ∞
−∞

x2dx

(1 + x2)2
, b.

∫ ∞
0

x2dx

(x2 + 4)2(x2 + 9)
,

c.
∫ ∞

0
dx

x4 + x2 + 1
, d.

∫ ∞
0

sin xdx

x(1 + x2)
,

e.
∫ ∞

0
cos xdx

1 + x2
, f.

∫ ∞
0

dx

x3 + 8
,

g.
∫ ∞

0
xα−1

1 + x
dx, 0 < α < 1, h.

∫ 2π
0

dx

(2 + cos x)2
,

i.
∫ 2π

0
sin2 xdx

5 + 3 cos x
, j.

∫ 2π
0

dx

a + cos x
, (a real), |a| > 1.

2. Evaluate ∫ ∞
0

sin2 x

x2
dx .

[Hint: Integrate (e2iz − 1 − 2iz)/z2 around a large semi-circle.]

3. Evaluate ∫ ∞
0

dx

1 + xn

where n ≥ 2 is a positive integer. [Hint: Consider the following contour.]

2  /nπ

πe i/n



Exercises 159

4.* Evaluate:

a.
∫ ∞

0

cos ax

(x2 + 1)2
dx; a ≥ 0

b.
∫ ∞

0

x2

x10 + 1
dx (See the hint for exercise 3.)

c. ∫ 2π

0
eeiθ

dθ

5.* Show that ∫ 2π

0
( cos x)2mdx = 2π

4m

(
2m

m

)

for any positive integer m.

6.* Show that ∫ ∞
−∞

dx

(1 + x2)n+1
= 1 · 3 · 5 · · · (2n − 1)π

2 · 4 · 6 · · · 2n

7. a. Show that
∫
�R

eiz2
dz → 0 as R → ∞ where�R is the circular segment: z = Reiθ , 0 ≤ θ ≤ π/4.

b. Evaluate
∫ ∞

0 cos x2dx ,
∫ ∞

0 sin x2dx . Note: The convergence of the above integrals can be proven

for example by making the substitution u = x2 and applying Dirichlet’s Test.

8. Suppose f is a rational function of the form P/Q with deg Q − deg P ≥ 2. Show that the sum of the
residues of f is zero.

9. Evaluate

a.
∞∑

n=1

1

n2 + 1
,

b.
∞∑

n=1

1

n4
,

c.
∞∑

n=1

(−1)n

n2 + 1
.

10.* a. Show that
∫

Cn

1

z sin π z
dz → 0 as N → ∞, where CN is the square with vertices ±(N + 1

2 ) ±
(N + 1

2 )i. (See Chapter 3, exercise 16.)

b. By integrating
1

(2z − 1) sin π z
around a suitable contour, show that 1 − 1

3
+ 1

5
− 1

7
+ · · · = π

4
.

11.* Show that ∫ ∞
−∞

ekx

1 + ex dx

converges if 0 < k < 1. Find its value by integrating around the rectangle with vertices at ±R and
at ±R + 2π i.

12.* Suppose f is analytic for |z| ≤ 1, and let log z be defined so that Im log z = arg z ∈ [ 0, 2π). Prove

that
1

2π i

∫
|z|=1

f (z) log z dz = ∫ 1
0 f (x)dx

13. Evaluate ∞∑
n=0

(
3n
n

)
1

8n .
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14. Show that ∞∑
n=0

(
2n
n

)
xn = 1√

1 − 4x
as long as|x| <

1

4
.

Note: This is the sum of the middle column in Pascal’s Triangle for powers of 1 + x .

2x

3x 3x2

4x36x24x

x2

x3

x4

x
1

1

1

1

1
.    .    .    .    .

The equation can also be verified by applying the binomial expansion for (1 − 4x)−1/2.

15. Complete Example 3 of Section 2-III by showing |(z − 1)2(z + 1)| ≤ (16/9)
√

3 throughout |z| = 1.
[Hint: Maximize a2b given a2 + b2 = 4.]

–1 1

|z + 1| |z – 1|

z

16. a. Show that ∣∣∣∣∣ (z − 1)2(z + 1)

z2

∣∣∣∣∣ ≤ 2
√

2 for |z| = √
2

and thereby obtain an improved estimate for the example cited in (15).
b. Show that

max|z|=R

∣∣∣∣∣ (z − 1)2(z + 1)

z2

∣∣∣∣∣ ≥ 2
√

2 for any R > 0.

(Thus, in a sense, the estimate in (a) is the best possible.)

17.* a. Express
n∑

k=0

(−1)k
(

3n

k

)(
n

k

)

as a contour integral.

b. Use the integral above to prove that

∣∣∣∣∑n

k=0
(−1)k

(
3n

k

)(
n

k

)∣∣∣∣ ≤ 4n .



Chapter 12
Further Contour Integral Techniques

12.1 Shifting the Contour of Integration

We have already seen how the Residue Theorem can be used to evaluate real line
integrals. The techniques involved, however, are in no way limited to real integrals. To
evaluate an integral along any contour, we can always switch to a more “convenient”
contour as long as we account for the pertinent residues of the integrand.

EXAMPLE 1
Consider ∫

I

ezdz

(z + 2)3

where I is the line z(t) = 1 + i t,−∞ < t < ∞.
Let CR be the left semicircle of radius R > 3 centered at z = 1. Then

∫ 1+i R

1−i R

ezdz

(z + 2)3
+

∫
CR

ezdz

(z + 2)3
= 2πi Res

(
ez

(z + 2)3
; −2

)
.

Since ez is bounded by e in the lefl half-plane x ≤ 1, as R → ∞∫
CR

ezdz

(z + 2)3 → 0

and ∫
I

ezdz

(z + 2)3
= 2πi Res

(
ez

(z + 2)3
; −2

)
.

161
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1

1 – iR

1 + iR

CR

To evaluate the residue, we write

ez = e−2ez+2 = e−2

(
1 + (z + 2) + (z + 2)2

2
+ · · ·

)

so that

Res

(
ez

(z + 2)3 ; −2

)
= 1

2e2

and ∫
I

ezdz

(z + 2)3 = πi

e2 .

♦

EXAMPLE 2
Evaluate ∫

|z|=1

dz√
6z2 − 5z + 1

where the square root is the positive
√

2 at the point z = 1.
Recall (see Exercise 10–16) that since 6z2 − 5z + 1 has its zeroes at z = 1

2 and

z = 1
3 ,

√
6z2 − 5z + 1 is analytic in the plane minus the interval 1

3 ≤ z ≤ 1
2 .

To evaluate the integral, we switch to the contour |z| = R. Then, since√
6z2 − 5z + 1 ∼ √

6 z for large z, it follows that∫
|z|=R

dz√
6z2 − 5z + 1

→ 1√
6

∫
|z|=R

dz

z
= 2πi√

6
.
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|z| = R

|z| = 1

1¹
³

¹
²

R– –

To formally justify the last step, suppose (in general) that f (z) = z + ε(z), where
ε(z)/z → 0 as z → ∞. Then∫

|z|=R

1

f (z)
dz −

∫
|z|=R

dz

z
= −

∫
|z|=R

ε(z)

z(z + ε(z))
dz

� 2π max|z|=R

∣∣∣∣ ε(z)

z + ε(z)

∣∣∣∣ → 0 as R → ∞. ♦

EXAMPLE 3
Based on numerical evidence, it was conjectured that

n∑
k=0

(−1)k

√(
n
k

)
→ 0 as n → ∞.

A proof of the conjecture can be given as follows:
Note that

f (z) = sin πz

πz(1 − z)(1 − z/2) . . . (1 − z/n)

satisfies

f (k) =
(

n
k

)
for any nonnegative integer k.

Because f (z) is zero-free in −1 < Re z < n + 1,
√

f (z) (taken as positive at the
origin) is analytic there. By the Residue Theorem, then

n∑
k=0

(−1)k

√(
n
k

)
= 1

2πi

∫
C

√
f (z)

π

sin πz
dz (1)

where C is any contour in −1 < Re z < n + 1 which winds once about each integer
0, 1, . . . , n and never about any other integer.
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Suppose we let C = CM be the rectangle formed by the lines Re z = −1/2,
Re z = n + 1/2 and Im z = ±M . Then

∫
CM

√
f (z)

π

sin πz
dz =

∫
CM

√
πdz√

z(1 − z)(1 − z/2) . . . (1 − z/n) sin πz

and letting M → ∞, we conclude

n∑
k=0

(−1)k

√(
n
k

)
= 1

2πi

[∫ −1/2−i∞

−1/2+i∞
+

∫ n+1/2+i∞

n+1/2−i∞

√
f (z)

π

sin πz
dz

]
.

Since the integrand is invariant (aside from a± sign) under the substitution z → n−z,
we need only estimate the first integral. Now, when Re z = − 1

2 ,

|z(1 − z)(1 − z/2) . . . (1 − z/n)| ≥ 1

2

(
1 + 1

2

)(
1 + 1

4

)
. . .

(
1 + 1

2n

)

≥ 1

2

√
1 + 1

√
1 + 1

2
. . .

√
1 + 1

n

=
√

n + 1

2

and so the first integral is bounded by

1√
2π 4

√
n + 1

∫
Re z=−1/2

∣∣∣∣ dz√
sin πz

∣∣∣∣ ≤ A
4
√

n
.

Hence
n∑

k=0

(−1)k

√(
n
k

)
→ 0 as n → ∞.

♦

12.2 An Entire Function Bounded in Every Direction

Recall that, according to Liouville’s Theorem, every nonconstant entire function is
unbounded. Nevertheless, one may wonder whether there is a nonconstant entire
function which is bounded along every ray from the origin. The answer to this
question is yes! However, there seems to be no way of describing such a function
in closed form. Instead, the function will be given in integral form and the crucial
estimate will then be obtained by switching the contour of integration.

The strategy is as follows: We will find a nonconstant entire function f which is
bounded by 1 outside of the strip |Im z| ≤ π . If we consider

g(z) = f (z − 2πi),
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3

0

iπ

iπ

g << 1

g << 1

then it follows that g � 1 outside the strip π ≤ Im z ≤ 3π and hence g will be
bounded on every ray. As a final touch, we might then consider

h(z) = g(z) − g(0)

z

which is an entire function that approaches zero along every ray!
Construction of f : Define

f (z) =
∫ ∞

0

ezt

t t
dt .

The integral converges absolutely since for any z = x + iy,

∫ ∞

0

∣∣∣∣ezt

t t

∣∣∣∣ dt =
∫ ∞

0

ext

t t
dt < ∞.

Furthermore, f is continuous and for any rectangle R

∫
∂ R

f (z)dz =
∫

∂ R

(∫ ∞

0

ezt

t t
dt

)
dz =

∫ ∞

0

(∫
∂ R

ezt

t t
dz

)
dt =

∫ ∞

0
0 dt = 0.

The absolute convergence of the integral justifies the change in the order of integra-
tion. Hence, by Morera’s Theorem, f is entire.

We see from our definition of f that f is real-valued along the real axis. Thus,
by the Schwarz Reflection Principle, f (z̄) = f (z) and we need only show that f is
bounded for z = x + iy, y > π . In fact, we will show that for z = x + iy, y =
π/2 + c, | f (z)| ≤ 1/c.

To derive the stated upper bound for

f (z) =
∫ ∞

0

ezt

t t
dt,
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note that the integrand is an analytic function of t in the right half-plane and hence
we can replace the integral ∫ R

ε

ezt

t t
dt

along the positive axis by the integral along the quarter-circle from ε to iε plus the
integral along the imaginary axis from iε to iR minus the integral along the quarter-
circle CR of radius R. (See below.) Since the integrand approaches 1 at t = 0, the
integral along the quarter-circle of radius ε is negligible. As ε → 0 and R → ∞,

f (z) =
∫ ∞

0

ezt

t t
dt = − lim

R→∞

∫
CR

ezt

t t
dt +

∫
I

ezt

t t
dt

where I is the positive imaginary axis. (See the diagram below.)

i

iR

R

CR

ezt dt

∋

∋

t-plane

around

the closed contour = 0

∫ t t

Finally we will show that the latter integral is bounded by 1/c and that the limit
on the right is 0.

Using the obvious parametrization t = iv, 0 ≤ v < ∞
∫

I

ezt

t t
dt = i

∫ ∞

0

eivz

(iv)iv
dv �

∫ ∞

0

∣∣∣∣ eivz

(iv)iv

∣∣∣∣ dv

but for Im z = π/2 + c,

∣∣∣∣ eiνz

(iv)iv

∣∣∣∣ = e−v(π/2+c)

|eiv log iv | = e−v/(π/2+c)

e−vπ/2
= e−cv .

Hence ∫
I

ezt

t t
dt �

∫ ∞

0
e−cvdv = 1

c
.
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To estimate ∫
CR

ezt

t t
dt, let t = Reiθ , 0 ≤ θ ≤ π

2
.

Then log t = log R + iθ and

∣∣∣∣ezt

t t

∣∣∣∣ =
∣∣∣∣ exp [(x + iy)(R cos θ + iR sin θ)]

exp [(log R + iθ)(R cos θ + iR sin θ)]

∣∣∣∣
= exp −[(log R − x)R cos θ + (y − θ)R sin θ ].

Taking R large enough so that log R − x > y > y − θ ,∣∣∣∣ezt

t t

∣∣∣∣ ≤ exp −[(y − θ)R] ≤ e−cR

and ∫
CR

ezt

t t
dt � π

2
R · e−cR,

which approaches 0 as R → ∞.
We note that for every nonconstant entire function, there is always some polygonal

line along which the function is not only unbounded but actually approaches infinity.
We prove this result in Chapter 15. (See Exercise 6.)

Exercises

1.* a. Evaluate ∫
I

ez

(z + 1)4
dz,

where I is the imaginary axis (from −i∞ to +i∞).
b. Evaluate ∫ 1+i∞

1−i∞
az

z2
dz, 0 < a < ∞.

2.* Evaluate ∫
|z|=2

dz√
4z2 − 8z + 3

.

3. Evaluate
∫
γ ez log zdz where log z is that branch for which log 1 = 0 and γ is the parabola: γ (t) =

1 − t2 + it, − ∞ < t < ∞.

4. Show that
n∑

k=0

(−1)k
(

n
k

)1/3
→ 0 as n → ∞.
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5. a. Obtain an improved estimate for
n∑

k=0

(−1)k

√(
n
k

)

by integrating along the lines Re z = −3/4 and Re z = n + 3/4.
b. Estimate

n∑
k=0

(−1)k

√(
n
k

)

by integrating along Re z = −1 + δ and Re z = n + 1 − δ. Find an optimal δ. [Note: Numerical
evidence suggests

n∑
k=0

(−1)k

√(
n
k

)
∼ 1√

n
for even n].

6. * Suppose g is the entire function (bounded on every ray) described in the last section. Show that
g(x + 2πi) → ∞ as x → ∞.



Chapter 13
Introduction to Conformal Mapping

In this chapter, we take a closer look at the mapping properties of an analytic function.
Throughout the chapter, all curves z(t) are assumed to be such that ż(t) �= 0 for all t .

13.1 Conformal Equivalence
13.1 Definition

Suppose two smooth curves C1 and C2 intersect at z0. Then the angle from C1 to C2
at z0, ∠C1, C2, is defined as the angle measured counterclockwise from the tangent
line of C1 at z0 to the tangent line of C2 at z0.

C1

C2

z0

θ

13.2 Definition

Suppose f is defined in a neighborhood of z0. f is said to be conformal at z0 if f
preserves angles there. That is, for each pair of smooth curves C1 and C2 intersecting

169
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at z0, ∠C1, C2 = ∠�1, �2 where �1 = f (C1), �2 = f (C2). Similarly, we say f
is conformal in a region D if f is conformal at all points z ∈ D.

Note that f (z) = z2 is not conformal at z = 0. For example, the positive real axis
and the positive imaginary axis are mapped onto the positive real axis and negative
real axis, respectively. However, as we shall see below, it is conformal at all other
points of the complex plane.

13.3 Definition

a. f is locally 1-1 at z0 if for some δ > 0 and any distinct z1, z2 ∈ D(z0; δ),
f (z1) �= f (z2).

b. f is locally 1-1 throughout a region D if f is locally 1-1 at every z ∈ D.
c. f is a 1-1 function in a region D, if for every distinct z1, z2 ∈ D, f (z1) �= f (z2).

Again, note that f (z) = z2 is not locally 1-1 at z = 0 since f (z) = f (−z) for
all z. However, f is locally 1-1 at all points z �= 0 (see Exercise 1).

13.4 Theorem

Suppose f is analytic at z0 and f ′(z0) �= 0. Then f is conformal and locally 1-1
at z0.

Proof (Conformality)

Let C : z(t) = x(t)+ iy(t) be a smooth curve with z(t0) = z0. Then the tangent line
to C at z0 has the direction of ż(t0) = x ′(t0) + iy ′(t0) so that its angle of inclination
with the positive real axis is Arg ż(t0). If we set � = f (C), then � is given by
ω(t) = f (z(t)) and the angle of inclination of its tangent line at f (z0) is equal to

Arg ω̇(t0) = Arg
[

f ′(z0)ż(t0)
] = Arg f ′(z0) + Arg ż(t0).

Hence the function f maps all curves at z0 in such a way that the angles of inclination
are increased by the constant Arg f ′(z0). Thus, if C1 and C2 meet at z0 and �1, �2
are their respectively images under f , it follows that ∠�1, �2 = ∠C1, C2.

To show f is 1-1 in a neighborhood of z0, let f (z0) = α and take δ′ > 0 small
enough so that f (z) − α has no other zeroes in D(z0; δ′). Such a δ′ can always be
found for otherwise we would have f ′(z0) = 0 (Theorem 6.10).

If we let C = C(z0; δ′) and � = f (C), it follows by the Argument
Principle (10.9) that

1 = 1

2π i

∫
C

f ′(z)
f (z) − α

dz

= 1

2π i

∫
�

dω

ω − α
= 1

2π i

∫
�

dω

ω − β
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for all β in some sufficiently small disc D(α; ε), since the winding number is locally
constant (see following 10.3). If we then take δ ≤ δ′ so that D(z0; δ) ⊂ f −1(D(α; ε))
it follows that for any z1, z2 ∈ D(z0; δ)

1 = 1

2π i

∫
�

dω

ω − f (z1)
= 1

2π i

∫
�

dω

ω − f (z2)

= 1

2π i

∫
C

f ′(z)
f (z) − f (z1)

dz = 1

2π i

∫
C

f ′(z)
f (z) − f (z2)

dz;

i.e., the values f (z1) and f (z2) are both assumed once inside C so that f (z1) �= f (z2)
if z1 �= z2. �

EXAMPLE 1
f (z) = ez has a nonzero derivative at all points, hence it is everywhere conformal
and locally 1-1. (Note that is it not globally 1-1 since f (z + 2π i) = f (z).) By the
conformality of f , the images of the orthogonal lines x = constant and y = constant
under the mapping f are themselves orthogonal. We leave it as an exercise to verify
this by showing that f maps the vertical lines x = constant onto circles centered at
the origin and maps the horizontal lines y = constant onto rays from the origin.

ez

0 0

♦

EXAMPLE 2
Let f (z) = z2. Since f ′(z) = 2z �= 0 except at z = 0, f is conformal throughout
z �= 0. Thus, if we set f = u + iv, it follows that the preimages of the curves u = c1,
ν = c2 for c1, c2 �= 0 must be orthogonal. Indeed, since u(z) = x2 − y2, v(z) = 2xy



172 13 Introduction to Conformal Mapping

these preimages are the orthogonal systems of hyperbolas given by

x2 − y2 = c1, 2xy = c2 (see the figure below).

v
y

0
0

u

ω
z

x
z2

♦

To analyze the mapping properties of a function f at a point z where f ′(z) = 0,
we first consider the following special case.
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13.5 Definition

Let k be a positive integer. f is a k-to-1 mapping of D1 onto D2 if for every α ∈ D2,
the equation f (z) = α has k roots (counting multiplicity) in D1.

13.6 Lemma

Let f (z) = zk, k a positive integer. Then f magnifies angles at 0 by a factor of k
and maps the disc D(0; δ), δ > 0, onto the disc D(0; δk) in a k-to-1 manner.

Proof

Since f (reiθ ) = rkeikθ , f maps the ray from 0 with argument θ onto the ray from
0 with argument kθ . Hence the angle at 0 between any two rays is magnified by a
factor of k. To see that f (z) = α, α ∈ D(0; δk) has k roots in D(0; δ) recall that
if α �= 0 there are k distinct roots all lying on the circle |z| = |α|1/k . If α = 0, the
equation zk = α has a k-fold root at the origin. �

We can now “complete” Theorem 13.4.

13.7 Theorem

Suppose f is analytic at z0 with f ′(z0) = 0. Then, unless f is constant, in some
sufficiently small open set containing z0, f is a k-to-1 mapping and f magni-
fies angles at z0 by a factor of k, where k is the least positive integer for which
f (k)(z0) �= 0.

Proof

We may assume, without loss of generality, that f (z0) = 0. [Otherwise, we could
first consider f (z) − f (z0).] Then, by hypothesis, the power series expansion of f
about z0 is of the form

f (z) = ak(z − z0)
k + ak+1(z − z0)

k+1 + ak+2(z − z0)
k+2 + · · ·

= (z − z0)
k
[
ak + ak+1(z − z0) + ak+2(z − z0)

2 + · · ·
]

with ak = f (k)(z0)/k! �= 0.
If we let g(z) represent the bracketed power series, we note that g(z0) �= 0 so

that g has an analytic k-th root in some disc D(z0; δ) (see the comments following
Theorem 8.8). Thus, in that disc,

f (z) = [h(z)]k

where h is an analytic function defined by

h(z) = (z − z0)g1/k(z)

and
h(z0) = 0, h′(z0) = g1/k(z0) �= 0.
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Hence, in a sufficiently small neighborhood D of z0, f is the composition of the 1-1
and conformal mapping h followed by the mapping zk . Since zk magnifies angles
at 0 by a factor of k, it follows that f magnifies angles at z0 by k. Also, since zk is
k-to-1 on discs about 0, it follows that if

D(0; ε) ⊂ h(D)

and
η = h−1(D(0; ε)),

then f is k-to-1 on η. �

0

0

f

D

h

zk

z0

h(D)

f(D)
η

δ

∋

∋

k

The previous results combine to yield the following properties of 1-1 analytic
functions.

13.8 Theorem

Suppose f is a 1-1 analytic function in a region D. Then

a. f −1 exists and is analytic in f (D),
b. f and f −1 are conformal in D and f (D), respectively.

Proof

Since f is 1-1, f ′ �= 0. Hence f −1 is also analytic (Proposition 3.5). Furthermore,
( f −1)′ = 1/ f ′ so that f −1 also has a nonzero derivative. Thus f and f −1 are both
conformal. �



13.2 Special Mappings 175

Theorem 13.8 motivates the following definitions:

13.9 Definitions

a. A 1-1 analytic mapping is called a conformal mapping.
b. Two regions D1 and D2 are said to be conformally equivalent if there exists a

conformal mapping of D1 onto D2.

We leave it as an exercise to verify that “conformal equivalence” satisfies the
usual axioms of an equivalence relation. In particular, we note that the transitive
property follows from the fact that the composition of two conformal mappings is
also a conformal mapping, and we will use this fact throughout the remainder of the
chapter.

The Riemann Mapping Theorem, which we will prove in the next chapter, asserts
that any two simply connected domains (besides the whole plane) are conformally
equivalent. In the next section, we will consider certain special transformations that
will enable us to explicitly display conformal mappings between many familiar sim-
ply connected regions.

13.2 Special Mappings

I Elementary Transformations
(i) ω = az + b.
The linear map ω = az+b is a 1-1 analytic map of the entire plane onto itself. The

effect of the mapping on a given domain can be seen by viewing it as a composition
ω = ω3 ◦ ω2 ◦ ω1 of the mappings

1. ω1 = kz, k = |a|
2. ω2 = eiθ z, θ = Arg a
3. ω3 = z + b.

A mapping of the form ω = kz, k > 0 is called a magnification. It sends each
point onto another point along the same ray from the origin, multiplying its magnitude
by a factor of k. The mapping ω = eiθ z is a counterclockwise rotation through an
angle θ . Finally, ω = z + b is called a translation since it translates each point by
the complex number, or vector, b.

(ii) ω = zα, α > 0.
As we noted in Chapter 8, the function ω = zα given by zα = eα log z is analytic

in every simply connected domain that does not contain 0. If we take the branch of
log z which is real on the positive axis, then zα will also map the positive axis onto
itself. The point z = reiθ is mapped onto rαeiαθ and hence ω = zα maps the wedge
S = {z : θ1 < Arg z < θ2} onto the wedge T = {ω : αθ1 < Arg ω < αθ2}. If,
moreover, αθ2 − αθ1 ≤ 2π ; i.e., if θ2 − θ1 ≤ 2π/α, the mapping is a conformal
mapping of S onto T .



176 13 Introduction to Conformal Mapping

Some examples are sketched below:

0

z2

z½

0 0

4
π–

(iii) ω = ez .
Since ez = exeiy , the function ω = ez maps the strip: y1 < y < y2 onto the

wedge: y1 < Arg ω < y2. If y2 − y1 ≤ 2π , the mapping is 1-1. For example, the
strip 0 < y < π is mapped conformally onto the upper half-plane.

z

ez

0

log

π

ω

ω

0

i
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II The Bilinear Transformation ω = (az + b)/(cz + d)

The mapping given by

f (z) = az + b

cz + d
, ad − bc �= 0 (1)

is called a bilinear transformation. The condition ad − bc �= 0 insures that f is
neither identically constant nor meaningless. Since

f ′(z) = ad − bc

(cz + d)2 �= 0,

f is locally 1-1 and conformal. In fact, a bilinear transformation is globally 1-1 since

az1 + b

cz1 + d
= az2 + b

cz2 + d

implies that
(ad − bc)(z1 − z2) = 0

and hence that
z1 = z2.

The bilinear transformation (1) maps the full plane, minus the point −d/c, onto
the full plane minus the point a/c, since the equation

az + b

cz + d
= ω

has the explicit solution

z = dω − b

−cω + a
for every ω �= a

c
.

In fact, if we consider the limiting values f (∞) = (a/c) and f (−d/c) = ∞ we can
say that f is a 1-1 mapping of the Riemann sphere onto itself. (See Section 1.5.)

The set of bilinear transformations forms a group under composition. It is easily
seen that the inverse of a bilinear transformation is also bilinear since, as above,

ω = az + b

cz + d

admits the solution

z = dω − b

−cω + a
, and da − (−b)(−c) = ad − bc �= 0.

We leave the verification of the other group properties as an exercise.
A very useful property of bilinear transformations is that they map circles and

lines onto other circles and lines. We prove this first for the special case f (z) = 1/z.
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13.10 Lemma

If S is a circle or line, and f (z) = 1/z, then f (S) is also a circle or line.

Proof

(A proof involving the Riemann sphere is outlined in Exercises 27 and 28 of
Chapter 1. The following proof is more direct.)

Assume first that S = C(α; r) and let

f (S) =
{
ω = 1

z
: z ∈ S

}
.

Writing the equation for S in the form

(z − α)(z̄ − ᾱ) = r2

we have
zz̄ − αz̄ − ᾱz = r2 − |α|2

or, in terms of ω,

1

ωω̄
− α

ω̄
− ᾱ

ω
= r2 − |α|2. (1)

Note then that if r = |α|; i.e., if S passes through the origin, (1) is equivalent to

1 − αω − ᾱω̄ = 0

or

Re αω = 1

2
.

In that case, if α = x0 + iy0 and ω = u + iν, the equation for ω becomes

ux0 − vy0 = 1

2
;

i.e., f (S) is a line in the ω-plane.
If, on the other hand, r �= |α|, then (1) is equivalent to

ωω̄ −
(

ᾱ

|α|2 − r2

)
ω̄ −

(
α

|α|2 − r2

)
ω = −1

|α|2 − r2
,

and setting

β = ᾱ

|α|2 − r2

we obtain

ωω̄ − βω̄ − β̄ω + |β|2 = r2

(|α|2 − r2)2
.
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Thus

|ω − β|2 =
(

r

|α|2 − r2

)2

,

so that f (S) is a circle with center β and radius |r/(|α|2 − r2)|.
Finally, if S is a straight line, then there exist real-valued a, b, c such that if

z = x + iy ∈ S,
ax + by = c. (2)

Letting α = a − bi , (2) is equivalent to

Re αz = c

or
αz + ᾱ z̄ = 2c.

It follows then, as above, that f (S) is either a circle or a line. �

13.11 Theorem

f (z) = az + b

cz + d
, ad − bc �= 0,

maps circles and lines onto circles and lines.

Proof

If c = 0, f is a linear map and the result is immediate. Otherwise, we can write

az + b

cz + d
= 1

c

[
acz + ad − ad + bc

cz + d

]
= 1

c

[
a −

(
ad − bc

cz + d

)]
.

Thus f is the composition f = f3 ◦ f2 ◦ f1, where

f1(z) = cz + d,

f2(z) = 1

z
,

f3(z) = a

c
−

(
ad − bc

c

)
z.

f1 and f3 are linear; hence they map circles and lines into circles and lines. By
Lemma 13.10, the same is true for f2, and thus it follows that f has the desired
property. �

The above properties of bilinear transformations make them a very handy tool in
solving many conformal mapping and miscellaneous geometric problems.
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EXAMPLE 1
Find a conformal mapping f of the semi-disc S = {z : |z| < 1, Im z > 0} onto the
upper half-plane.

f

–1

Note that because g(z) = 1/(z + 1) has a pole at −1, it maps the line segment
[-1, 1] and the upper semi-circle onto infinite rays. Furthermore, the two rays must
intersect at g(1) = 1

2 , and by the conformality of g, they intersect orthogonally.
By considering several points, it can then be seen that g maps the segments onto
the lines indicated below and maps the semi-disc onto the quadrant bounded by the
orthogonal rays.

i

–1 1 0

f (0) = 1

f (i)

f (1) = 

1
z + 1 ¹

²
–

Thus, the desired mapping f is given by

f (z) =
[

i

(
g(z) − 1

2

)]2

= −(z − 1)2

4(z + 1)2
.

♦
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EXAMPLE 2
Suppose two circles C1 and C2 are tangent at a point α and a chain of circles tangent
to C1 and C2 and to each other is constructed as indicated. Prove that the points of
tangency a, b, c, . . . thus created all lie on a circle.

d

c
b

a

C1C2

α

Consider the image of the above diagram under the mapping f (z) = 1/(z − α).
Since the mapping is 1-1 and has a pole at α, C1 and C2 are mapped into a pair of
parallel lines. Furthermore, all the other circles are mapped into circles and, again
since f is 1-1, the circles will be tangent to the parallel lines and to each other.

f

C1

C2

α

It is clear that the points f (a), f (b), f (c), . . . lie on a straight line (between
f (C1) and f (C2)). Finally, then, a, b, c . . . all lie on the image of this line under
the inverse transformation f −1. Since f −1 is also bilinear, this image is a circle and
the result is established. ♦
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In light of Theorem 13.11, it will come as no surprise that bilinear functions can
be used to map half-planes and discs conformally onto other half-planes and discs.
In fact, as we shall see below, all such mappings are given by bilinear transforma-
tions.

13.12 Definition

A conformal mapping of a region onto itself is called an automorphism of that region.

13.13 Lemma

Suppose f :D1 → D2 is a conformal mapping. Then

a. any other conformal mapping h:D1 → D2 is of the form g ◦ f ;
b. any automorphism h of D1 is of the form f −1 ◦g ◦ f, where g is an automorphism

of D2.

Proof

a. If f and h are both conformal mappings of D1 onto D2, then h ◦ f −1 is an
automorphism of D2; i.e., h ◦ f −1 = g and h = g ◦ f .

b. If h is an automorphism of D1, f ◦ h ◦ f −1 is an automorphism of D2; thus
f ◦ h ◦ f −1 = g and h = f −1 ◦ g ◦ f . �

We now consider the problem of determining all the automorphisms of the unit disc.

13.14 Lemma

The only automorphisms of the unit disc with f (0) = 0 are given by f (z) = eiθ z.

Proof

If f maps the unit disc 1-1 onto itself and f (0) = 0, then by Schwarz’ Lemma (7.2)

| f (z)| ≤ |z| for |z| < 1. (3)

Moreover, since f −1 also maps the disc onto itself and f −1(0) = 0, by the same
argument,

| f −1(z)| ≤ |z| for |z| < 1. (4)

However, (3) and (4) can both be valid only if | f (z)| = |z| and, by Schwarz’ Lemma
once again, it follows that

f (z) = eiθ z.

�

Suppose now that we wish to find an automorphism f of the unit disc with
f (α) = 0, for a fixed α, 0 < |α| < 1. If we assume that f is bilinear, then since
f is globally 1-1, it must map the unit circle onto itself and we can thus apply the
Schwarz Reflection Principle (7.8) (see also Exercise 19, Chapter 7) to conclude that
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f (1/ᾱ) = ∞. Hence f must be of the form

f (z) = c

(
z − α

z − 1/ᾱ

)
.

Setting
| f (1)| = |cα| = 1

we have |c| = (1/|α|), and f may be written in the form

f (z) = eiθ
(

z − α

1 − αz

)
.

This suggests the following theorem.

13.15 Theorem

The automorphisms of the unit disc are of the form

g(z) = eiθ
(

z − α

1 − ᾱz

)
, |α| < 1.

Proof

Let g(z) = (z−α)/(1−ᾱz). Then, as we noted previously (following 7.2), |g(z)| = 1
for |z| = 1. Since g(α) = 0, it follows that g is indeed an automorphism of the unit
disc. Now assume that f is an automorphism of the unit disc with f (α) = 0. Then
h = f ◦ g−1 is an automorphism with h(0) = 0, so that according to the previous
lemma

h(z) = eiθ z

or

f (z) = eiθ
(

z − α

1 − ᾱz

)
.

�

Suppose next that we wish to determine a conformal mapping h of the upper half-
plane onto the unit disc. Again, let us first assume that h is bilinear and h(α) = 0,
for fixed α with Im α > 0. Then, since the real axis is mapped into the unit circle, it
follows by the Schwarz Reflection Principle that h(ᾱ) = ∞ so that

h(z) = c

(
z − α

z − ᾱ

)
.

13.16 Theorem

The conformal mappings h of the upper half-plane onto the unit disc are of the form

h(z) = eiθ
(

z − α

z − ᾱ

)
, Im α > 0.
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Proof

Let f (z) = (z − α)/(z − ᾱ). Since |z − α| = |z − ᾱ| for real z, f maps the real axis
onto the unit circle. Also, since f (α) = 0 and Im α > 0, it follows that f maps the
upper half-plane onto the unit disc. Suppose then that h is any conformal mapping
of the upper half-plane onto the unit disc and h(α) = 0. By Lemma 13.13, h is of
the form

h = g ◦ f

where g is an automorphism of the disc. However, since h(α) = g(0) = 0, it follows
that g(z) = eiθ z (13.14) and

h(z) = eiθ
(

z − α

z − ᾱ

)
.

�
13.17 Theorem

The automorphisms of the upper half-plane are of the form

h(z) = az + b

cz + d

with a, b, c, d real and ad − bc > 0.

Proof

Let h be as above. Then clearly h maps the real axis onto itself. Also,

Im f (i) = ad − bc

c2 + d2
> 0,

so that i is mapped into the upper half-plane and hence f is an automorphism of
the upper half-plane. To show that there are no other automorphisms, we can apply
Lemma 13.13 and Theorem 13.15 to show that any such automorphism h must be
of the form h = f −1 ◦ g ◦ f with

f (z) = z − i

z + i
and g(z) = eiθ

(
z − α

1 − ᾱz

)
, |α| < 1.

We leave it as an exercise to verify that such a mapping can be written in the form

h(z) = az + b

cz + d
; a, b, c, d, real; ad − bc > 0.

(See Exercise 16.) �

In the results that follow, we will see that there is a unique bilinear mapping
sending any three distinct points z1, z2, z3 onto any three distinct points ω1, ω2, ω3,
respectively.

13.18 Definition

z0 is called a fixed point of the function f if f (z0) = z0.
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13.19 Proposition

A bilinear transfomation (other than the identity mapping f (z) = z) has at most two
fixed points.

Proof

Let f (z) = (az + b)/(cz + d). If c �= 0, the equation f (z) = z is equivalent to
the quadratic equation az + b = cz2 + dz and hence has at most two solutions.
(Note also that in this case f (∞) = a/c �= ∞.) If c = 0, f is linear and, unless
a/d = 1, f (z) = z has one solution in the finite complex plane. In this case, since
f (∞) = ∞, the point at infinity may be considered a second fixed point. Finally, if
f (z) = z + b, there are no fixed points in C. �

13.20 Lemma

The unique bilinear mapping sending z1, z2, z3 into ∞, 0, 1, respectively, is given
by

T (z) = (z − z2)(z3 − z1)

(z − z1)(z3 − z2)
.

Proof

Certainly T has the desired properties. If S is another bilinear transformation which
maps z1, z2, z3 into ∞, 0, 1, then T ◦ S−1 is a bilinear map with three fixed points,
so that T ◦ S−1 is the identity map and T ≡ S. �

Note that the lemma, with the appropriate modifications, is valid also if some
zi = ∞. If z1 = ∞, the map is given by

T (z) = z − z2

z3 − z2
.

If z2 = ∞,

T (z) = z3 − z1

z − z1
;

and if z3 = ∞,

T (z) = z − z2

z − z1
.

13.21 Definition

The cross-ratio of the four complex numbers z1, z2, z3, z4—denoted (z1, z2, z3, z4)—
is the image of z4 under the bilinear map which maps z1, z2, z3 into ∞, 0, 1,
respectively.

By the preceding lemma

(z1, z2, z3, z4) =
(

z4 − z2

z4 − z1

)(
z3 − z1

z3 − z2

)
.
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13.22 Proposition

The cross-ratio of four points is invariant under bilinear transformations: i.e., if S
is bilinear, (Sz1, Sz2, Sz3, Sz4) = (z1, z2, z3, z4).

Proof [Ahlfors]

Let T be the bilinear map which sends z1, z2, z3 into ∞, 0, 1. Then T ◦ S−1

maps Sz1, Sz2, Sz3 into ∞, 0, 1 and by definition (Sz1, Sz2, Sz3, Sz4) =
T ◦ S−1(Sz4) = T z4 = (z1, z2, z3, z4). �

13.23 Theorem

The unique bilinear transformation ω = f (z) mapping z1, z2, z3 into ω1, ω2, ω3,
respectively, is given by

(ω − ω2)(ω3 − ω1)

(ω − ω1)(ω3 − ω2)
= (z − z2)(z3 − z1)

(z − z1)(z3 − z2)
. (5)

Proof

The existence of the mapping f is easily established. If we let T1, T2 be the bilinear
maps with

T1 : z1, z2, z3 → ∞, 0, 1

T2 : ω1, ω2, ω3 → ∞, 0, 1

then f = T −1
2 ◦ T1. To show that ω = f (z) must satisfy (5), we need only invoke

Proposition 13.22 that the cross-ratio of any four points is preserved under a bilinear
map and hence

(ω1, ω2, ω3, ω) = (z1, z2, z3, z).

(The appropriate modification of (5) if some zi or some ωi = ∞ is left as an
exercise.) �

Note that (5) affords a direct method to find the desired mapping by simply solving
for ω.

EXAMPLE

To map z1 = 1, z2 = 2, z3 = 7 onto ω1 = 1, ω2 = 2, ω3 = 3 we set

(ω − 2)(3 − 1)

(ω − 1)(3 − 2)
= (z − 2)(7 − 1)

(z − 1)(7 − 2)

or, solving for ω,

ω = 7z − 4

2z + 1
.

♦
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13.3 Schwarz-Christoffel Transformations

I Mapping a Semi-Infinite Strip Onto a Half-Plane
We will show that f (z) = sin z maps the semi-infinite strip:

−π

2
< Re z <

π

2
; Im z > 0

conformally onto the upper half-plane by considering its behavior on the rectangle R:

−π

2
≤ Re z ≤ π

2
; 0 ≤ Im z ≤ N

for large N .
Of course, the interval

[−π
2 , π

2

]
is mapped onto [−1, 1]. For complex z, we use

the identity

sin z = sin(x + iy) = sin x cosh y + i cos x sinh y (1)

to show that sin(π
2 + iy) = cosh y, which is real-valued and increases from 1 to

cosh N as y increases from 0 to N . Note that the mapping f (z) = sin z doubles the
vertex angle of R at z = π

2 , as we could have anticipated since f ′(z) has a simple
zero at that point.

Along the line Im z = N ,

sin z = sin x cosh N + i cos x sinh N (2)

For large N , sinh N is just slightly smaller than cosh N since both are very close
to 1

2 eN . Hence, according to (2), as x varies from π
2 to −π

2 , sin z traces an "almost
circular" elliptical path from cosh N counterclockwise to − cosh N.

Finally, sin z maps the interval connecting −π
2 + i N to −π

2 onto the interval
[ − cosh N,−1]. So sin z maps the boundary of R onto the boundary of a region
S whose base is the real interval [ − cosh N, cosh N] and which is very close to a
semicircular region in the upper half-plane. By the Argument Principle, then, f maps
the interior of R onto the interior of S (see Remark 2 following Corollary 10.9).

–π/2 –1 0

w = sin z

1 uπ/2

Ni

y

0 x

v2

sinh2N
≤ 1+u2

cosh2N

v
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It follows, letting N → ∞, that sin z maps the semi-infinite strip:

−π

2
< Re z <

π

2
; Im z > 0

conformally onto the upper half-plane. �

A mapping of any other semi-infinite strip onto a half-plane or onto any of the
domains previously considered can be found by composing sin z with the appropriate
conformal mappings.

It is interesting to examine the inverse function, sin−1 z, which can be defined by
the familiar integral formula:

sin−1 z =
z∫

0

1√
1 − ζ 2

dζ

Unlike sin z, which is an entire function, sin−1 z is not analytic at the points z =
±1. This follows immediately from the fact that its derivative, 1√

1−z2
, approaches

∞ as z → ±1. It is also evident geometrically since sin−1 z maps the straight angles
at z = ±1 onto right angles. The function sin−1 z is analytic, however, as is 1√

1−z2
,

in the plane slit along the two rays z = ±1 − iy, 0 ≤ y < ∞. In particular, it is
analytic in the upper half-plane and continuous to the boundary, including the points
±1, since the improper definite integral

∫ 1
0

1√
1−x2

dx converges to π/2. As was the

case with sin z, it is easy to determine the behavior of sin−1 z along the boundary;
i.e., along the x − ax is.

To that end, note that its derivative:

d

dz
sin−1 z = 1√

1 − z2

is positive on the interval −1 < z < 1. So sin−1 z maps the closed interval [−1, 1]
monotonically onto the interval

[−π
2 , π

2

]
. To see how the analytic 1√

1−z2
behaves

on the remainder of the line, consider
√

1 + z as z varies along a small semicircular
arc from −1 + r to −1 − r . That is, let z = −1 + reiθ , 0 ≤ θ ≤ π . Then

√
1 + z =

√
reiθ = √

reiθ/2

and at z = −1 − r , i.e. when θ = π ,
√

1 + z is a multiple of i . It follows that
1√
1+z

and 1√
1−z2

are negative multiples of i throughout the interval (−∞,−1). This

property of its derivative, and the fact that
∫ −1
−∞

1√
1−ζ 2

dζ diverges, show that sin−1 z

maps (−∞,−1) onto the ray from −π/2 + i∞ to −π/2. By analyzing
√

1 − z in
a semicircular arc around z = 1, we can see that sin−1 z maps the interval (1,∞)
onto the ray from π/2 to π/2 + i∞. (This also follows from the Schwarz Reflection
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Principle (7.9 ) since 1√
1−z2

is real-valued on the imaginary axis, so that sin−1 z

maps the imaginary axis into itself.)
While our insights into the mapping properties of sin z were very dependent on

formula (1), our analysis of the behavior of sin−1 z along the real line can easily
be adapted to a wide range of problems. This will ultimately lead to the general
Schwarz-Christoffel formula, but first we consider the following special case:

II Mapping the Upper Half-Plane Onto a Rectangle.
As we saw in the last section, if the argument of f ′(z) is constant along a straight

line, f (z) will map that line into another line. To be specific, recall that

f (z) − f (z0) =
z∫

z0

f ′(ζ )dζ

Hence if γ represents the ray: z = z0 + reiα , r > 0, and if Arg( f ′) = β, then
� = f (γ ) will travel along the ray

ω = f (z0) + sei(α+β), s > 0

More specifically, if z travels to the right along the real axis from a real point z0, and
if f ′ has a constant argument of θ, then f (z) will travel along the ray from f (z0)
with argument θ.

If we want to find a function f which maps the upper half-plane onto a rectangle,
we would like f to map the real line onto the four sides of the rectangle. This
suggests that f ′ should have exactly four different arguments on the segments of the
real line and that its argument should increase by π

2 as we move (to the right) from
one segment to the next. To create such a function f ′, note that if z0 represents any
real number, z − z0 has a constant argument of π for real z < z0, and a constant
argument of 0 for real z > z0. If we define the analytic function (z − z0)

−α so that
it is positive for real z > z0, its argument will increase from −απ to 0 as z crosses
the point z0. In particular, with α = 1/2, the argument of (z − z0)

−α increases by
π/2 as z crosses over the point z0. So, to define f ′, we can pick four arbitrary real
numbers a < b < c < d and let

f ′(z) = 1/
√

(z − a)(z − b)(z − c)(z − d).

The square root in the denominator is defined as the product of the square roots of
each of its linear factors, and each of these is defined to be positive for large positive
values of z. We can then define

f (z) =
z∫

0

f ′(ζ )dζ =
z∫

0

1√
(ζ − a)(ζ − b)(ζ − c)(ζ − d)

dζ (3)

Note that although f ′(z) is undefined at the (real) points a, b, c, d, it is ana-
lytic in the entire complex plane slit along the four rays from t to t − i∞, for
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t = a, b, c, d. So it is analytic on the closed upper half-plane minus the points
a, b, c, d. Technically, the path of integration in (3) should be indented slightly to
avoid these points. However, since the associated improper integrals are all con-
vergent, the path of integration can be along the real line for all real z, including
z = a, b, c, d , and f is continuous at all points of the real line. Moreover, since the
real integral

∞∫
d

1√
(x − a)(x − b)(x − c)(x − d)

dx

converges, limz→∞ f (z) exists, as does limz→−∞ f (z).
According to our earlier remarks, f maps the interval (−∞, a] onto a fi-

nite interval parallel to the real line, and it maps the four successive intervals:
[a, b],[b, c], [c, d], [d,∞) onto intervals, each of which represents a counterclock-
wise rotation of π/2 from its predecessor. These facts alone do not guarantee that the
image of the real line is the boundary of a rectangle. It does follow, however, once
we can show that f (−∞) = f (∞); i.e., that

∞∫
−∞

1√
(x − a)(x − b)(x − c)(x − d)

dx = 0 (4)

This follows by the type of argument used in Chapter 11. Let CR be the closed
contour consisting of the real interval [−R, R] followed by �R , the upper semicircle
of radius R, traversed counterclockwise from R to −R, and let CR,ε be the contour
formed by replacing each interval in CR of the form [t − ε, t + ε] , t = a, b, c, d
with a semicircle in the upper half-plane centered at t , with radius ε. By the Cauchy
Closed Curve Theorem, ∫

CR,ε

f ′(ζ )dζ = 0

and, letting ε → 0, we see that ∫
CR

f ′(ζ )dζ = 0

That is,
R∫

−R

1√
(x − a)(x − b)(x − c)(x − d)

dx +
∫
�R

f ′(ζ )dζ = 0

Since | f ′(z)| is asymptotic to 1/R2 throughout �R , the usual M − L estimate shows
that the second integral above approaches 0 as R → ∞, thus proving equation (4).

An analogous argument can be used to show that f maps the upper half-plane
conformally onto the inside of the rectangle. We need only note that for any point ω
inside the rectangle, if R is sufficiently large, f maps CR onto a contour which is
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just a slight perturbation of the boundary of the rectangle and hence winds around
the point ω exactly once. By the Argument Principle, f takes the value ω exactly
once inside CR . The general result follows by letting R → ∞. �

It is interesting that we never directly established that the definite integrals which
yield the lengths of opposite sides of the rectangle have the same magnitude. In fact,
if it weren’t an obvious corollary of our other arguments, it would be hard to verify
directly. For example, if we let a, b, c, d equal 1, 2, 5, 9, respectively, it follows that

2∫
1

1√
(x − 1)(2 − x)(5 − x)(9 − x)

dx =
9∫

5

1√
(x − 1)(x − 2)(x − 5)(9 − x)

dx

One particularly nice choice for a, b, c, d is the set of values −1/k,−1, 1, 1/k
with k < 1. The resulting formula for f (z) given by (3), and with a suitable additional
constant factor, is

f (z) =
z∫

0

1√
(1 − ζ 2)(1 − k2ζ 2)

dζ

This is known as an elliptic integral of the first kind. In this form it is easy to
verify directly that opposite sides of the rectangle obtained have equal length. It is
also easy to show that by choosing an appropriate value of k, the rectangle obtained
can have adjacent sides of any desired ratio.

Note also that if we omitted the fourth point d in formula (3), the resulting function

f (z) =
z∫

0

f ′(ζ )dζ =
z∫

0

1√
(ζ − a)(ζ − b)(ζ − c)

dζ

would still map the (closed) upper half-plane, with the point at ∞, onto a closed
rectangle. This follows from the behvior of f (z) along the real axis and from the
fact that in this case, as in formula (3), f (−∞) = f (∞). Here, the point at infinity
takes the place of the "missing" point d , and is mapped by f onto one of the vertices
of the rectangle.

III Mapping the Upper Half Plane Onto any Convex Polygon
The ideas of the previous section are easily generalized to find a conformal map-

ping f of the upper half-plane onto a convex polygon with any number of sides and
any interior angles. To assure that f maps the real line (with the point at infinity)
onto the boundary of such a polygon, we choose n real points a1 < a2 < · · · < an,
and define

f ′(z) = (z − a1)
−α1(z − a2)

−α2 · · · (z − an)
−αn

where the n exterior angles of the polygon are equal in order to α1π, α2π, . . . , αnπ.
As in the previous section, each of the analytic functions (z−ai )

−αi is defined so that
its argument is 0 for real z > ai and −αiπ for real z < ai . Since the desired image
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polygon is convex, 0 < αi < 1 for each i , and
∑

αi = 2. So if we once again define
f (z) = ∫ z

0 f ′(ζ )dζ , it follows that the argument of f ′ increases by αiπ , and f has
a corresponding change in direction, as z crosses the real point ai . Moreover, by the
same reasoning used in the previous section, limz→∞ f (z) and limz→−∞ f (z) both
exist and are equal. Taken together, these properties assure that f is a conformal
mapping of the upper half-plane onto a polygon of the desired type.

Here, too, if we omitted the final factor: (z − an)
αn from the formula for f , it

would still map the upper half-plane onto a polygon of the desired type. As in the
case of the rectangle, the point at ∞ would map into one of the n vertices of the
polygon.

In this general setting, it is more difficult to show that, with the proper choices
of a1, a2, . . . an , the function f can be made to map the upper half-plane onto an
arbitrary polygon; that is, onto a polygon with any desired shape. On the other hand,
it is not hard to define the mappings onto certain special polygons. This is especially
easy for triangles since their shape is entirely determined by their angles. Thus, it
follows e.g. that

f (z) =
z∫

0

(ζ 2 − 1)−2/3dζ

maps the upper half-plane onto an equilateral triangle. �

Note: The techniques used above can be applied equally well to finding mappings
from the upper half-plane onto a wide variety of polygonal regions. Many such
examples, and much more information regarding Schwarz-Christoffel mappings,
can be found in the classic book of Nehari.

Exercises

1. Verify directly that f (z) = zk is locally 1-1 for z �= 0, k any nonzero integer.

2. Find the image under ω = ez of the lines x = constant and y = constant.

3. Find a conformal mapping f between the regions S and T , where

i. S = {z = x + iy : − 2 < x < 1}; T = D(0; 1)

ii. S = T = the upper half-plane; f (−2) = −1, f (0) = 0 and f (2) = 2
iii. S = {reiθ : r > 0 and 0 < θ < π/4}; T = {x + iy : 0 < y < 1}
iv. S = D(0; 1)\[0, 1]; T = D(0; 1).

[Hint: For (iv) use the mapping of the upper semi-disc onto a quadrant.]

4.* Find a conformal mapping of the region "between" the circles: |z| = 2 and |z − 1| = 1 onto the unit
disc.

5.* Find a conformal mapping of the semi-infinte strip: x > 0, 0 < y < 1 onto the unit disc.

6.* Find a conformal mapping of the semi-disc S = {z : |z| < 1, Im z > 0} onto the unit disc.
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7.* Verify that “conformal equivalence” satisfies the reflexive, symmetric and transitive properties of an
equivalence relation.

8. a. Prove that a linear function maps polygons onto polygons.
b. Suppose f is entire and, for some rectangle R, f (R) is a rectangle. Prove f is linear.

9. Prove that bilinear mappings form a group under composition.

10. Find the image of the circle |z| = 1 under the mappings

a. ω = 1

z
,

b. ω = 1

z − 1
,

c. ω = 1

z − 2
.

11. Show that the only automorphism of the unit disc with f (0) = 0, f ′(0) > 0 is the identity map
f (z) ≡ z.

12. Suppose f1 and f2 are both conformal mappings of a region D onto the unit disc and for some z0 ∈ D,

f1(z0) = f2(z0) = 0; f ′
1(z0), f ′

2(z0) > 0.

Prove f1 ≡ f2.

13. Show that all conformal mappings of a half-plane or disc onto a half-plane or disc are given by bilinear
transformations.

14. What is the image of the upper half-plane under a mapping of the form

f (z) = az + b

cz + d
a, b, c, d real; ad − bc < 0?

15. Find a formula for all the automorphisms of the first quadrant.

16. Complete Theorem 13.17 by showing h is of the form

h(z) = az + b

cz + d
a, b, c, d real; ad − bc > 0.

[Hint: Write h = h1 ◦ h2 where

h1(z) =
(

z − i

z + i

)−1
◦ eiθ z ◦

(
z − i

z + i

)

h2(z) =
(

z − i

z + i

)−1
◦
(

z − α

1 − ᾱz

)
◦
(

z − i

z + i

)
.

Show, then that

h1(z) = (1 + cos θ)z + sin θ

(− sin θ)z + (1 + cos θ)

h2(z) = (1 − Re α)z + Im α

(Im α)z + (1 + Re α)
. ]

17. Find the fixed points of the mappings

a. ω = z − 1

z + 1
, b. ω = z

z + 1
.

18. Prove that (z1, z2, z3, z4) is real-valued if and only if the four points z1, z2, z3, z4 lie on a circle
or line.
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19. Find the bilinear mappings which send

a. 1, i, −1 onto −1, i , 1, respectively
b. −i, 0, i onto 0, i, 2i , respectively
c. −i, i, 2i onto ∞, 0, 1

3 respectively.

20. Find a conformal map f of the region between the two circles |z| = 1 and |z − 1
4 | = 1

4 onto an
annulus a < |z| < 1. [Hint: Find a bilinear map which simultaneously maps |z| < 1 onto |z| < 1 and
|z − 1

4 | < 1
4 onto a disc of the form |z| < a.]

21. * Find the image of the upper half-plane under the mapping f (z) =
z∫

0

1/

√
ζ 2 − 1dζ . How is this

function related to sin−1 z ?

22. * Find a mapping of the upper half-plane onto an isosceles right triangle.

23. * Find a mapping of the upper half-plane onto a square. [Hint: Let the point at infinity map onto one
of the vertices of the square.]



Chapter 14
The Riemann Mapping Theorem

14.1 Conformal Mapping and Hydrodynamics

Before proving the Riemann Mapping Theorem, we examine the relation between
conformal mapping and the theory of fluid flow. Our main goal is to motivate some
of the results of the next section and the treatment here will be less formal than that
of the remainder of the book.

Consider a fluid flow which is independent of time and parallel to a given plane,
which we take to be the complex plane. The flow (or velocity) function g is then
a two-dimensional or complex variable of two variables and we can write it in the
form g(z) = u(z) + iv(z) where u and v are real-valued. If we let σ and τ denote,
respectively, the circulation around and the flux across a closed curve C , it can be
shown that ∫

C
g(z)dz = σ + iτ (see Appendix II) . (1)

We will confine our attention to incompressible fluids and flows which are locally
irrotational and source-free. That is, for any point z in our domain D, we assume
there exists a δ > 0 such that the circulation around and flux across any closed
curve C in D(z; δ) is zero. Thus, for all such curves, if we define f (z) = g(z) it
follows by (1) that

∫
C f (z)dz = 0. We will assume moreover that g (and hence f )

is continuous so that, by Morera’s Theorem (7.4), f is analytic. Conversely, given
an analytic f = u − iv in a domain D, its conjugate g = u + iv can be viewed as a
locally irrotational and source-free flow in D.

195
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EXAMPLES

i. Suppose f (z) = k. Then g(z) = k̄ represents a constant flow throughout C.

The velocity vectors
g(z) = k

–

ii Let f (z) = z. Then g(z) = z̄ represents a flow which is tangent to the real and
imaginary axes.

–g(z) = z

iii. Let f (z) = 1/z, z �= 0.

Then

g(z) = f (z) = x + iy

x2 + y2

denotes a flow whose direction at z is the same as that of the vector (from 0) to z. In
this case ∫

|z|=δ
f (z)dz = 2π i,
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so that there is a nonzero flux across a circle centered at 0. Nevertheless the flow is
locally irrotational and source-free in z �= 0. (The flow is said to have a “source” at
the origin.) ♦

––g(z) = 1
z

As the examples above suggest, the possible fluid flows of the type considered
are as abundant as the analytic functions in a given region. To focus on the particular
flow related to a canonical conformal mapping of a region D, we make the following
further assumptions.

Al. D̃ is the closure of a bounded simply-connected region. (We will refer to D̃ as a
“barrier.”)

A2. g(z) = 1 at ∞. That is, limz→∞ g(z) = 1.
A3. g has the direction of the tangent at the boundary of D (except for isolated points

at which it may be zero or infinite).
A4. The flow is totally irrotational and source-free; i.e.,

∫
C f (z)dz = 0 for every

closed curve C contained in D.

Under the above assumptions, suppose z0 ∈ D and set F(z) = ∫ z
z0

f (ζ )dζ . By
assumption (A4), F is well-defined and hence analytic in D. Moreover, according to
(A2), F(z) ∼ z at ∞. Finally, suppose the boundary of D is given by z(t), a ≤ t ≤ b.
Then

d

dt
F(z(t)) = F ′(z(t))ż(t) = g(z(t))ż(t),

which is real-valued according to (A3). Hence F maps ∂ D onto a horizontal segment.
The converse is equally valid. If F maps D conformally onto the exterior of a

horizontal interval and F(z) ∼ z at ∞, then g(z) = F ′(z) will represent a fluid flow
in D, satisfying assumptions (A1)–(A4).

EXAMPLES

i. F(z) = z + 1/z maps the exterior of the unit disc conformally onto the exterior
of the interval [ − 2, 2], and clearly F(z) ∼ z at ∞. Thus

g(z) = F ′(z) = 1 − 1

z2
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represents a fluid flow in the given region, satisfying (A1)–(A4). Note that
g(−1) = g(1) = 0 and that the maximum speed is assumed at ±i where
|g(z)| = 2.

0 1

ii. Suppose D is the complement of the interval I from −i to i . Then an analytic√
1 + z2 can be defined there (see Chapter 10, Exercise 16). Note that if

√
1 + z2 is

taken to be positive on the positive axis, it is negative on the negative axis and maps
D onto the exterior of [ − 1, 1]. Also

√
1 + z2 ∼ z at ∞ so that F(z) = √

1 + z2

is the desired conformal mapping and the flow is given by

g(z) =
(

z√
1 + z2

)
.

In this (idealized) case, g(0) = 0 and g(±i) = ∞. ♦

i

–i

The examples above show how the appropriate mapping function enables us to
obtain the fluid flow in a region. On the other hand, certain physical properties of the
flow yield the following insights into conformal mapping.
I Existence and Uniqueness of Conformal Mappings As we have seen, the exis-
tence of a conformal mapping of a “single-barrier” domain onto the exterior of a
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horizontal interval is equivalent to the existence of a flow function satisfying (A1)–
(A4). However, it is known that a flow satisfying these assumptions exists and is
unique. According to Kelvin’s Theorem [Milne-Thomson, p.95], the totally irrota-
tional flow of a fluid occupying a region of the type considered (with the conditions at
∞ and along the boundary) is the unique flow with the least possible kinetic energy.
The proof that such a unique flow exists can thus be given in terms of the partial dif-
ferential equations governing the flow. We will not proceed that far with the physics,
but we will be guided by the notion that a conformal mapping of the type sought is
given by the solution to an extremal problem. We cast the problem in mathematical
terms and complete the details in the next section.

II Conformal Mapping of Other Types of Domains By considering fluid flow
throughout other types of domains, we can identify canonical domains to which
they can be conformally mapped. In fact, reasoning like the above suggests that all
domains with n “barriers” can be conformally mapped onto the plane slit along n
horizontal line segments.

In the case of a simply connected domain D1, the standard canonical domain is
the unit disc. For, if we fix z0 ∈ D1, the mapping given by F1(z) = 1/(z − z0)
maps D1 onto a single barrier domain D2, sending z0 into ∞. We then can map
D2 conformally onto D3, the exterior of a horizontal interval, by a mapping F2.
Similarly, the unit disc U is mapped

F1

F2

G1

= G1
–1  G2

–1 F2 F1

G2

z0

D1

D3

D2

D4

U

U

0 1

ϕ

ϕ ° ° °

by G1(z) = 1/z onto the exterior of the unit circle, D4. Because D4 is a single barrier
domain, we have a conformal mapping G2 of D4 onto D3. Finally, the mapping

ϕ = G−1
1 ◦ G−1

2 ◦ F2 ◦ F1
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maps the simply-connected domain D1 conformally onto the unit disc U . Note that
in changing our canonical region from the exterior of an interval to the unit disc the
condition F(∞) = ∞ is replaced by ϕ(z0) = 0.

14.2 The Riemann Mapping Theorem

The Riemann Mapping Theorem, in its most common form, asserts that any two
simply connected, proper subdomains of the plane are conformally equivalent. That
is, if R1, R2(�= C) are simply connected regions, there exists a 1-1 analytic map of
R1 onto R2.

Note that the condition that R1, R2 �= C is necessary, as a consequence of
Liouville’s Theorem. See Exercise 10.

To prove the theorem, it suffices to show that for any simply connected region
R(�= C) there exists a conformal mapping of R onto U . For then, if R1, R2 are two
simply connected, proper subdomains of C, we have conformal mappings

f1:R1 → U

f2:R2 → U

and g = f −1
2 ◦ f1 is a conformal mapping of R1 onto R2.

f1 f2

g = f2
–1 f1

R1
R2U

°

It is an easy exercise to show that given a conformal mapping f of R onto U
and z0 ∈ R, one can compose f with an appropriate automorphism of U so that
the composite function ϕ maps R conformally onto U with the added properties that
ϕ(z0) = 0 and ϕ′(z0) > 0. [See Exercise 6.] In fact, if we insist that ϕ be a conformal
mapping of R onto U with these two additional properties, then the mapping is unique.
We first prove the uniqueness and then we will prove the Riemann Mapping Theorem
by showing that such a unique mapping ϕ exists.

Riemann Mapping Theorem

For any simply connected domain R(�= C) and z0 ∈ R, there exists a unique con-
formal mapping ϕ of R onto U such that ϕ(z0) = 0 and ϕ′(z0) > 0.
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Proof (Uniqueness)

Suppose ϕ1 and ϕ2 were two mappings with the above properties. Then � = ϕ1◦ϕ−1
2

would be an automorphism of the unit disc with �(0) = 0 and �′(0) > 0. By 13.14,
then, �(z) = eiθ z and since �′(0) = eiθ > 0, it follows that � is the identity
mapping. Hence, ϕ1 ≡ ϕ2.

(Existence) As we mentioned in the last section, we will find ϕ as the solution to an
extremal problem. We recall some of the solutions to extremal problems for analytic
mappings of U onto U that we obtained in Chapter 7. We found that, for fixed α ∈ U ,
the 1-1 analytic mappings ϕ which maximize |ϕ ′(α)| are precisely those of the form

ϕ(z) = eiθ z − α

1 − αz
;

that is, those ϕ which

i. map α onto 0 and
ii. map U onto U .

(See Example 2 after 7.2 and Exercises 10 and 11 of Chapter 7.) This suggests a
strategy for proving the existence of the conformal mapping ϕ of an arbitrary simply
connected domain R(�= C) onto U . Namely, given R and z0 ∈ R, we will consider
the collection F of all 1-1 analytic functions f :R → U satisfying f ′(z0) > 0 and
take ϕ to be such that ϕ′(z0) = sup f ∈F f ′(z0). The details which we must show are
the following.

A. F is nonempty.
B. Sup f ∈F f ′(z0) = M < ∞ and there exists a function ϕ ∈ F such that

ϕ′(z0) = M .
C. With ϕ as in (B), ϕ is a conformal mapping of R onto U such that ϕ(z0) = 0

and ϕ ′(z0) > 0. [The facts that ϕ(z0) = 0 and that ϕ is an onto mapping are not
guaranteed in (B).] �

Proof of (A): Since R �= C, there exists a point ρ0 ∈ R̃. [If R̃ contains a disc
D(ρ0; δ), we can simply set f (z) = δ/(z − ρ0) and it would clearly follow that
| f | < 1 throughout R. It is possible, however, that R̃ contains no discs at all so we
must use a different approach.] Since R is simply connected, there exists an analytic
function

g(z) =
√

z − ρ0

z0 − ρ0

with g(z0) = 1. It follows then that g must remain bounded away from −1. For if

g(ξn) =
√

ξn − ρ0

z0 − ρ0
→ −1

then
ξn − ρ0

z0 − ρ0
→ 1
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so that ξn → z0. But then, by the continuity of g at z0, it would follow that
g(ξn) → +1 and the contradiction is apparent. Hence, for someη > 0, |g(z)+1| > η
throughout R. Thus, if we set f (z) = η/(g(z) + 1), we will have | f | < 1. Since
f is the composition of 1-1 functions, it too is 1-1 in R. Finally, since all the above
properties are invariant under multiplication by eiθ we can assume that f ′(z0) > 0
and hence f ∈ F .

Proof of (B): Note, first, that since R is open, there exists some disc D(z0; 2δ) ⊂ R
and hence, for any f ∈ F ,

| f ′(z0)| =
∣∣∣∣ 1

2π i

∫
C(z0;δ)

f (z)

(z − z0)2
dz

∣∣∣∣ ≤ 1

δ
,

by the usual M − L estimate.
Suppose then that M = sup f ∈F f ′(z0) and let f1, f2, . . ., be chosen so that

f ′
n(z0) → M as n → ∞. To show that there exists a function ϕ ∈ F , such that

ϕ′(z0) = M , we will find a subsequence of { fn}∞n=1 which converges uniformly on
compacta of R. To that end, let ξ1, ξ2, . . . be a countable dense subset of R. (For
example, the ξ ′s may be chosen as the points of R with rational coordinates.) Since
{ fn(ξ1)}∞n=1 is a bounded sequence, there exists a subsequence { f1n}∞n=1 such that
{ f1n(ξ1)}∞n=1 converges to some limit which we will denote ϕ(ξ1). Similarly { f1n}
has a subsequence { f2n} such that { f2n(ξ2)} converges and we denote its limit by
ϕ(ξ2). Continuing in this manner, we obtain a nested sequence of subsequences
{{ fkn}∞n=1}∞k=1 such that { fkn}∞n=1 converges at ξ1, ξ2 . . . , ξk . If we then take the
“diagonal” subsequence {ϕn(z)}∞n=1 with ϕn = fnn , it follows that ϕn(z) converges
to the function denoted by ϕ for z = ξ1, ξ2, . . ..

We next wish to show that {ϕn} converges throughout R and uniformly on any
compact subset K ⊂ R. We leave it as an exercise to show that any compact K ⊂ R
is contained in a finite union of closed discs contained in R. Hence, we may assume,
without loss of generality, thatK is itself a fixed compact disc in R. Note that d(K, R̃),
the distance fromK to the closed set R̃, is positive and we can set d(K, R̃) = 2d > 0.
Hence, since |ϕn| ≤ 1

|ϕ′
n(z)| =

∣∣∣∣ 1

2π i

∫
C(z;d)

ϕn(ξ)

(ξ − z)2
dξ

∣∣∣∣ ≤ 1

2π
· 2πd

d2
= 1

d
, z ∈ K

and
|ϕn(z1) − ϕn(z2)| =

∣∣∣∣
∫ z2

z1

ϕ′
n(z)dz

∣∣∣∣ ≤ |z1 − z2|
d

.

Thus, {ϕn} is an “equicontinuous” sequence of functions on K. That is, for each
ε > 0 and all n, |ϕn(z1) − ϕn(z2)| ≤ ε

as long as |z1 − z2| ≤ εd . If we then take z ∈ K and ε > 0, we can write
|ϕn(z) − ϕm(z)| ≤ |ϕn(z) − ϕn(ξk)| + |ϕn(ξk) − ϕm(ξk)| + |ϕm(ξk) − ϕm(z)| and
choosing ξk such that |ξk − z| < εd/3, it follows that

|ϕn(z) − ϕm(z)| < ε
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once n and m are chosen large enough so that

|ϕn(ξk) − ϕm(ξk)| <
ε

3
.

Thus {ϕn(z)}∞n=1 satisfies the Cauchy Criterion and converges for any z ∈ K. More-
over, the limit function ϕ is continuous since

|ϕ(z1) − ϕ(z2)| = lim
n→∞ |ϕn(z1) − ϕn(z2)| < ε, z1, z2 ∈ K,

as long as |z1 − z2| < εd .
Finally, to show that ϕn → ϕ uniformly on compacta, we apply the following

standard argument. Suppose ε > 0 is given and set

S j = {z ∈ K:|ϕn(z) − ϕ(z)| < ε for n > j}.
Clearly K ⊂ ⋃∞

j=1 S j . Hence, since the sets S j are open (by the equicontinuity of

the functions ϕn) and K is compact, we can choose N such that K ⊂ ⋃N
j=1 S j . Thus,

for all z ∈ K, |ϕn(z) − ϕ(z)| < ε when n > N and the convergence is uniform.
Since ϕn → ϕ uniformly on compacta, ϕ is analytic (Theorem 7.6). Also, accord-

ing to Theorem 10.12
ϕ′(z0) = lim

n→∞ ϕ′
n(z0) = M > 0

so that ϕ is nonconstant. Since it is the uniform limit of 1-1 functions, ϕ is 1-1 in R
(Theorem 10.15).

Proof of (C): It remains only to show that ϕ(z0) = 0 and that ϕ maps R onto U . To
see the former, assume that ϕ(z0) = α, 0 < |α| < 1. Then

f (z) = ϕ(z) − α

1 − αϕ(z)

is also a 1-1 analytic map of R into U with

f ′(z0) = ϕ ′(z0)

1 − |α|2 .

Thus f ′(z0) > ϕ′(z0), which is impossible.
Assume next thatϕ(z) �= ω,ω = −t2eiθ , 0 < t < 1. If we set g(z) = e−iθ ϕ(z), g

too will map R into U, g(z0) = 0 and |g′(z0)| = ϕ ′(z0). Moreover, g(z) �= −t2 for
all z ∈ R. If we then set

f1(z) = g(z) + t2

1 + t2g(z)

it follows that f1 maps R into U with f1(z0) = t2. Since g(z) �= −t2, f1(z) �= 0
and there exists an analytic square root

f2(z) = √
f1(z)
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with f2(z0) = t . Next, let

f3(z) = f2(z) − t

1 − t f2(z)
.

Clearly f3 is 1-1 and direct calculation shows that

f ′
1(z0) = g′(z0)(1 − t4)

f ′
2(z0) = f ′

1(z0)

2
√

f1(z0)
= f ′

1(z0)

2t

f ′
3(z0) = f ′

2(z0)

1 − t2

so that, combining the above equations,

f ′
3(z0) = g′(z0)(1 + t2)

2t
� g′(z0)

since 1 + t2 > 2t for 0 < t < 1. If we set f (z) = eiθ f3(z) we will have f ∈ F and
such that f ′(z0) > ϕ′(z0) which is impossible. Hence, ϕ must be onto and the proof
is complete. �

Note: Consider the original sequence f1, f2, . . . such that f ′
n(z0) → M as n → ∞.

While the Riemann mapping function ϕ was obtained as the limit of a subsequence
of { fn}, it turns out that the original (full) sequence { fn} converges to ϕ. For suppose
there existed some subsequence fn1 , fn2 , · · · such that

| fni (z) − ϕ(z)| > ε (1)

for a fixed z ∈ R and ε > 0.
Then since f ′

nk
(z0) → M as k → ∞, we could apply the previous proof to show

that it has a subsequence which converges to the unique mapping function ϕ. But
then (1) is impossible.

14.3 Mapping Properties of Analytic Functions on
Closed Domains

Introduction

While the Riemann Mapping Theorem showed that any two open simply connected
sets, other than C, are conformally equivalent, there is no such theorem for closed or
even for compact connected sets. In fact, there is often no analytic mapping of one
closed domain onto another. As an example, there is no analytic mapping of the closed
upper half-plane onto the closed first quadrant. If f were such an analytic function,
it would map some real number x0 onto the origin. Suppose f ′(x0) �= 0. Then,
according to Theorem 13.4, f would map the rays I1 = {x0 + t, 0 ≤ t < ∞} and
I2 = {x0 − t, 0 ≤ t < ∞} onto two curves whose tangent lines form a straight angle.
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But two such curves, which meet at the origin, cannot both lie in the first quadrant.
Similarly, if f has a zero of order k ≥ 2 at x0, we can complete the argument by
considering the effect of f on I1 and on the ray {x0 + teπ i/k , 0 ≤ t < ∞}.

The above argument might leave the impression that if we somehow “rounded the
corner” of the first quadrant, the resulting region might possibly be the image of the
closed upper half-plane under some analytic mapping. That, in fact, is not the case
(Corollary 14.6), but it requires a separate argument.

On the positive side, while an analytic mapping of one closed domain onto another
is not always possible, the theorem below shows that for certain types of regions, any
conformal mapping between the interiors extends to a 1-1 continuous map between
the closures.

Recall that a Jordan curve is a simple closed curve. As we noted in Chapter 10, the
very intuitive (but difficult to prove) Jordan Curve Theorem asserts that any Jordan
curve disconnects its complement in the complex plane into two disjoint regions: a
bounded component known as its interior and an unbounded component known as
its exterior.

14.2 Definition

A region R will be called a Jordan region if it is the interior of a Jordan curve.

14.3 Theorem (Carathéodory-Osgood):

Any conformal mapping between two Jordan regions can be extended to a homeo-
morphism between the closures of the two regions.

Like the Jordan Curve Theorem, the Carathéodory-OsgoodTheorem is not easy to
prove. Although we will use the result throughout this section, we refer the interested
reader to the proofs in the classic texts of Ahlfors and Carathéodory.

A Jordan curve γ is positively-oriented if its has winding number one around its
interior points. For circles, as we have seen, this is the counterclockwise direction.
As with circles, the positive orientation is the one which has the interior points on
the left as the curve is traversed. We can also define a triple {a1, a2, a3} ⊂ ∂ R to
be positively oriented with respect to ∂ R if the parametrization of ∂ R which passes
through a1, a2, a3 in that order is positively-oriented. Suppose f is a conformal
mapping between two Jordan regions R1 and R2. Then, according to the Argument
Principle (see the comments following Corollary 10.9), the induced mapping between
the boundaries must be orientation-preserving.

Based on the Carathéodory-Osgood Theorem, there are two additional ways to
characterize a unique conformal mapping between any two Jordan regions.

14.4 Proposition:

Let R be any Jordan region, and let D = D(0; 1), S = ∂D = C(0; 1). Then

(i) given a positively-oriented triple, {a1, a2, a3} ⊂ ∂ R and a positively-oriented
triple, {b1, b2, b3} ⊂ S, there exists a unique conformal mapping f :R → D such
that f (ak) = bk for k = 1, 2, 3;

(i i) given z0 ∈ R, a ∈ ∂ R and b ∈ S, there exists a unique conformal mapping from
R to D with f (z0) = 0 and f (a) = b.
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Proof

To prove (i), take any conformal mapping of R onto D and follow it with an automor-
phism of D which maps the images of the three boundary points of R onto the three
points of S. [Such a mapping exists since Theorem 13.23 showed that there is a bilin-
ear mapping T , sending the images of a1, a2, a3 onto b1, b2, b3, respectively. More-
over, since both triples are positively oriented, T will also map D onto itself.] To show
that the mapping is unique, use the fact that if there were two such mappings f1 and f2,
f2◦ f −1

1 would be an automorphism of the unit disc with three fixed points on the unit
circle, and hence would be the identity (Proposition 13.19). To prove (ii), follow the
usual Riemann mapping with the appropriate rotation so that the image of the bound-
ary point a is mapped onto b. The uniqueness follows from Schwarz’ Lemma. �

Next we would like to consider the possibility of finding analytic (not necessarily
conformal or even locally conformal) mappings from one closed region onto another.
It is worth recalling that in this general context the boundary of a region is not
necessarily mapped entirely onto the boundary of its image. For a simple example,
consider the image of the rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 2π under the mapping
f (z) = ez . (Also, see exercise 3 of chapter 7.) In many cases, however, we can
determine the image of the boundary by using the following theorem.

Rigidity of Analytic Arcs

An arc γ : I → C (I being a real interval) is said to be analytic if γ is the restriction
to I of a function γ̃ which is analytic on an open set of C containing I .

14.5 Theorem

Let γ :I → C be an analytic arc where I is a compact real interval; let � ⊂ C be a
circle or a line. If γ [I ] ∩ � is infinite, then γ [I ] ⊂ �.

Note that a very straightforward proof can be given for the case where � is a line.
By making a simple change of variables, we can assume that � is a subset of the real
line. In that case, Im γ (t) is a “real” analytic function for t ∈ I. Since Im γ (t) has
infinitely many zeroes in I, it follows from the uniqueness theorem for real analytic
functions that Im γ (t) is identically zero and γ (t) ∈ R for all t ∈ I. A modified
form of the proof can also be given for the case where � is a circle. The following
argument, however, is applicable to both lines and circles and highlights the fact that
the theorem is really about analytic arcs.

Proof of Theorem 14.5. Let γ̃ be analytic on some domain � containing I with
γ̃ |I = γ ; we may arrange that � be symmetric about R. Let ( )† denote reflection
across � and consider ω(z) = (γ̃ (z))† for z ∈ �. By the Schwarz reflection principle
and by the symmetry of �, ω (like γ̃ ) is analytic in �. For t ∈ I with γ (t) ∈ �,
ω(t) = γ (t). But γ (t) ∈ � for infinitely many values of t , so that according to the
uniqueness theorem (6.10), ω ≡ γ̃ throughout �. In particular, for all t ∈ I ,

γ (t) = γ̃ (t) = ω(t) = (γ (t))† ,

which implies that γ [I ] ⊂ �. �
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14.6 Corollary

If f is an analytic mapping of the closed upper half-plane, and if the boundary of its
image contains a line segment J , then the boundary of the image is a subset of the
line containing J .

Proof

Note that the boundary of the image is a subset of the analytic curve f (R). If the
boundary includes a line segment J , a standard set-theoretic argument shows that,
for sufficiently large N, f ([− N, N]) contains infinitely many points of J . But then,
according to Theorem 14.5, the boundary is entirely contained in the line determined
by J . �

It is a well-known consequence of the maximum modulus principle that any
nonconstant function g which is C-analytic in D, mapping D onto D and S into S is
of the form

g(z) = eiθ
n∏

k=1

z − αk

1 − αkz
for some n ∈ N, αk ∈ D, and θ ∈ R. (1)

(See the solution to Chapter 7, exercise 5.) According to Theorem 14.5, if g is
analytic in D, the condition that g maps S into S can be dispensed with. Thus we
have

14.7 Corollary

An analytic function mapping D onto D is of the form (1).

Proof

Given such an analytic function f , it suffices to show that f [S] = S. Note that
S = ∂( f [D]) ⊂ f [S] by the open mapping theorem. Thus f [S] ∩ S = S. Theorem
14.5 then shows that the analytic arc f [S] is a subset of S. Hence f [S] = S. �

14.8 Corollary

If an entire function f maps D onto D, then f (z) = czn for some c ∈ S.

Proof

Clearly f [D] = D. By Corollary 14.7, f (z) = eiθ ∏n
k=1(z − αk)/(1 − αk z) for

some αk ∈ D and θ ∈ R. Since f is entire, all the points αk must be zero, so that
f (z) = eiθ zn .

�
It follows that any entire function f mapping some disc onto a disc is of the form

f (z) = α(z − z0)
n + w0

for some α, z0, w0 ∈ C and n ∈ N.



208 14 The Riemann Mapping Theorem

Analytic Mappings Between Polygons

Does there exist any analytic function which maps a closed convex n-gon onto
another closed convex n-gon? Of course, if the polygons are similar, there is an
elementary linear mapping between them. But what if they are not similar? The
somewhat surprising answer is a very general NO, even if all the angles are identical,
as would be the case with two dissimilar rectangles. In fact, we begin our inquiry
by first considering rectangles. We then answer the question for the smallest n (i.e.,
n = 3) and finally address the general problem by induction on n. We note at the end
of this section that the convexity condition on the polygons is actually not necessary.

14.9 Theorem

An analytic function f that maps a closed rectangle R onto another closed rectangle
S is a linear polynomial.

Theorem 14.5 will play a crucial role here, allowing us to show that
f [∂ R] = ∂S.

Proof

Assume without loss of generality that

R = [0, a] × [0, b] and S = [0, c] × [0, d].

First, note that f will not turn a straight line into an angle unequal in measure to
an integral multiple of π , because, where f ′ �= 0, f is conformal, and, where f ′ = 0,
f magnifies angles by an integral factor. Therefore, f will not map any nonvertex
point on ∂ R to a vertex of S. We thus make the following observation:

Each vertex of S has precisely one preimage, which is a vertex of R. Hence,
the image of each vertex of R must be a vertex of S and f gives a one-to-one
correspondence between the vertices of R and those of S.

By the open mapping theorem, no interior point of R will be mapped by f to ∂S,
and therefore ∂S ⊂ f [∂ R]. It is a simple set-theoretic matter that there is a side � of
∂ R such that f [�] ∩ [0, c] is infinite. Theorem 14.5 then implies that f [�] ⊂ [0, c].
Without loss of generality, we may assume that � = [0, a], in which case either
f (0) = 0 and f (a) = c, or f (0) = c and f (a) = 0. But the latter possibility cannot
happen, because f , being analytic, must preserve the orientation of the boundary. It
then follows from the intermediate value theorem that f [�] = [0, c].

Similarly we conclude that the side {c + is : s ∈ [0, d]} ⊂ S must be the image of
some side of R, and, since f (a) = c, that side of R must be {a+ir : r ∈ [0, b]} ⊂ R.
Continuing until we exhaust all four sides of S, we then have established:

f maps each side of R onto a side of S.

Finally, reflection across the sides of R allows us to extend f (by the Schwarz
reflection principle) to rectangles adjacent and congruent to R. Continuing this reflec-
tion process, we obtain an entire function, which by construction has at most linear
growth in modulus. Hence, by the Extended Liouville Theorem (5.11), f must be a
linear polynomial. �
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We note those elements of the preceding argument that are applicable in general.

14.10 Lemma

Suppose an analytic function f maps some closed n-gon R onto a closed n-gon S.
Then:

(a) Each vertex of S has precisely one preimage, which is a vertex of R, and f maps
each side of R monotonically onto a side of S.

(b) If R and S are both convex, each interior angle of R has the same measure as
the corresponding interior angle of S.

Proof

For part (a), given the argument for Theorem 14.9, we only need to establish
monotonicity of f on each side of R. Let � be a side of R. If f (z) were to reverse
direction as z traverses �, there would be some μ ∈ � with f ′(μ) = 0. At the critical
point μ, f magnifies angle by an integral factor. Hence the image of any μ-centered
semidisc contained in R would lie partly outside of S, contradicting our hypothesis!

To show part (b), denote by m(V ) the measure of an interior angle with vertex V .
For any vertex A of R, let A′ = f (A). Then, by analyticity of f , m(A′) = kAm(A)
for some kA ∈ N (and, by convexity of S, kAm(A) < π). Since R and S are both
convex n-gons, ∑

A

m(A) =
∑

A

m(A′) =
∑

A

kAm(A).

Hence kA = 1 for every vertex A. �

We turn now to the general case. The strategy will be to first solve the problem
for triangles and then to use induction on the number of sides of the polygons in
question to prove the general case.

14.11 Lemma

If an analytic function f maps a closed n-gon R onto a closed n-gon S, then f gives
a conformal equivalence between their interiors: R̊ and S̊.

It is interesting that it is the isolated singularities (i.e., vertices) on ∂ R and ∂S that
force f to be conformal. Were the boundaries analytic Jordan curves, no conclusion
about the valence of f on R could be drawn (as can be seen by considering zn on
the unit disc).

Proof

By Lemma 14.10(a), f [∂ R] = ∂S and f |∂ R:∂ R → ∂S is univalent. Thus the winding
number of f |∂ R around any point in S̊ is exactly one. By the argument principle, f
is a conformal equivalence between R̊ and S̊. �

We now apply Lemma 14.11 to resolve the triangle case.
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14.12 Lemma

An analytic function f that maps some closed triangle R onto another closed triangle
S is a linear polynomial.

Proof

By Lemma 14.10(b), the two triangles R and S have equal corresponding angles and
are therefore similar. We then can easily construct an affine map g mapping R onto S,
which is a fortiori conformal. If R is not equilateral, g is unique; if R is equilateral,
let g be such that it agrees with f on the vertices of R. By Lemma 14.11, f gives a
conformal equivalence between R̊ and S̊. Since f and g agree on the three vertices
of R, by Proposition 14.4, f = g! �

Finally, we are able to completely answer the question raised at the beginning of
this section.

14.13 Theorem

An analytic function mapping some closed convex n-gon R onto another closed
convex n-gon S is a linear polynomial.

Proof

If R is a rectangle, then, according to Lemma 14.10(b), S is also a rectangle. By
Theorem 14.9, f is a linear polynomial.

Suppose then that R is a nonrectangular quadrilateral. Note that there is at least
one interior angle of R that is obtuse. Denote by �1 and �2 the two sides of R that form
this angle. Reflect R across �1 and denote by R′ the reflected image of R. Extend
�2 to a full line L2. Then L2 divides R′ into two regions, one of which is a triangle.
Call this triangle T . See the diagram below.

l2

T

R

R'

l1

Observe that, by the Schwarz reflection principle, f can be analytically continued
to R′ and this extended map (which we also call f ) maps R′ onto the similarly-
constructed quadrilateral S′. Since f [�2] is a side of S, by Theorem 14.5, f [L2 ∩ R′]
is also a line segment. Therefore f [∂T ] is the boundary of a triangle�; by considering
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the winding number of f |∂T , we deduce that f [T̊ ] = �̊. Hence f [T ] = �, and,
according to Lemma 14.12, f must be a linear polynomial.

To complete the proof for n > 4, we proceed as in the quadrilateral case and
use induction on n. Given a convex n-gon R with n > 4, there must be an interior
angle that is obtuse. Otherwise, the formula for the sum of interior angles would be
violated. Reflect R across one of the two sides forming this obtuse angle and extend
the other side to divide R′ (the reflected image of R) into two regions, one of which is
a convex polygon T with fewer than n sides. As in the quadrilateral case, f extends
analytically to R′ and maps T onto another convex polygon; it is immediate that the
polygon f [T ] has the same number of sides as T . The induction hypothesis then
guarantees that f is a linear polynomial. �

In the rectangle case, we first showed that the analytic function in question can
be extended to an entire function, and then used its order of growth to prove that it
is linear. In the case of other convex polygons, we showed that the analytic function
in question can be analytically continued to a mapping between two triangles, which
allowed us to conclude that it is a linear polynomial. In both cases, the Schwarz
reflection principle and Theorem 14.5 played pivotal roles.

Note also that the convexity condition on the polygons in Theorem 14.13 can be
dispensed with. This slightly more general result will follow easily. The idea is that,
by extending the sides forming an interior angle greater than a straight angle, we can
find a convex polygon that is mapped analytically to a convex polygon. We leave the
details to the interested reader.

Conformal Mappings Between Dissimilar Rectangles

Among entire functions, linear polynomials are the only ones that are conformal on
every domain. Since a linear polynomial is a composition of rotation, real multipli-
cation, and translation, the two rectangles in Theorem 14.9 and the two n-gons in
Theorem 14.13 are actually similar.

Let R and S be two closed rectangles that are not similar to each other and
let f be a conformal map from R̊ onto S̊ (whose existence is guaranteed by the
Riemann mapping theorem). By the Carathéodory-Osgood theorem, f extends to
a homeomorphism f̃ :R → S. The argument in the proof of Theorem 14.9 shows
that

• the extension f̃ of f to ∂ R fails to be analytic at some point on ∂ R;
• at least one vertex of R fails to be mapped by f̃ to a vertex of S.

We can attempt to make f̃ “as analytic as possible” by requiring that three of
the four vertices of R be mapped to vertices of S; then by the Schwarz reflection
principle, f̃ will be analytic on the two sides of R bounded by the three vertices.
Note that, according to Proposition 14.4, the requirement that three chosen vertices
of R be mapped to three chosen vertices of S uniquely determines the conformal
equivalence f between R̊ and S̊. One can express such a map explicitly with the aid
of the Schwarz-Christoffel formulae, and this will offer an illustration of the fact that
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the interiors of two dissimilar rectangles cannot be put into a conformal equivalence
that extends to a vertex-preserving homeomorphism.

To focus on a simple concrete example, let R = [ − 1, 1] × [0, r ] and S =
[ − 1, 1] × [0, s]. Let H denote the upper half-plane and let FR : H → R be the
Riemann map with

F̃R(−1) = −1, F̃R(0) = 0, F̃R(1) = 1. (1)

Then FR is given by the elliptic integral

FR(z) = Cr

∫ z

0

1√
(1 − ξ2)(1 − k2

r ξ2)
dξ

where kr = 1/ar and Cr = 1/
∫ 1

0 [(1 − ξ2)(1 − k2
r ξ2)]−1/2dξ . It follows from the

definition of FR that ar = F̃−1
R (1 + ir) increases monotonocally with r and that

F̃R(±ar ) = ±1 + ir.

In the same manner, let FS : H → S be the Riemann Mapping, also satisying
conditions (1) and with as similarly defined.

Suppose f : R̊ → S̊ is a conformal equivalence with

f̃ (−1) = −1, f̃ (1) = 1, f̃ (1 + ir) = 1 + is.

We will see that, if r �= s, f̃ (−1 + ir) �= −1 + is and hence f̃ −1(−1 + is) is not a
vertex of R, which implies that f̃ cannot be analytic at f̃ −1(−1 + is). To this end,
we consider g = F−1

S ◦ f ◦ FR : H → H. See the diagram below.

ar

FR

FS

–ar –1 –1

–1 + ir 1 + ir

1 + is–1 + is

(–1 + is)

1 10

as–as –1 10

0

–1 10

H

H

R

S

g

g(–ar)

f

f

˜

˜

–1

(–1 + ir)f̃
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The map g is an automorphism of the upper half-plane. Hence it is a bilinear
mapping with

g̃(−1) = −1, g̃(1) = 1, g̃(ar ) = as, with 1 < ar , as . (2)

If f̃ (−1 + ir) = −1 + is, we would also have g̃(−ar ) = −as . Since the cross-ratio
is preserved under bilinear transformations, it would follow that (−ar ,−1, 1, ar ) =
(−as,−1, 1, as), or equivalently:

(ar + 1)2

4ar
= (as + 1)2

4as
(3)

It is easy to see, however, that (3) is possible if and only if either ar = as or
ar as = 1. The latter equation is impossible, according to (2). Hence ar = as and we
have the desired conclusion: f maps vertices of R to vertices of S only if R and S
are similar.

If r < s, then ar < as . So, if we let g̃(−ar) = −b, by the preservation of cross-
ratios, b < ar . This translates into the sketch of the conformal mapping f in the
above diagram. Note that the top side of R is bent by f̃ into an L-shaped path and
that f̃ fails to be analytic at precisely one point, i.e., at f̃ −1(−1 + is).

Finally, observe that, despite the fact that f [R] is a rectangle, the image of any
subrectangle Q ⊂ R̊ must not be a rectangle; for, otherwise, f would map Q onto a
rectangle and thus have to be a linear polynomial, in which case R would necessarily
be similar to S.

Exercises

1. Suppose g represents a locally irrotational and source-free flow in a simply-connected domain D and
F(z) = ∫ z

z0
ḡ(ζ )dζ . Show that g is orthogonal to the curves given by ReF(z) = constant.

2. If F and g are as in (1), show that the curves ImF(z) = constant are the “streamlines” of g; i.e., show
that the flow is tangent to those curves.

3. Find the streamlines of the flow functions given by

a. g(z) = z̄
b. g(z) = 1/z̄, z �= 0.

4. Verify directly that F(z) = z + 1/z is the unique conformal mapping (up to an additive constant) of
|z| > 1 onto the exterior of a horizontal interval, with F(z) ∼ z at ∞ [Hint: Begin with the Laurent
Expansion

F(z) = z + A0 + A1

z
+ A2

z2
+ · · ·

and use the fact that ImF(eiθ ) = constant (see Markushevich, p. 189).]
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5. a. Show that w = 2z + 1/z maps the exterior of the unit circle conformally onto the exterior of the
ellipse:

x2

9
+ y2 = 1.

b. Find a conformal mapping of the exterior of the ellipse x2/9 + y2 = 1 onto the exterior of a real
line segment.

6. Given a conformal mapping f of R onto U (the unit disc) and z0 ∈ R, find a conformal mapping g
of R onto U with g(z0) = 0 and g′(z0) > 0.

7.* Let R be a simply connected region �= C, which is symmetric with respect to the real axis; and suppose
that f is the Riemann mapping of R onto U , with f (z0) = 0, f ′(z0) > 0, for some real-valued z0 ∈ R.

Prove that f (z) = f (z) for all z ∈ R.

8.* Find the unique conformal mapping of the upper half-plane onto the unit disc with

a. f (−1), f (0), f (1) equal to 1, i, and −1, respectively.
b. f (i) = 0 and f (1) = 1.

9. Let R be simply-connected and assume z1, z2 ∈ R. Show there exists a conformal mapping ofR onto
itself, taking z1 into z2. (Consider two cases: R �= C and R = C.)

10. Suppose R is any simply connected domain �= C. Show that there exists no conformal mapping of C

onto R.

11. Let R be a simply connected region and z0 ∈ R. Suppose G is defined as the set of all analytic
functions g : R → U such that g′(z0) > 0 (g need not be 1-1).

a. Show that

sup
g∈G

g′(z0) = M∗ < ∞.

b. Assuming that �′(z0) = M∗ , show that � is 1-1 in R. [Hint: Show that � is the Riemann mapping
function.]

12.* a. Find a conformal mapping f from the semi-disc S = {z : |z| < 1, Imz > 0} onto the unit disc U
and show that it extends to a homeomorphism between S and U .

b. Show that f is analytic on S but f −1 is not analytic on U .

13.* Prove that there is no analytic mapping from U onto a “Norman window”, which is a closed region
whose boundary is a rectangle surmounted by a semicircle.



Chapter 15
Maximum-Modulus Theorems
for Unbounded Domains

15.1 A General Maximum-Modulus Theorem

The Maximum-Modulus Theorem (6.13) shows that a function which is C-analytic
in a compact domain D assumes its maximum modulus on the boundary. In gen-
eral, if we consider unbounded domains, the theorem no longer holds. For example,
f (z) = ez is analytic and unbounded in the right half-plane despite the fact that on the
boundary |ez| = |eiy | = 1. Nevertheless, given certain restrictions on the growth of
the function, we can conclude that it attains its maximum modulus on the boundary.
The most natural such condition is that the function remain bounded throughout D.

15.1 Theorem

Suppose f is C-analytic in a region D. If there are two constants M1 and M2
such that

| f (z)| ≤ M1 for z ∈ ∂ D

| f (z)| ≤ M2 for all z ∈ D

then, in fact,
| f (z)| ≤ M1 for all z ∈ D.

Proof

Without loss of generality, we suppose | f (z)| ≤ 1 on ∂ D. Assuming, then, that
| f (z)| ≤ M in D, we wish to prove | f (z0)| ≤ 1 for every z0 ∈ D. We will first
prove the theorem in the special case where D is the right half-plane and then extend
the proof to a general region.

In the case of the right half-plane, fix z0 ∈ D and consider the auxiliary function

h(z) = f N (z)

z + 1

where N is a positive integer. By the hypothesis on f, |h(z)| ≤ 1 on the imag-
inary axis and |h(z)| ≤ M N /R for all z ∈ D such that |z| = R. Thus we have

215
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|h(z)| ≤ Max(1, M N /R) on the boundary of the right semi-circle DR =
{z ∈ D : |z| ≤ R}. Choosing R > M N and large enough so that z0 ∈ DR , we
conclude |h(z)| ≤ 1 along the boundary of the compact domain DR and hence by
the Maximum Modulus Theorem |h(z0)| ≤ 1. Thus for each z0 ∈ D∣∣∣∣ f N (z0)

z0 + 1

∣∣∣∣ ≤ 1

or
| f (z0)| ≤ |z0 + 1|1/N .

If we now let N → ∞, we see | f (z0)| ≤ 1 as desired.
In the more general case, where D is an arbitrary region, we must replace 1/(z+1)

by a function g, analytic in D and such that g(z) → 0 as z → ∞. Such a function
is given by

g(z) = f (z) − f (a)

z − a

where a is any fixed point in D. Clearly g, like f , is C-analytic in D (Proposition 6.7).
The boundedness of f assures g(z) → 0 as z → ∞ and this, in turn, implies that
|g(z)| ≤ K , some constant, throughout D̄.

Again, we set DR = {z ∈ D : |z| ≤ R}. Setting h(z) = f N (z)g(z), because
g → 0 as z → ∞ we may take R large enough so that |h(z)| ≤ K along the boundary
of DR . Hence, by the Maximum Modulus Theorem, |h(z0)| ≤ K for every z0 ∈ D.
Assuming, then, that g(z0) �= 0, we can write

| f (z0)| ≤
∣∣∣∣ K

g(z0)

∣∣∣∣
1/N

,

and letting N → ∞ yields | f (z0)| ≤ 1. Note, finally, that unless f is constant, the
zeroes of g form a discrete set (Theorem 6.9); hence, by continuity,

| f (z0)| ≤ 1 for every z0 ∈ D. �

The above theorem may be used to derive the following stronger form of Liou-
ville’s Theorem.

15.2 Definition

Let γ be a path parameterized by γ = γ (t), 0 ≤ t < ∞. We will say that
f approaches infinity along γ if, for any positive integer N , there exists a point
t0 such that

| f (γ (t))| ≥ N for all t ≥ t0.

15.3 Theorem

If f is a nonconstant entire function, there exists a curve along which f approaches
infinity.
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Note: An equivalent formulation of Liouville’s Theorem (5.10) is that, for any non-
constant entire function f , there exists a sequence of points z1, z2 . . . such that
f (zn) → ∞ as n → ∞. However, the existence of a curve along which f → ∞
does not immediately follow. If we simply connect the points z1, z2, . . . successively,
we have no control over the behavior of f at the intermediate points. The proof of
Theorem 15.3 will depend on judiciously choosing the points zk and the connecting
lines so that we can guarantee that f → ∞ along the path thus formed.

Proof of Theorem 15.3

Let T1 = {z : | f (z)| > 1} and fix S1, a connected component of T1. We will need
the following facts about S1:

a. S1 is an open set
b. | f (z)| = 1 for z ∈ ∂S1
c. f is unbounded on S1.

(a) is immediate. To prove (b), we first note that | f (z)| ≥ 1 on the boundary of
S1 by continuity. If | f (z)| > 1 for some z ∈ ∂S1, then | f (w)| > 1 for all w in a
neighborhood of z and thus z would be an interior, rather than a boundary point of
S1. Finally, if f were bounded throughout S1, we could apply (b) and Theorem 15.1
to show | f (z)| ≤ 1 throughout S1, contradicting its definition.

Now set T2 = {z ∈ S1 : | f (z)| > 2} and choose a connected component S2. (Note
that, by (c), T2 is non-empty.) As above, we can prove that f is unbounded on S2.
Proceeding inductively, we obtain a sequence of regions

S1 ⊃ S2 ⊃ S3 ⊃ · · ·
such that | f (z)| > k for all z ∈ Sk .

S1

S2 S3z2

z3
z1

γ

Finally, we choose a point zk ∈ Sk for k = 1, 2, . . .. Since each set Sk is a region
which contains all points zn, n ≥ k, we can connect zk to zk+1 by a polygonal
path γk contained in Sk . Thus | f (z)| > k for all z ∈ γk . If we then form the path
γ = ⋃∞

k=1 γk , it follows that f approaches ∞ along γ , proving the theorem. �
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15.2 The Phragmén-Lindelöf Theorem

We now return to theorems of maximum-modulus type.
Theorem 15.1 is rather general in that it applies to any region. On the other hand, if

we restrict ourselves to various specific regions D, we will be able to derive the same
type of conclusion under a much weaker hypothesis on f . We begin, as before, by
considering the right half-plane. As previously noted, the function ez is unbounded
in this domain despite the fact that it is bounded by 1 on the imaginary axis. The
same, of course, is true of the function eδz for any δ > 0. However, if f (z) has slower
growth than eδz , we have the following extension of Theorem 15.1.

15.4 Phragmén-Lindelöf Theorem

Let D denote the right half-plane and suppose f is C-analytic in D. If

| f (z)| ≤ 1 (1)

on the imaginary axis and if, for each ε > 0, there exists a constant Aε such that

| f (z)| ≤ Aεeε|z| (2)

throughout D, then (1) holds for all z ∈ D.

Before proceeding with the proof, we will need the following lemma, which is a
slightly weaker form of the theorem.

Lemma 1

Suppose f is C-analytic in the right half-plane D. If

| f (z)| ≤ 1 (3)

on the imaginary axis, and if for some δ > 0, there exist constants A and B such that

| f (z)| ≤ A exp(B|z|1−δ) (4)

for all z ∈ D, then (3) holds throughout D.

Proof of Lemma 1

Here we use the auxiliary function

h(z) = f N (z)

exp(z1−δ/2)

and wish to show |h(z0)| ≤ 1 for each z0 ∈ D. Let us first analyze the denominator
g(z) = exp(z1−δ/2). In the open right half-plane z1−δ/2 may be defined as an analytic
function (see the comments following Theorem 8.8). To fix its value, we take it to
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be positive on the positive real axis. Then, for z = reiθ , − π/2 < θ < π/2,

z1−δ/2 = r1−δ/2eiθ(1−δ/2), −π

2
< θ <

π

2

which is also continuous to the boundary.
Finally,

g(z) = exp(z1−δ/2) = exp(r1−δ/2eiθ(1−δ/2)).

Thus, for z = iy

|g(z)| = exp

(
|y|1−δ/2 cos

(
1 − δ

2

)
π

2

)
≥ e0 = 1 (5)

and for |z| = R, z ∈ D,

|g(z)| = exp

(
R1−δ/2 cos

(
1 − δ

2

)
θ

)
≥ exp(R1−δ/2m). (6)

where m is the minimum value of

cos

(
1 − δ

2

)
θ, −π

2
< θ <

π

2
.

Now consider |h(z)| on the boundary of DR . On the imaginary axis, by (3) and
(5), |h(z)| ≤ 1. For |z| = R, by (4) and (6),

|h(z)| ≤ AN exp(NBR1−δ − mR1−δ/2).

Since the expression in parenthesis approaches −∞ as R → ∞, we have for R large
enough, |h(z)| ≤ 1 on the boundary of DR . Once again, invoking the maximum
modulus theorem,

|h(z0)| ≤ 1

for every z0 ∈ D and thus

| f (z0)| ≤ | exp(z1−δ/2
0 )|1/N .

Finally, letting N → ∞ gives the desired result. �

Note: While the lemma was stated in the right half-plane, it is obviously true in any
other half-plane as well. For example, if f satisfies the growth conditions (3) and (4)
in the upper half-plane, g(z) = f (−i z) would satisfy the hypotheses of the lemma.
Hence, g � 1 in the right half-plane and f � 1 in the upper half-plane.

Similarly, by mapping other regions analytically onto the right half-plane, we
can derive results similar to Lemma 1 for functions which are C-analytic in the
given regions. We record one example which will serve as another lemma to
Theorem 15.4.
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Lemma 2

Suppose f is C-analytic in a quadrant. If | f (z)| ≤ 1 on the boundary and if for
some δ > 0, there exist constants A and B such that

| f (z)| ≤ A exp(B|z|2−δ) for every z in the quadrant,

then | f (z)| ≤ 1 throughout the quadrant.

Proof of Lemma 2

Without loss of generality, we consider the first quadrant. Set g(z) = f (
√

z). Then g
is C-analytic in the upper half-plane. Furthermore, by the hypothesis on f, |g(z)| ≤ 1
on the boundary and

|g(z)| ≤ A exp(B|z|1−δ/2)

throughout the half-plane. By Lemma 1, |g(z)| ≤ 1 throughout the half-plane and
thus | f (z)| ≤ 1 for all points z in the quadrant. �

Proof of Theorem 15.4

We consider

h(z) = f N (z)

ez

and, as before, the proof will follow if we can show |h(z)| ≤ 1 throughout the
right half-plane. To do this, we consider the first and fourth quadrants separately. To
estimate h(z) on the boundary of the first quadrant, note that |eiy | = 1 and hence,
by (1)

|h(z)| ≤ 1 on the positive imaginary axis.

Also, by (2), | f (z)| ≤ A1/N e(1/N)|z| so that setting BN = (A1/N )N ,
| f N (z)| ≤ BN e|z| throughout the half-plane. On the positive x-axis, though,
|ez| = e|z| and hence |h(z)| ≤ BN for z > 0. Thus |h(z)| ≤ Max(1, BN ) along
the boundary of the first quadrant. Furthermore, throughout the first quadrant

|h(z)| ≤ | f N (z)| ≤ BN e|z|

so that we can apply Lemma 2 to conclude

|h(z)| ≤ Max(1, BN )

in the first quadrant. By the exact same reasoning,

|h(z)| ≤ Max(1, BN )

in the fourth quadrant. Hence h(z) is a bounded C-analytic function in the right
half-plane and is bounded by 1 on the imaginary axis. By Theorem 15.1, |h(z)| ≤ 1
throughout the right half-plane, and the proof is complete. �



15.2 The Phragmén-Lindelöf Theorem 221

By mapping a wedge of angle α onto the right half-plane, we derive the following
corollary.

15.5 Corollary

Let
D =

{
z : − α

2
< Arg z <

α

2

}
, where 0 < α ≤ 2π,

and suppose f is C-analytic in D. If

| f (z)| ≤ 1 (1)

on ∂ D and if, for each ε > 0, there exists a constant Aε such that

| f (z)| ≤ Aε exp(ε|z|π/α), (2)

then (1) holds throughout D.

Proof

Given f as above, consider g(z) = f (zα/π ) in the right half-plane and apply
Theorem 15.4. �

An interesting special case of the corollary arises if we take a wedge of angle 2π
(the whole plane slit along one ray). In that case, the boundary is a single ray and,
by the above corollary, if f is bounded on that ray and has slower growth than eε

√|z|
for each ε > 0, it is in fact bounded throughout the wedge. Now, we may view an
entire function as a C-analytic function in every wedge of angle 2π . This leads to
the following theorem.

15.6 Theorem

If f is a non-constant entire function and for each ε > 0 there exists a constant Aε

such that
| f (z)| ≤ Aεeε

√|z|

then f (z) is unbounded on every ray!

Proof

If f were bounded on some ray R, by Corollary 15.5 it would also be bounded
on the wedge C\R; that is, f would be bounded in the entire plane. But, then, by
Liouville’s Theorem f would reduce to a constant, contradicting the hypothesis of the
theorem. �

EXAMPLE

cos z has a power series involving only even terms, hence cos
√

z is an entire function
that is bounded on the positive x-axis. Hence, by the above theorem, it must grow
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as fast as eε
√|z| for some ε > 0. Setting

cos z = eiz + e−iz

2

shows that this is in fact the case. (Consider points z along the imaginary axis.) ♦

An Application of Theorem 15.6: The differential equation f ′(z) = − f (z) has the
explicit solution f (z) = Ae−z . However, if we consider the very similar equation

f ′(z) = − f
( z

2

)
(1)

no such explicit solution can be found. Nevertheless, one may seek to study the
behavior of a solution f (z) as z → ∞ along the positive x-axis. To accomplish this,
we will find the solution in the form of a power series which is, in fact, an entire
function. Furthermore, we will show that the solution is of “small” growth, so that
Theorem 15.6 is applicable, and f is unbounded on every ray. Thus, unlike Ae−z ,
the solution to (1) has no limit as z → +∞. The details are as follows:

15.7 Proposition

Let f be a solution of the differential equation f ′(z) = − f (z/2), analytic at z = 0.
Then f is entire and is unbounded on every ray.

Proof

Let f have the power series representation

f (z) =
∞∑

k=0

akzk .

Because of (1), we must have

∞∑
k=1

kakzk−1 = −
∞∑

k=1

ak

( z

2

)k

or
ak = − ak−1

2k−1k
.

By induction, then,

an = (−1)na0

n!2n(n−1)/2
.

Hence f (z) is given by

f (z) = A
∑

k

bkzk where bk = (−1)k

k!2k(k−1)/2
, (2)

and a simple check shows that (2) does in fact represent an entire solution of (1).
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We now show that f satisfies the hypothesis of Theorem 15.6. For this we fix
ε > 0 and show that, for z sufficiently large,

| f (z)| < exp(|z|ε).
Assume then that |z| = R = 2N , N > 2, and let

M(R) = Max|z|=R
| f (z)|, M = M(1).

According to (1),

f (z) − f (0) =
∫ z

0
f ′(ρ)dρ =

∫ z

0
− f

(ρ

2

)
dρ

� RM

(
R

2

)

so that

| f (z)| ≤ 2RM

(
R

2

)
.

Setting M(R/2) = | f (z1)| for some z1 ∈ D(0; R/2) and proceeding inductively,
we obtain

| f (z)| ≤ M RN = M|z|| log z|/ log 2. (3)

The right-hand side of (3) is bounded above by exp(|z|ε) for all z sufficiently large;
therefore, we get R0 = R0(ε) such that

| f (z)| < exp(|z|ε)
for all z with |z| ≥ R0, as desired. �

Exercises

1.* Show that the conclusion of Theorem 15.1 would hold if we insisted only that f � 1 along the
boundary and f (z) � log z throughout the domain. How could the hypothesis be further relaxed?

2. What is the “smallest” non-constant analytic function in the quadrant D = {x + iy : x, y < 0}, which
is bounded along the boundary?

3. Show that eez � 1 throughout the boundary of the region

D =
{

x + iy : − π

2
< y <

π

2

}
.

Show that it is the “smallest” such analytic function.

4.* Suppose g is a non-constant entire function which is bounded on every ray. (See 12.2). Show that for
any A and B , there must exist some point z with |g(z)| > A exp(|z|B ). [Hint: If not, divide the plane
into a finite number of very small wedges and apply 15.5 and Liouville’s Theorem to conclude that g
is constant.]





Chapter 16
Harmonic Functions

16.1 Poisson Formulae and the Dirichlet Problem

In this chapter, we focus on the real parts of analytic functions and their connection
with real harmonic functions.

16.1 Definition

A real-valued function u(x, y)which is twice continuously differentiable and satisfies
Laplace’s equation

ux x + uyy = 0

throughout a domain D is said to be harmonic in D.
Although one may talk of complex-valued harmonic functions, the term “harmonic”

throughout this chapter will always refer to a real-valued function.

16.2 Theorem

If f = u + iv is analytic in D, u and v are harmonic there.

Proof

u and v both have continuous partial derivatives of all orders since f is analytic. By
the Cauchy-Riemann equations

ux = vy ; uy = −νx

so that
ux x = vyx = vxy = −uyy,

hence u is harmonic. By the same argument, v is harmonic since it is the real part of
the analytic function −if. �

The converse of the above is not true. For example,

u(x, y) = log(x2 + y2)

225
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is harmonic in the punctured plane but is not the real part of an analytic function
there. (See Exercise 4.) We do have the following partial converse:

16.3 Theorem

If u is harmonic in D, then

a. ux is the real part of an analytic function in D;
b. if D is simply connected, u is the real part of an analytic function in D.

Proof

a. Let f = ux − iuy. Since u ∈ C2, f has continuous first-order partial derivatives.
Moreover, by the harmonicity of u

fy = uxy − iuyy = uyx + iux x = ifx

so that f satisfies the Cauchy-Riemann equations. Hence f is analytic in D.
b. If D is simply connected, by the Integral Theorem (8.5), f = ux − iuy is the

derivative of an analytic function F . But then if F = A + i B

F ′(z) = Ax + iBx = Ax − iAy = ux − iuy

so that
A(x, y) = u(x, y) + C.

Hence u(x, y) is the real part of the analytic function F(z) − C . �

EXAMPLE

u(x, y) = x − ex sin y is harmonic in the whole plane. Hence f (z) = ux(z) −
iuy(z) = 1 − ex sin y + iex cos y is entire. In fact, f (z) = 1 + iez and if we set

F(z) =
∫ z

0
f (ζ )dζ = z + iez − i,

then
u(z) = ReF(z).

♦

The fact that a harmonic function is, at least locally, the real part of an analytic
function allows us to apply some of the theory of analytic functions to harmonic
functions.

16.4 Mean-Value Theorem for Harmonic Functions

If u is harmonic in D(z0; R),

u(z0) = 1

2π

∫ 2π

0
u(z0 + reiθ )dθ

for all positive r < R.
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Proof

Let u = Re f . By 6.12

f (z0) = 1

2π

∫ 2π

0
f (z0 + reiθ )dθ,

and the result follows by taking the real parts of the above. �

16.5 Maximum-Modulus Theorem for Harmonic Functions

If u is a nonconstant harmonic function in a region D, u has no maximum or
minimum points in D.

Proof

The theorem may be derived as a corollary of the above Mean-Value Theorem. It
follows even more immediately, however, from the Open Mapping Theorem (7.1).
For in a disc D(z0; δ) ⊂ D about any point z0 ∈ D, u is the real part of an analytic
function f . Since f maps D(z0; δ) onto an open set, u takes both larger and smaller
values than u(z0) in the open disc. �

Note that the Maximum-Modulus Theorem for analytic functions (6.13) asserts
only that | f | has no interior maximum point; | f | can have a local minimum if it
is equal to zero. By contrast, Theorem 16.5 shows that a non-constant harmonic
function has neither a maximum nor a minimum point in the interior of a domain.

We let the term C-harmonic refer to a function which is harmonic in the interior
of a domain and continuous on the closure. The previous theorem implies then that a
C-harmonic function in a compact domain must assume its maximum and minimum
values on the boundary of that domain.

16.6 Corollary

If two C-harmonic functions u1 and u2 agree on the boundary of a compact domain
D, then u1 = u2 throughout D.

Proof

u = u1 − u2 is C-harmonic in D; hence it takes its maximum and minimum on the
boundary. Since u ≡ 0 on the boundary, it follows that u ≡ 0 throughout D and that
u1 ≡ u2. �

Corollary 16.6 shows that a C-harmonic function is determined by its values on the
boundary of a compact domain. But this result is of a purely theoretical nature. How
to determine the value at an interior point from a knowledge of u on the boundary is
the subject of the next theorem. We begin by considering C-harmonic functions in
the unit disc.
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16.7 Theorem

Suppose u is C-harmonic in D(0;1). Then

u(z) = 1

2π

∫ 2π

0
u(eiθ )K(θ, z)dθ

where K(θ, z) is the “Poisson Kernel,”

K(θ, z) = Re

[
eiθ + z

eiθ − z

]
.

In polar form,

u(reiϕ) = 1

2π

∫ 2π

0

u(eiθ )(1 − r2)

1 − 2r cos(θ − ϕ) + r2
dθ.

Proof

[To simplify the notation, we will assume u = Re f where f is analytic on the
closed unit disc. To justify the assumption, we could first prove the theorem for
u∗(z) = u(r z) where r < 1 and then take the limit as r → 1 since u is uniformly
continuous on D(0; 1).]

By the Cauchy Integral Formula (6.4)

f (z) = 1

2πi

∫
|ζ |=1

f (ζ )

ζ − z
dζ

or

f (z) = 1

2π

∫ 2π

0
f (eiθ )

[
eiθ

eiθ − z

]
dθ (1)

If we replace z by the symmetric point 1/z̄ which lies outside the unit disc, then
by the Closed Curve Theorem (8.6)

0 = 1

2πi

∫
|ζ |=1

f (ζ )

ζ − 1
z̄

dζ

or

0 = 1

2π

∫ 2π

0
f (eiθ )

[
eiθ

eiθ − 1/z̄

]
dθ. (2)

Note that

eiθ

eiθ − 1/z̄
= z̄eiθ

z̄eiθ − 1
= −z̄

e−iθ − z̄

= 1 − e−iθ

e−iθ − z̄
=

[
1 − eiθ

eiθ − z

]
,



16.1 Poisson Formulae and the Dirichlet Problem 229

so that subtracting (2) from (1) yields

f (z) = 1

2π

∫ 2π

0
f (eiθ )

[
eiθ

eiθ − z
+

(
eiθ

eiθ − z

)
− 1

]
dθ

= 1

2π

∫ 2π

0
f (eiθ )

[
2 Re

(
eiθ

eiθ − z

)
− 1

]
dθ,

or

f (z) = 1

2π

∫ 2π

0
f (eiθ )Re

[
eiθ + z

eiθ − z

]
dθ. (3)

Finally, taking the real parts of the above, we obtain

u(z) = 1

2π

∫ 2π

0
u(eiθ )Re

[
eiθ + z

eiθ − z

]
dθ. (4)

�

By mapping the unit disc onto other domains, we can obtain similar results for
any simply connected domain. For example, if u is harmonic in D(0; R), u = Re f ,
we can apply the above results to g(ζ ) = f (Rζ ). Thus

f (Rζ ) = 1

2π

∫ 2π

0
f (Reiθ )Re

[
eiθ + ζ

eiθ − ζ

]
dθ,

and if we let Rζ = z

f (z) = 1

2π

∫ 2π

0
f (Reiθ )Re

[
Reiθ + z

Reiθ − z

]
dθ, (5)

and

u(z) = 1

2π

∫ 2π

0
u(Reiθ )Re

[
Reiθ + z

Reiθ − z

]
dθ. (6)

The above is known as the Poisson Integral Formula for a disc. The Poisson
Formula for a bounded harmonic function in a half-plane

u(x + iy) = 1

π

∫ ∞

−∞
yu(t)

(t − x)2 + y2
dt (7)

is derived in Exercise 6.

The Dirichlet Problem The Dirichlet Problem is the problem of proving the
existence of a function u which is C-harmonic in a domain and assumes prescribed
boundary values. This differs from the attitude in the last section where a function u
was assumed to be C-harmonic in a domain and we sought a formula for u in terms
of its boundary values. Nevertheless, the previous theorems offer a starting point.
Suppose, for example, that D is the unit disc. Then if there is a harmonic function u
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in D with limit values u(eiθ ) on the boundary, u must be of the form

u(z) = 1

2π

∫ 2π

0
u(eiθ )Re

[
eiθ + z

eiθ − z

]
dθ,

or

u(reiϕ) = 1

2π

∫ 2π

0

u(eiθ )(1 − r2)

1 − 2r cos(θ − ϕ) + r2 dθ.

The fact that this Poisson Integral does indeed provide the solution to the Dirichlet
Problem is proven below.

16.8 Theorem

Suppose u(eiθ ) is continuous on C(0; 1). Then

u(z) = 1

2π

∫ 2π

0
u(eiθ )K(θ, z)dθ

is the restriction to D(0; 1) of a C-harmonic function in the closed unit disc with
boundary values u(eiθ ).

Proof

Let

g(z) = 1

2π

∫ 2π

0
u(eiθ )

[
eiθ + z

eiθ − z

]
dθ, |z| < 1.

Since (eiθ + z)/(eiθ − z) is an analytic function of z for each θ and since g is
continuous, it follows by Morera’s Theorem that g is analytic in D(0; 1). Moreover,
u(z) = Re g(z) so that u is harmonic. To show that u has the limit u(eiθ ) as z → eiθ ,
we note the following properties of the Poisson Kernel

K(θ, z) = 1 − r2

1 − 2r cos(θ − ϕ) + r2
, z = reiϕ. (8)

i. K(θ, z) > 0.
The numerator is obviously positive and the denominator is bigger than (1 − r)2.

ii. (1/2π)
∫ 2π

0 K(θ, z)dθ = 1.
This follows on applying the Poisson Formula (16.7) with u ≡ 1.

iii. For every δ > 0[∫ ϕ−δ

0
K(θ, z)dθ +

∫ 2π

ϕ+δ
K(θ, z)dθ

]
→ 0 as z → eiϕ .

Note that the denominator in (8) is bounded away from zero for |θ −ϕ| > δ while
the numerator approaches 0 as z approaches the boundary.
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According to (ii) we can write

u(reiϕ) − u(eiϕ) = 1

2π

∫ 2π

0
[u(eiθ ) − u(eiϕ)]K(θ, z)dθ.

Let M = Maxθ |u(eiθ )|. By the continuity of u, given ε > 0 we can find δ > 0 so
that |u(eiθ ) − u(eiϕ)| < ε when |θ − ϕ| < δ. Then by (ii) and (iii)

|u(reiϕ) − u(eiϕ)| ≤ M

π

[∫ ϕ−δ

0
K(θ, z)dθ +

∫ 2π

ϕ+δ
K(θ, z)dθ

]

+ 1

2π

∫ ϕ+δ

ϕ−δ
εK(θ, z)dθ

≤ M

π

[∫ ϕ−δ

0
K(θ, z)dθ +

∫ 2π

ϕ+δ
K(θ, z)dθ

]
+ ε,

and as r → 1
limr→1|u(reiϕ) − u(eiϕ)| ≤ ε.

Hence
lim
r→1

u(reiϕ) = u(eiϕ). (9)

Since u was assumed to be continuous on the unit circle and u is harmonic (and
hence continuous) in the disc, it follows from (9) that u is continuous in D̄ with the
prescribed values on the boundary. �

Remarks

1. According to Corollary 16.6, the above solution to the Dirichlet Problem is
unique.

2. The arguments above show that for any integrable function u on the unit circle,
there is a harmonic function in D(0; 1) with limit u(eiϕ) at any point of continuity
of u along the boundary.

3. By considering the appropriate conformal mapping f of D onto U , we can solve
the Dirichlet Problem for any bounded simply connected domain. To find a har-
monic function u1 in D with given boundary values, we first determine a harmonic
function u2 in U with the values u1( f −1(z)) along the boundary. Since u2 is the
real part of an analytic function g,

u1(z) = u2( f (z)) = Re g( f (z))

is the desired harmonic function in D.
4. In many simple cases, an explicit solution to the Dirichlet Problem can be obtained

(without recourse to the Poisson Integral) by determining an analytic function with
the appropriate real part.
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EXAMPLES

i. To determine the C-harmonic function u in D(0; 1) with boundary values
u(x, y) = x2, note that

Re z2 = x2 − y2

is everywhere harmonic and equals 2x2 − 1 on the boundary. Hence

u(x, y) = 1

2
(x2 − y2) + 1

2
.

By taking linear combinations of the above with the harmonic polynomials
1, x, y and xy, we can find a C-harmonic function in D(0; 1) with boundary
values equal to any given quadratic polynomial on C(0; 1).

ii. log r = Re log z is a harmonic function in the punctured plane z �= 0 which
depends only on the modulus. [Although log z is only analytic in a slit plane,
Re log z = log |z| is continuous and hence harmonic in the entire punctured
plane.]

Thus if A is an annulus: r1 ≤ |z| ≤ r2, we can find a harmonic function in A
with arbitrary constant values on the inner and outer circles by setting u(reiϕ) =
a log r + b for appropriate a and b. ♦

An Application to Heat Problems. Suppose we consider a solid whose temperature
u is constant in one direction. (This is a reasonable model for a cylindrical solid
with insulated faces or for a “very long” cylindrical solid.) If we assume that the
temperature is independent of time, then, thinking of the solid as resting in a region
of the z plane, the temperature depends only on the x, y position and can be shown
to be a harmonic function. [See Appendix III.] For that reason, Laplace’s equation:
ux x + uyy = 0, is sometimes called the heat equation and Dirichlet problems can be
thought of as boundary-value heat problems. Such problems can thus be solved by
the methods discussed. It is often helpful to first map the given region onto a simpler
one where a solution to the corresponding problem is known.

EXAMPLES

i. Suppose the annulus 1 ≤ |z| ≤ 2 represents the cross-section of an “infinite”
cylindrical solid with temperature 100◦ maintained on the outer rim and temper-
ature 0◦ on the inner rim. Then, as in the previous example, the temperature is
given by

u(reiφ) =
(

log r

log 2

)
100◦.

In particular, the isothermal line with temperature 50◦ is the circle of radius
√

2.
ii. Next we find the “steady-state” temperature function in the unit disc with boundary

values 1 on the upper semi-circle and 0 on the lower semi-circle. Note that w =
(z − 1)/(z + 1) maps the disc onto the left half-plane with the upper and lower
semi-circles mapping onto the positive and negative imaginary axes, respectively.
In the left half-plane, Arg z = Im log z is harmonic with boundary values π/2
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and 3π/2, so that
3

2
− Arg z

π

has the desired boundary values. The solution to the given problem, then, is

u(z) = 3

2
− 1

π
Arg

(
z − 1

z + 1

)
.

♦

16.2 Liouville Theorems for Re f ; Zeroes of Entire Functions
of Finite Order

The following theorem offers a formula, much like the Poisson Integral Formula, for
the value of a C-analytic function in D(0; R) in terms of its real part. This, in turn,
will allow us to obtain estimates on the magnitude of an entire function from given
bounds on its real part alone.

16.9 Theorem

If f = u + iv is C-analytic in D(0; R), then

f (z) = 1

2π

∫ 2π

0
u(Reiθ )

[
Reiθ + z

Reiθ − z

]
dθ + iv(0).

Proof

We have already proven (following Theorem 16.7) that if f = u + iv is C-analytic
in D(0; R) then

f (z) = 1

2π

∫ 2π

0
f (Reiθ ) Re

[
Reiθ + z

Reiθ − z

]
dθ. (1)

Moreover, as we noted in the proof of 16.8 (with R = 1)

g(z) = 1

2π

∫ 2π

0
u(Reiθ )

[
Reiθ + z

Reiθ − z

]
dθ (2)

is also analytic in D(0; R). A comparison of (1) and (2) shows, however, that f and
g have the same real parts

Re f (z) = Re g(z) = 1

2π

∫ 2π

0
u(Reiθ ) Re

[
Reiθ + z

Reiθ − z

]
dθ.

Hence
f (z) = g(z) + iλ
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or

f (z) = 1

2π

∫ 2π

0
u(Reiθ )

[
Reiθ + z

Reiθ − z

]
dθ + iλ.

To determine λ, set z = 0. Then, by the Mean-Value Theorem (16.4), the integral on
the right equals u(0), so that

f (0) = u(0) + iλ

and
λ = v(0). �

Analogues of Liouville’s Theorems for Re f . The original Liouville Theorem (5.10)
states that a bounded entire function is constant. Note that the condition | f | ≤ M
implies the four inequalities

−M ≤ Re f ≤ M

−M ≤ Im f ≤ M.

However, according to the Weierstrass Theorem (9.6), any one of the four inequal-
ities would suffice to prove that f is constant. For if any one of the inequalities
is satisfied, the set of values assumed by f is not dense in the whole plane and f
must be constant. The next theorem shows that the same reduction in hypothesis is
possible for the Extended Liouville Theorem (5.11).

16.10 Theorem

If f is entire and any one of the four inequalities

−A|z|n ≤ Re f (z) ≤ A|z|n
−A|z|n ≤ Im f (z) ≤ A|z|n

holds for sufficiently large z, then f is a polynomial of degree ≤ n.

Proof

Without loss of generality, we may assume Re f (z) ≤ A|z|n for large z. (In the other
cases, we could consider − f or if.) Then applying 16.9 with R = 2|z|∣∣∣∣ Reiθ + z

Reiθ − z

∣∣∣∣ ≤ 3

and

| f (z)| ≤ 3

2π

∫ 2π

0
|u(Reiθ )|dθ + | f (0)|, where u = Re f.

To estimate the integral above, we set

u+(ζ ) =
{

u(ζ ) if u(ζ ) > 0

0 if u(ζ ) ≤ 0.
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Then according to the hypothesis, if |z| is large enough,

1

2π

∫ 2π

0
u+(Reiθ ) dθ ≤ ARn = A2n|z|n

and by the Mean-Value Theorem (16.4)

1

2π

∫ 2π

0
u(Reiθ ) dθ = u(0).

By the lemma below

1

2π

∫ 2π

0
|u(Reiθ )| dθ ≤ A2n+1|z|n + |u(0)|

so that
| f (z)| ≤ A1|z|n + A2

and by the Extended Liouville Theorem, f is a polynomial of degree at most n. �

16.11 Lemma

Let g be real-valued and continuous on [a, b]. If
∫ b

a g(x)dx = α and if

∫ b

a
g+(x)dx ≤ β,

then ∫ b

a
|g(x)| dx ≤ 2β + |α|.

Proof

Recall that

g+(x) =
{

g(x) if g(x) > 0

0 if g(x) ≤ 0.

If we set

g−(x) =
{

−g(x) if g(x) < 0

0 if g(x) ≥ 0,

then
g = g+ − g−

and
|g| = g+ + g−.

By hypothesis ∫ b

a
g+(x) ≤ β
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and ∫ b

a
g−(x) dx =

∫ b

a
g+(x) dx − α ≤ β − α,

so that ∫ b

a
|g(x)| dx ≤ 2β − α ≤ 2β + |α|. �

16.12 Definition

An entire function f is said to be of finite order if for some k and some R > 0,
| f (z)| ≤ exp(|z|k) for all z with |z| ≥ R.

Theorem 16.10 can be used to prove the existence of zeroes for many entire
functions of finite order. To show, for example, that ez − z must have a zero, we first
assume that ez − z �= 0. Then g(z) = log(ez − z) would be entire with

Re(g(z)) = log |ez − z| ≤ |z| + 1 for |z| ≥ e.

But then, according to Theorem 16.10, g would be a linear polynomial; that is,

log(ez − z) = az + b

or
ez − z = eaz+b.

Expanding both sides in power series would lead us to conclude

1 + z2

2!
+ z3

3!
+ · · · = eb

(
1 + az + a2 z2

2!
+ · · ·

)
,

which is impossible.
Similarly, we can show that ez − z must have infinitely many zeroes. For if ez − z

had only finitely many zeroes α1, α2, . . . , αN , we could apply the above argument
to

(ez − z)/(z − α1)(z − α2) . . . (z − αN )

to conclude that

ez − z = (z − α1)(z − α2) . . . (z − αN )eaz+b. (3)

By considering the growth of both sides as z → ∞, however, it is easily seen that
(3) cannot hold.

16.13 Theorem

Suppose f is an entire function of finite order. Then either f has infinitely many
zeroes or

f (z) = Q(z)eP(z)

where Q and P are polynomials.
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Proof

Suppose f has a finite number of zeroes, α1, . . . , αk . Then we may write

f (z) = Q(z)g(z)

where
Q(z) = (z − α1) · · · · ·(z − αk)

and g is an entire function that is never zero. Thus we can define an entire function

P(z) = log g(z),

which by our hypothesis must satisfy

|Re P(z)| ≤ |z|k for |z| ≥ R

for some k and R. Hence P is a polynomial and f (z) = Q(z)eP(z), as desired. �

An entire function does not have to assume every value in the complex plane. How-
ever, according to Theorem 16.13, if f is of finite order, and if f (z) �= a for all z, then

f (z) − a = eP(z)

It follows that f assumes every other complex value b infinitely often since P
assumes each of the infinitely many values of log(b − a).

The Little Picard Theorem asserts that the above is true for all entire functions.
While a proof of this theorem would take us too far afield, we can prove that it is true
for a very broad class of functions. Let E1(z) = exp(zk) for any fixed positive integer
k, and let En+1(z) = exp(En(z)), so that E j is the j -fold exponential of zk . We
will show that Picard’s Theorem is applicable to any entire function which grows no
faster than E j for some j. To be precise, we will say that f is of j−fold exponential
order if, for some R > 0, the j -fold logarithm: log(log(log · · ·(| f (z)|))) < |z|k , for
some fixed k and |z| > R. Note that if f is of j−fold exponential order, then log f
is of ( j − 1)−fold exponential order.

16.14 Theorem

Suppose f is an entire function of j−fold exponential order, for some j. Then, if
f (z) �= a for all z, f assumes every other complex value b infinitely often.

Proof

If j = 1, f is of finite order and the result follows, as indicated above. To complete the
proof, assume that f is of ( j+1)-fold exponential order. Then g(z) = log( f (z)−a)
would be of j -fold exponential order, and by induction we can assume that g assumes
every value in the complex plane with at most one exception. In particular, g assumes
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all of the infinitely many values of log(b − a) with at most one exception. But then,
since f (z) = a + eg(z), f assumes every complex value b �= a infinitely often. �

We leave it as an exercise to show that Theorem 16.14 is not equivalent to Picard’s
Little Theorem. That is, there are entire functions which are not of j−fold exponential
order, for any j.

Exercises

1. Suppose f = u + iv is analytic. Show then that u + v and uv are harmonic.

2. Show that every partial derivative of a harmonic function is itself harmonic.

3. Show that u2 cannot be harmonic for any nonconstant harmonic function u.

4. Show that log(x2 + y2) is harmonic in z �= 0 but is not equal to the real part of a function that is
analytic in z �= 0.

5. a. Show that if u(r, θ) is dependent on r alone, Laplace’s equation becomes

urr + 1

r
ur = 0.

b. Use the above to show that a harmonic function which depends on r alone must have the form
u(r, θ) = a log r + b.

6. Derive the Poisson Formula

u(x + iy) = 1

π

∫ ∞
−∞

y · u(t)dt

(t − x)2 + y2
(I)

for a bounded C-harmonic function in the upper half-plane. [Hint: Let CR denote the indicated contour
and set

2π if(z) =
∫

CR

f (ζ )

ζ − z
dζ −

∫
CR

f (ζ )

ζ − z
dζ,

where Re f = u. Then simplify and obtain (I) for f (x + iy) by letting R → ∞.]

R–R

CR

z

z

–

7. Find a harmonic function in D(0; 1) with boundary values u(x, y) = x3.

8. Let u be harmonic in D(0; 1) with boundary values: 1 on the upper semi-circle and 0 on the lower
semi-circle. Show that the level curves u(x, y) = k, 0 ≤ k ≤ 1, are all circular segments.
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9. Find a harmonic function u in the upper half-plane with

lim
y→0

u(x, y) =
{

0, x < 0

1, x > 0

10. Find the temperature function u(x, y) for a solid represented by the semi-infinite strip

−π

2
≤ x ≤ π

2
, y ≥ 0

given that u(x, 0) = 1,− π
2 < x < π

2 ,

u
(
−π

2
, y

)
= 2, and u

(π

2
, y

)
= 0, for y > 0.

11. Prove ez − P(z) and sin z − P(z) have infinitely many zeroes for every non-zero polynomial P .

12. We say an entire function of finite order has order j if

j = inf

{
k : lim

z→∞
f (z)

exp(|z|k)
= 0

}
.

Prove that the only non-vanishing entire functions of order j are of the form f (z) = eP j (z), where
Pj is a polynomial of degree j .

13.* Show that sin z − z = c has a solution for every complex number c by showing that if sin z − z �= c
for all z, then sin z − z �= c + 2π

14.* Let f0(z) = z, fn+1(z) = e fn (z), n = 0, 1, 2, ... and let g0(t) = t, gn+1(t) = tgn (t). Define

F(z) =
∞∑

k=0

fk(z)

gk (k)

Show that F(z) is an entire function but F(z) is not of j-fold exponential order for any positive
integer j .





Chapter 17
Different Forms of Analytic Functions

Introduction

The analytic functions we have encountered so far have generally been defined either
by power series or as a combination of the elementary polynomial, trigonometric and
exponential functions, along with their inverse functions. In this chapter, we consider
three different ways of representing analytic functions. We begin with infinite prod-
ucts and then take a closer look at functions defined by definite integrals, a topic
touched upon earlier in Chapter 7 and in Chapter 12.2. Finally, we define Dirichlet
series, which provide a link between analytic functions and number theory.

17.1 Infinite Products

17.1 Definition

a. Let {uk}∞k=1 be a sequence of nonzero complex numbers. The infinite product∏∞
k=1 uk is said to converge if the sequence of partial products PN = u1u2 . . . uN

converges to a nonzero limit as N → ∞. If PN → 0, we say the infinite product
diverges to 0.

b. If finitely many terms uk are equal to zero, we will say the product converges to
zero provided

∏∞
k=1

uk �=0
uk converges.

EXAMPLES

i.
∏∞

k=1(1 + 1/k) = 2
1 · 3

2 · 4
3 · . . . diverges (to ∞) since PN = N + 1 → ∞.

ii.
∏∞

k=2(1 − 1/k) diverges to zero.

iii.
∏∞

k=2(1 − 1/k2) = ∏∞
k=2(k − 1)(k + 1)/k2 converges.

We leave it as an exercise to prove this by finding an explicit formula for PN .
iv.

∏∞
k=1(1 − 1/k2) converges to 0 since

∏∞
k=2(1 − 1/k2) converges. ♦

241
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Notes

1. If PN−1 �= 0,

uN = PN

PN−1
.

Hence if
∏∞

k=1 uk converges, uN → 1 as N → ∞. For this reason, we will
usually write infinite products in the form

∏
k(1+ zk) with the understanding that

zk → 0 if the product converges.
2. If {ak}∞k=1 is a sequence of positive real numbers,

∏∞
k=1(1 + ak) converges if and

only if
∑∞

k=1 ak converges. This follows from the inequalities

a1 + a2 + · · · + aN ≤
N∏

k=1

(1 + ak) ≤ ea1+a2+···+aN .

The right-hand inequality is a direct consequence of the fact that 1 + x ≤ ex

for all real x . It is not true for complex numbers zk , however, that
∏∞

k=1(1 + zk)
converges if any only if

∑∞
k=1 zk converges (see Exercise 5), but we do have the

following theorem.

17.2 Proposition

Let zk �= −1, k = 1, 2, . . . .
∏∞

k=1(1+zk) converges if and only if
∑∞

k=1 log(1+zk)
converges. (log z here denotes the principal branch of the logarithm; i.e., −π <
Im log z = Arg z ≤ π .)

Proof

Let SN = ∑N
k=1 log(1 + zk). Then PN = eSN and if SN → S, PN → P = eS .

Suppose, on the other hand, that PN → P �= 0. Then, some branch of the logarithm
(which we will denote log∗) is continuous at P and log∗ PN → log∗ P as N → ∞.
Suppose we inductively define integers nk so that

N∑
k=1

(log(1 + zk) + 2π ink) = log∗ PN .

Then since log∗ PN converges,

N∑
k=1

(log(1 + zk) + 2π ink)

converges; therefore log(1 + zk) + 2π ink → 0 as k → ∞. Since zk → 0 and log
denotes the principal branch, it follows that nk = 0 for k sufficiently large.

Hence
∑∞

k=1 log(1 + zk) converges. �

17.3 Proposition

If
∑∞

k=1 |zk | converges,
∏∞

k=1(1 + zk) converges.
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Proof

Assume
∑∞

k=1 |zk | converges and take N such that for k > N, |zk | < 1
2 . Then, for

k > N

| log(1 + zk)| = |zk − z2
k

2
+ z3

k

3
− + · · · | ≤ |zk |

(
1 + 1

2
+ 1

4
+ · · ·

)
≤ 2|zk|.

Hence
∑∞

k=N+1 log(1 + zk) is convergent and by the previous proposition so is∏∞
k=1(1 + zk). �

17.4 Definition∏∞
k=1(1 + zk) is called absolutely convergent if

∞∏
k=1

(1 + |zk |) converges.

17.5 Proposition

An absolutely convergent product is convergent.

Proof

According to Note (2) (following Definition 17.1), the convergence of
∏∞

k=1(1+|zk|)
is equivalent to the convergence of

∑∞
k=1 |zk |. Hence if

∏∞
k=1(1 + |zk|) converges

so does
∑∞

k=1 |zk | and by the previous proposition, so does
∏∞

k=1(1 + zk). �

We wish to consider analytic functions defined by infinite products; i.e., functions
of the form

f (z) =
∞∏

k=1

(1 + uk(z)).

Recall that f is analytic if each function uk, k = 1, 2, . . . is analytic and the partial
products converge to their limit function uniformly on compacta (Theorem 7.6).

17.6 Theorem

Suppose that uk(z) is analytic in a region D for k = 1,2, …, and that
∑∞

k=1 |uk(z)|
converges uniformly on compacta. Then the product

∏∞
k=1(1 + uk(z)) converges

uniformly on compacta and represents an analytic function in D.

Proof

Let A be a compact subset of D. Since
∑∞

k=1 |uk(z)| converges uniformly on A, for
sufficiently large k, |uk(z)| < 1 there. Hence, we may assume that 1 + uk �= 0 for
all k. If we then take N large enough so that

∑∞
k=N+1 |uk(z)| < ε/2, it follows, as in
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the proof of Proposition 17.3, that∣∣∣∣∣∣
∞∑

k=N+1

log(1 + uk(z))

∣∣∣∣∣∣ ≤ ε throughout A.

That is,
∑∞

k=1 log(1 + uk(z)) converges uniformly on A to a limit function S(z). It
follows that S(A) is bounded. Finally, since the exponential function is uniformly
continuous in any bounded domain,

PN (z) = exp

(
N∑

k=1

log(1 + uk(z))

)

converges uniformly to its limit function eS(z). �

EXAMPLES

1.
∏∞

k=1(1 + zk) converges uniformly on any compact subset of the unit disc since
any compact subset is contained in a disc of radius δ < 1. Hence

∞∑
k=1

|zk| ≤
∞∑

k=1

δk = δ

1 − δ

and, by the M-test,
∑∞

k=1 |zk| is uniformly convergent.
2. ∞∏

k=1

(
1 + 1

kz

)

represents an analytic function in the half-plane D : Re z > 1. In any compact
subset of D, Re z ≥ 1 + δ throughout so that∣∣∣∣ 1

kz

∣∣∣∣ = 1

kRe z
≤ 1

k1+δ
, k = 1, 2, . . . .

Hence ∞∑
k=1

∣∣∣∣ 1

kz

∣∣∣∣
and, consequently, ∞∏

k=1

(
1 + 1

kz

)

are uniformly convergent. ♦
The Weierstrass Product Theorem. According to the Uniqueness Theorem (6.9), a
nontrivial entire function cannot have an accumulation point of zeroes. That is, if
{λk} → λ and if f is an entire function with zeroes at all the points λk , then f ≡ 0.
On the other hand, an entire function may be zero at all the points of a sequence which



17.1 Infinite Products 245

diverges to ∞. For example sin z is zero at all integral multiples of π . Similarly, ez −1
is zero at all the integral multiples of 2πi . The Weierstrass Product Theorem shows
that these examples are in no way exceptional.

17.7 Theorem (Weierstrass)

Suppose {λk}∞k=1 → ∞. Then there exists an entire function f such that f (z) = 0
if and only if z = λk, k = 1, 2, . . ..

Note: To define an entire function with zeroes at the points λk , it would seem natural
to write

f (z) =
∞∏

k=1

(z − λk).

However, since λk → ∞, the terms of the product would not approach 1 (for fixed
z) and hence the product would diverge. Instead, we consider the infinite product of
linear functions given by

f (z) =
∞∏

k=1

(
1 − z

λk

)
,

assuming for now that λk �= 0. Indeed, if
∑∞

k=1 |1/λk | converges,
∑∞

k=1 |z/λk |
converges uniformly on every compact set so that the product is uniformly convergent
on compacta and gives the desired entire function. Moreover, if

∑∞
k=1 1/|λk| diverges

but
∑∞

k=1 1/|λk|2 converges, we can modify the above construction by considering

f (z) =
∞∏

k=1

[(
1 − z

λk

)
ez/λk

]
.

With the “convergence factors” ez/λk , the product is uniformly convergent on com-
pacta since, for |λk | > 2|z|,

∣∣∣∣log

[(
1 − z

λk

)
ez/λk

]∣∣∣∣ =
∣∣∣∣∣
(

− z

λk
− z2

2λ2
k

− z3

3λ3
k

+ · · ·
)

+ z

λk

∣∣∣∣∣
≤

∣∣∣∣∣ z2

λ2
k

∣∣∣∣∣
(

1

2
+ 1

4
+ 1

8
· · ·

)
=

∣∣∣∣∣ z2

λ2
k

∣∣∣∣∣ .
Hence the series ∞∑

k=1

log
[
(1 − z/λk)e

z/λk
]
, z �= λk

is uniformly convergent and the product is uniformly convergent on compacta.
By the same reasoning, if

∑∞
k=1 1/|λk |m+1 converges for some positive integer

m and we consider the convergence factors

Ek(z) = exp
(

z/λk + z2/2λ2
k + · · · + zm/mλm

k

)
,
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it follows that the infinite product

∞∏
k=1

(
1 − z

λk

)
Ek(z)

is uniformly convergent on compacta and represents an entire function with the
desired zeroes. There are sequences {λk}, however, such that λk → ∞ and yet∑∞

k=1 1/|λk |N diverges for all N . (For example, {λk} = {log k}∞k=2.) Hence, for the
general case we must introduce a slight variation.

Proof

Assume for the moment that λk �= 0 and set

Ek(z) = exp

(
z

λk
+ z2

2λ2
k

+ · · · + zk

kλk
k

)
.

Suppose, moreover, that |z| < M . Then since λk → ∞, for sufficiently large
k, |λk | > 2|z| and

∣∣∣∣log

[(
1 − z

λk

)
Ek(z)

]∣∣∣∣ ≤
∞∑

j=k+1

∣∣∣∣∣ z j

jλ jk

∣∣∣∣∣ ≤
∣∣∣∣ z

λk

∣∣∣∣
k

≤ 1

2k
.

Hence both

∞∑
k=1

log

[(
1 − z

λk

)
Ek(z)

]
and

∞∏
k=1

[(
1 − z

λk

)
Ek(z)

]

are uniformly convergent on compacta. Note also that the individual factors are zero
only at the points λk , and by the definition of convergence the infinite product is zero
at those points only. Finally, if we seek an entire function with zeroes at the origin
as well, we need only set

f (z) = z P
∞∏

k=1

[(
1 − z

λk

)
Ek(z)

]
.

�

EXAMPLES

1. To find an entire function f with a single zero at every negative integer λk = −k,
note that

∑∞
k=1 1/|λk| diverges but

∑∞
k=1 1/|λk |2 converges so that we can define

f (z) =
∞∏

k=1

(
1 + z

k

)
e−z/k .
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2. An entire function with zeroes at all the points λk = log k, k = 1, 2, . . ., is given
by

f (z) = z
∞∏

k=2

[(
1 − z

log k

)
exp

(
z

log k
+ z2

2 log2 k
+ · · · + zk

k logk k

)]
.

3. An entire function with a single zero at every integer is given by

f (z) = z
∞∏

k=1

[(
1 − z

k

)
ez/k

(
1 + z

k

)
e−z/k

]
= z

∞∏
k=1

(
1 − z2

k2

)
. ♦

17.8 Proposition

Let

f (z) = z
∞∏

k=1

(
1 − z2

k2

)
.

Then f (z) = (sin πz)/π .

Proof

Consider the quotient

Q(z) = z
∞∏

k=1

(
1 − z2

k2

)/
sin πz.

Q is entire and zero-free. To show that Q is constant we seek estimates on its growth
for large z. Assume then that 1

2 N ≤ |z| ≤ N . Then |Q(z)| is bounded by the
maximum value assumed by Q on the square of side 2N + 1 centered at the origin
(Theorem 6.13). We have already proved, however, (see Chapter 11.2) that along this
square (which avoids the zeroes of sin πz), |1/ sin πz| ≤ 4. Moreover,

∣∣∣∣∣
∞∏

k=1

(
1 − z2

k2

)∣∣∣∣∣ =
∣∣∣∣∣∣

N∏
k=1

(
1 − z

k

) (
1 + z

k

) ∞∏
k=N+1

(
1 − z2

k2

)∣∣∣∣∣∣
≤

N∏
k=1

e2|z/k|
∞∏

k=N+1

e|z2/k2|

≤ exp

(
2|z|(1 + log N) + |z2|

N

)

since
N∑

k=1

1

k
< 1 + log N and

∞∑
k=N+1

1

k2
<

1

N
.
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NN–N – –N 

z

¹
²
–

N + ¹
²
–

– ¹
²
– N¹

²
–

Noting again that for large N , 2(1+log N) <
√

N/2 ≤ |z|1/2 while |z2|/N ≤ |z|,
it follows that

|Q(z)| =
∣∣∣∣∣∣
z
∏∞

k=1

(
1 − z2

k2

)
sin πz

∣∣∣∣∣∣ ≤ A exp(|z|3/2).

By Theorem 16.12, then, we must have

z
∏∞

k=1

(
1 − z2

k2

)
sin πz

= AeBz.

However, Q is an even function so that B = 0, and the constant A can be determined
by noting that

A = Q(0) = lim
z→0

z

sin πz
= 1

π
.

�

Some consequences of the above proposition:

i. Setting z = 1
2 , we have

1 = π

2

∞∏
k=1

[
1 − 1

(2k)2

]

so that

2

π
=

(
1 · 3

2 · 2

)(
3 · 5

4 · 4

)(
5 · 7

6 · 6

)
· · ·

or

π = 2 ·
(

2 · 2

1 · 3

)(
4 · 4

3 · 5

)(
6 · 6

5 · 7

)
· · · .
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ii. Suppose we expand the terms in the product to obtain an infinite series. Then we
will have

sin πz = πz
∞∏

k=1

(
1 − z2

k2

)

= πz

⎡
⎣1 −

( ∞∑
k=1

1

k2

)
z2 + 2

⎛
⎝∑

k, j

1

k2 j2

⎞
⎠ z4 − + · · ·

⎤
⎦ .

A comparison with the familiar power series

sin πz = πz − π3z3

6
+ π5z5

120
− + · · ·

shows that ∞∑
k=1

1

k2
= π2

6
.

(See 11.2 for an earlier proof of this identity.)

17.2 Analytic Functions Defined by Definite Integrals

We noted previously that Morera’s Theorem (7.4) can be used to prove the analyticity
of certain functions given in integral form. We now examine this notion in somewhat
greater detail.

17.9 Theorem

Suppose ϕ(z, t) is a continuous function of t, a ≤ t ≤ b, for fixed z and an analytic
function of z ∈ D for fixed t . Then

f (z) =
∫ b

a
ϕ(z, t)dt

is analytic in D and

f ′(z) =
∫ b

a

∂

∂z
(ϕ(z, t))dt . (1)

Proof

Since f is a continuous function of z, according to Morera’s Theorem (7.4), we need
only prove that

∫
� f (z)dz = 0 for any rectangle � ⊂ D. We can reverse the order

of integration, however, and write

∫
�

f (z)dz =
∫

�

(∫ b

a
ϕ(z, t)dt

)
dz =

∫ b

a

(∫
�

ϕ(z, t)dz

)
dt
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since ϕ is continuous in t and in z. Thus, since ϕ is analytic in z,

∫
�

f (z)dz =
∫ b

a
0 dt = 0

We leave it as an exercise to show that f ′ is given by the formula in (1). �

EXAMPLES

1. f (z) = ∫ 1
0 dt/(t − z) is analytic in D = C\ [0, 1].

In fact, direct integration shows that f (z) = log(1 − 1/z), and we can use
Theorem 10.8 to show that f is analytic in D. Recall then that �Arg(1 − 1/z),
as z traverses a closed curve, gives the number of zeroes minus the number of
poles of 1 − 1/z that lie inside the curve. Yet if the curve is a simple closed curve
encircling the interval [0, 1], because 1 − 1/z has one zero and one pole inside,
�Arg(1 − 1/z) = 0. The same argument shows that f has a jump discontinuity
of 2πi as z crosses through any point x, 0 < x < 1 from the upper to the lower
half-plane.

2. g(z) = ∫ ∞
0 dt/(et − z) is analytic in C\ [1,∞). Although g is given by an

improper integral, it is the uniform limit of

gN (z) =
∫ N

0

dt

et − z

on any compact subset of C\ [1,∞), and hence g is analytic. As we shall see
below, g has a “jump” of 2π i/x as z crosses from the upper half-plane to the
lower half-plane through any point x > 1. ♦

17.10 Proposition

Suppose that f and g are continuous real-valued functions on [a, b] and that f ′ > 0
is also continuous. Then

F(z) =
∫ b

a

g(t)

f (t) − z
dt

is analytic outside the interval [α, β] where α = f (a), β = f (b) and

lim
y→0+ [F(x + iy) − F(x − iy)] = 2π i

g( f −1(x))

f ′( f −1(x))
for all x ∈ (α, β).

Proof

The analyticity of F is proven in Theorem 17.9. By rationalizing the denominator,
we obtain

F(x + iy) =
∫ b

a

[ f (t) − x] g(t)

[ f (t) − x]2 + y2
dt + iy

∫ b

a

g(t)dt

[ f (t) − x]2 + y2
.
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Hence

F(x + iy) − F(x − iy) = 2iy
∫ b

a

g(t)dt

[ f (t) − x]2 + y2
,

and setting t = f −1(u), α = f (a), β = f (b)

F(x + iy) − F(x − iy) = 2i
∫ β

α

yg( f −1(u))du

f ′( f −1(u))
[
(u − x)2 + y2

] .

We leave it as an exercise to complete the proof by showing that

∫ β

α

h(u)y

(u − x)2 + y2 du → πh(x)

as y → 0 for any continuous function h on [α, β] and α < x < β. �

17.3 Analytic Functions Defined by Dirichlet Series

Series of the form ∞∑
n=1

an

nz

are known as Dirichlet Series. Note that n−z = exp(−z log n) represents an entire
function for every positive integer n. (log n is chosen as the principal value; i.e., log n
is real-valued, so n−z is positive for all real z. The coefficients an , of course, can be
any complex constants.) Since the partial sums are entire, a function f (z), defined
by a Dirichlet series, is analytic in any region where the series converges uniformly.
According to the theorems below, the natural regions of convergence for Dirichlet
series are half-planes of the form Re z > x0, much as discs centered at the origin are
the natural regions associated with power series.

17.11 Theorem

If
∑∞

n=1
an

nz
converges for z = z0, then it converges for all z in the half-plane H =

{z :Re z > Re z0}.Moreover, the convergence is uniform in any compact subset of H.

Proof

To show that
∑∞

n=1
an

nz
converges, we will show that the partial sums form a Cauchy

sequence. That is, we will show that

∣∣∣∣∣
N∑

n=M

an

nz

∣∣∣∣∣ =
∣∣∣ aM

Mz
+ · · ·aN

Nz

∣∣∣
is arbitrarily small for sufficiently large values of M .
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Our proof is based on “summation by parts” and the following two observations:

(i) Since
∞∑

n=1

an

nz0

converges, there exists a positive constant A with

∣∣∣∣∣
T∑

n=1

an

nz0

∣∣∣∣∣ < A (2)

for all positive integers T .
(ii) ∣∣∣∣ 1

nw
− 1

(n + 1)w

∣∣∣∣ <
|w|

nRe w+1

The above inequality follows easily from the usual M − L formula, since

1

nw
− 1

(n + 1)w
=

∫ n+1

n
wt−w−1dt .

To complete the proof, let

An =
n∑

k=1

ak

kz0
, bn = 1

nw
, with w = z − z0.

Then

aM

Mz
+ · · · + aN

Nz
= (AM − AM−1)bM + · · · + (AN − AN−1)bN

= −AM−1bM +
N−1∑
k=M

Ak(bk − bk+1) + AN bN . (3)

−AM−1bM and AN bN both go to zero for sufficiently large values of M and N ,
since

|Ak | < A for all k, and |bn| = 1/nRe (z−z0)

The remaining sum on the right side of (3) is also arbitrarily small for sufficiently
large M since, according to (i) and (ii), it is bounded in absolute value by

∞∑
k=M

A|z − z0|
k1+δ

, where δ = Re (z − z0),
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which is the “tail” of a convergent series. Hence

∞∑
n=1

an

nz

converges.
Finally, note that if K is a compact subset of H , there is a positive value of δ,

with Re (z − z0) > δ for all z in K , as well as a positive constant B with |z| < B
throughout K . Hence the expression in (3) will have a uniformly small absolute value
for all z in K , once M is sufficiently large. So the series converges to its limit function
uniformly in K . �

Note that in the proof of Theorem 17.11, we never actually used the convergence
of the Dirichlet series at z0. The only actual requirement for the conclusion was that
there was a finite upper bound for the absolute value of its partial sums.

EXAMPLE

Suppose an = (−1)n . Then
∑∞

n=1
an

nz
has bounded partial sums (although it diverges)

at z = 0. According to Theorem 17.11, then, it converges and represents an analytic
function in the right half-plane: Re z > 0. The fact that it diverges at z = 0 also
implies that its partial sums are not bounded for any value of z with a negative real
part. ♦

17.12 Theorem

If
∑∞

n=1
an

nz
converges for some, but not all, values of z, there exists a real constant

x0 (called the abscissa of convergence) such that
∑∞

n=1
an

nz
converges if Re z > x0

and diverges if Re z < x0.

Proof

Let x0 be the greatest lower bound of the real parts of all the complex numbers z for

which
∑∞

n=1
an

nz
converges. By Theorem 17.11, if x0 = −∞, the series converges

for all z. If the series neither converges for all z nor diverges for all z, −∞ < x0 < ∞
and the theorem follows from Theorem 17.11 �

The abscissa of convergence of the Dirichlet series bears an obvious analogy to
the radius of convergence of a power series. However, the analogy does not extend to
the idea of absolute convergence. Power series converge absolutely in any compact
subset of their region of convergence. On the other hand, consider the Dirichlet series

∞∑
n=1

(−1)n

nz

As we mentioned above, the series converges (and represents an analytic function)
in the right half-plane: Re z > 0. However, it converges absolutely only if Re z > 1.
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This is the general situation with Dirichlet series. In addition to the half-plane of
convergence H , there is a half-plane of absolute convergence H1, which may be a
proper subset of H .

17.13 Theorem

Suppose
∑∞

n=1
an

nz converges absolutely for some, but not all, values of z. Then there

exists a constant x1 (called the abscissa of absolute convergence) such that
∑∞

n=1
an

nz

converges absolutely if Re z > x1 and does not converge absolutely if Re z < x1.

Proof

∣∣∣an

nz

∣∣∣ = |an|
nx

So if
∑∞

n=1
an

nz
is absolutely convergent at z0, it is also absolutely convergent at

all points z with Re z ≥ Re z0. The theorem follows with x1 equal to the great-

est lower bound of the real parts of all complex z for which
∑∞

n=1
an

nz
converges

absolutely. �

Note that if the coefficients an are all positive, the abscissas of convergence and
absolute convergence must be identical. Otherwise there would be a real number x
between them where the Dirichlet series is convergent but not absolutely convergent.
But this is obviously impossible since the terms in the Dirichlet series, for real values
of z, are all positive.

EXAMPLE

The function ζ(z) is defined by the Dirichlet series
∑∞

n=1
1

nz
. This series converges

absolutely for Re z > 1, and diverges if Re z < 1. ♦

Since Dirichlet series converge uniformly within their half-plane of convergence,

they can be differentiated term-by-term. So if f (z) = ∑∞
n=1

an

nz
, then

f ′(z) =
∞∑

n=1

−an log n

nz
.

For any value of z within the half-planes of convergence for two Dirichlet series,
we have : ∞∑

n=1

an

nz
+

∞∑
n=1

bn

nz
=

∞∑
n=1

an + bn

nz
.

We can also multiply two Dirichlet series. Rewriting the product as another Dirich-
let series involves a rearrangement of the terms, which is justified if the two series
are absolutely convergent. Hence, within the half-planes of absolute convergence,



Exercises 255

we have ∞∑
n=1

an

nz

∞∑
n=1

bn

nz
=

∞∑
n=1

cn

nz

with cn defined as the “convolution” of an and bn. That is,

cn =
∑
d |n

adbn/d

where the sum is taken over all the positive divisors of n.

EXAMPLE

ζ 2(z) =
∞∑

n=1

1

nz

∞∑
n=1

1

nz
=

∞∑
n=1

d(n)

nz

where d(n) equals the number of positive divisors of n.

Exercises

1. Prove ∞∏
k=2

(
1 − 1

k2

)

converges by finding an explicit formula for PN .
2. As above, prove

∞∏
k=2

[
1 + (−1)k

k

]

converges.

3.* Prove that
∏
n

(1 + i

n
) diverges, but

∏
n

|1 + i

n
| converges.

4. Show that if
∑∞

k=1 zk converges and
∑∞

k=1 |zk |2 converges, then
∏∞

k=1(1 + zk) converges.
5. Show that ∞∏

k=2

[
1 + (−1)k

√
k

]

diverges even though
∞∑

k=2

(−1)k
√

k

converges.

6. Prove that (1 +z)(1+z2)(1+z4) . . . = ∏∞
k=0(1+z2k

) converges uniformly on compacta to 1/(1−z)
in |z| < 1. [Hint: Find PN .]

7. Define an entire function g with single zeroes at and only at all the “squares” λk = k2; k = 1, 2, . . ..
8. Show that one solution to (7) is given by sin π

√
z/π

√
z.

9. Prove that

cos πz =
∞∏

k=0

[
1 − 4z2

(2k + 1)2

]
.
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10. a. Define a function f , analytic in |z| < 1 and such that

f (z) = 0 if and only if z = 1 − 1

k
; k = 1, 2, . . . .

[Hint: Find an entire function g with zeroes at λk = k, k = 1, 2, . . . and consider f (z) =
g(1/(1 − z)).]

b. Generalize the above results.
11. Given F(z) = ∫ b

a ϕ(z, t)dt . Derive the formula for F ′(z) by writing

F ′(z) = 1

2π i

∫
C

F(ζ )

(ζ − z)2
dζ = 1

2π i

∫
C

(∫ b

a

ϕ(ζ, t)

(ζ − z)2
dt

)
dζ

and switching the order of integration.
12. Complete Proposition 17.10 by splitting

∫ β

α

h(u)ydu

(u − x)2 + y2
into

∫ x−ε

α
+

∫ x+ε

x−ε
+

∫ β

x+ε
.

.
13. Show that

f (z) =
∫ 1

0

dt

1 − zt

is analytic outside [1,∞]. Find the discontinuity of f as z “crosses” a point x > 1.
14.* a. Let φ(n) be the Euler totient function; i.e., the number of positive integers not exceeding n, which

are relatively prime to n. Prove that
∞∑

n=1

φ(n)

nz

is absolutely convergent for Re z > 2.

b. It can be shown that
∑

d|n φ(d) = n, for all n ≥ 1 [Apostol, p.26]. Show that ζ(z)
∑∞

n=1
φ(n)

nz =
ζ(z − 1), for Re z > 2.



Chapter 18
Analytic Continuation; The Gamma
and Zeta Functions

Introduction

Suppose we are given a function f which is analytic in a region D. We will say
that f can be continued analytically to a region D1 that intersects D if there exists a
function g, analytic in D1 and such that g = f throughout D1∩D. By the Uniqueness
Theorem (6.9) any such continuation of f is uniquely determined. (It is possible,
however, to have two analytic continuations g1 and g2 of a function f to regions D1
and D2 respectively with g1 �= g2 throughout D1 ∩ D2. See Exercise 1.)

The Schwarz Reflection Principle (7.8) is an example of how, in some cases, an
analytic function can be continued beyond its original domain of analyticity. In this
chapter, we first examine the possibility of such “extensions” for functions given
by power series. We then consider the classical Gamma and Zeta functions, defined
originally by a definite integral and a Dirichlet series, respectively.

18.1 Power Series

As we have seen in Chapter 2, a power series,
∑∞

n=0 anzn , may converge at some
or all or even none of the points on its circle of convergence. As the examples
below indicate, the convergence or divergence of the power series at a point does
not determine whether the function f (z) = ∑∞

n=0 anzn , can or cannot be continued
beyond that point.

i.

f (z) = 1

1 − z
=

∞∑
n=0

zn for |z| < 1.

Although the power series diverges at every point on the unit circle, f is analytic
throughout the punctured plane z �= 1.

ii.
∑∞

n=1(z
n/n2) converges at all points on the unit circle; however, g(z) cannot be

continued analytically to a domain including z = 1 since

g′′(z) =
∞∑

n=0

(n + 1)zn

n + 2
→ ∞ as z → 1−.

257
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18.1 Definition

Suppose that f is analytic in a disc D and that z0 ∈ ∂ D. Then f is said to be regular
at z0 if f can be continued analytically to a region D1 with z0 ∈ D1. Otherwise, f is
said to have a singularity at z0.

18.2 Theorem

If
∑∞

n=0 anzn has a positive radius of convergence R, f (z) = ∑∞
n=0 anzn has

at least one singularity on the circle |z| = R.

Proof

If f were regular at every point on the circle of convergence, then for each z with
|z| = R, there would exist some maximal εz such that f could be continued to a
region containing D(z; εz). Clearly εz would depend continuously on z so that, since
the circle |z| = R is compact,

min|z|=R
εz = ε > 0.

Hence, a function g would exist, analytic in D(0; R + ε) and such that g = f in
D(0; R). But then g must have a power series representation

∑∞
n=0 bnzn convergent

for |z| < R+ε. Yet since g(z) = f (z) = ∑∞
n=0 anzn for |z| < R, by the Uniqueness

Theorem for Power Series (2.12), an ≡ bn . Thus the radius of convergence would
be R, and we have arrived at a contradiction. �

In general, it is difficult to determine when a function has a singularity at a par-
ticular point on the circle of convergence of its power series. The following theorem
is one of the few results we have in this direction.

18.3 Theorem

Suppose that
∑∞

n=0 anzn has a radius of convergence R < ∞ and that an ≥ 0 for
all n. Then f (z) = ∑∞

n=0 anzn has a singularity at z = R.

Proof

By Theorem 18.2, f has a singularity at some point Reiα . If we consider the power
series for f about a point ρeiα , with 0 < ρ < R:

f (z) =
∞∑

n=0

bn(z − ρeiα)n =
∞∑

n=0

f (n)(ρeiα)

n!
(z − ρeiα)n

we see that the radius of convergence of this series is R − ρ. (If it were larger, the
power series would define an analytic extension of f beyond Reiα). Note, however,
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that for any non-negative integer j ,

f ( j )(ρeiα) =
∞∑

n= j

n(n − 1) . . . (n − j + 1)an(ρeiα)n− j

so that, since an ≥ 0,
| f ( j )(ρeiα)| ≤ f ( j )(ρ).

Hence the power series expansion of f about ρ,

∞∑
n=0

f (n)(ρ)

n!
(z − ρ)n,

must have radius of convergence R − ρ. On the other hand, if f were regular at
z = R, the above power series would converge in a disc of radius greater than R −ρ;
therefore, f is singular at z = R. �

18.4 Definition

If f (z) = ∑∞
n=0 anzn has a singularity at every point on its circle of convergence,

then that circle is called a natural boundary of f .

EXAMPLE ∞∑
k=0

z2k = z + z2 + z4 + z8 + · · ·

has radius of convergence 1. Yet as z → z0, where z0 is any 2nth root of unity, all
the terms of the power series past z2n

approach 1, so that f (z) → ∞. Hence f is
singular at every 2nth root of unity, n ≥ 1. Since these are dense on the unit circle,
that circle is a natural boundary for the power series. ♦

Similarly, if we set g(z) = ∑∞
k=0(z

2k
/2k) it is clear that g has the unit circle as a

natural boundary since g′(z) = (1/z)
∑∞

k=0 z2k → ∞ as z approaches any 2nth root

of unity. If we set h(z) = ∑∞
k=0(z

2k
/2k2

) then, while h has radius of convergence 1,
all of its derivatives are bounded throughout |z| < 1. Nevertheless, according to the
following theorem, h too has a natural boundary on the unit circle.

18.5 Theorem

Suppose

f (z) =
∞∑

k=0

ckznk wi th lim
k→∞

nk+1

nk
> 1.

Then the circle of convergence of the power series is a natural boundary for f .
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Proof

Since the result is independent of ck , we may assume without loss of generality that
the radius of convergence is 1. Also, neglecting finitely many terms if necessary, we
will assume that for some δ > 0 and for all k, nk+1/nk > 1 + δ. Finally, it suffices
to show that f is singular at the point z = 1. For the same result, applied to the series∑∞

k=0 ck(ze−iθ )nk shows that f is singular at any point z = eiθ .
Choose an integer m > 0 such that (m + 1)/m < 1 + δ and consider the power

series g(w) obtained by setting

z = wm + wm+1

2

and expanding the terms (
wm + wm+1

2

)nk

in the power series of f :

g(w) = f

(
wm + wm+1

2

)
= c0w

mn0

2n0
+ c0n0w

mn0+1

2n0
+ · · · + c0

2n0
wmn0+n0

+ c1

2n1
wmn1 + c1n1

2n1
wmn1+1 + · · · + c1

2n1
wmn1+n1

+ · · · .

Note that in this expression no two terms involve the same power of w, since

mnk+1 > mnk + nk holds whenever
nk+1

nk
>

m + 1

m
.

If |w| < 1, then
|w|m + |w|m+1

2
< 1,

and since f (z) is absolutely convergent for |z| < 1,

∞∑
k=0

|ck|
(

|w|m + |w|m+1

2

)nk

converges.

Hence for |w| < 1, g(w) is absolutely convergent. On the other hand, if we take w
real and greater than 1, then

wm + wm+1

2
> 1

so that ∞∑
k=0

ck

(
wm + wm+1

2

)nk
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diverges. Note, though, that the j th partial sums s j of the above series are exactly
the n j (m + 1)-st partial sums of the power series for g. Hence the series for g(w)
diverges and g, too, has radius of convergence 1. According to Theorem 18.2, g must
have a singularity at some point w0 with |w0| = 1. If w0 �= 1, then∣∣∣∣∣w

m
0 + wm+1

0

2

∣∣∣∣∣ < 1

and since f is analytic in |z| < 1, g is regular at w0. Thus g must have a singularity
at w0 = 1 and since

g(w) = f

(
wm + wm+1

2

)
,

f (z) must have a singularity at z = 1. �

The Method of Moments. Suppose we are given a power series f (z) = ∑∞
n=0 cnzn

where the coefficients cn are the “moments” of a given continuous function.
For example, suppose that there exists a continuous function g on [0, 1] such that

cn =
∫ 1

0
g(t) · tn dt .

Then

f (z) =
∞∑

n=0

[∫ 1

0
g(t)tn dt

]
zn

=
∞∑

n=0

[∫ 1

0
g(t)(tz)n dt

]
,

and, interchanging the order of summation and integration, we find that

f (z) =
∫ 1

0

[ ∞∑
n=0

g(t)(tz)n

]
dt

=
∫ 1

0

g(t)

1 − tz
dt .

(The interchange of summation and integration is easy to justify if |z| < 1.) More-
over, this integral form serves to define an analytic extension of the original power
series.

EXAMPLES
i. Consider

f (z) =
∞∑

n=0

zn

n + 1
, |z| < 1.
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Since
1

n + 1
=

∫ 1

0
tn dt,

g(t) = 1 and

f (z) =
∫ 1

0

dt

1 − tz
for |z| < 1.

The integral above is analytic throughout the complex plane minus [1, ∞).
According to Proposition 17.10 this extension of f has a discontinuity at every
point of the interval [1, ∞).

ii. Since ∫ ∞

0
e−nt2

dt = 1√
n

∫ ∞

0

e−u

2
√

u
du,

1√
n

= c
∫ ∞

0
e−nt2

dt,

where c is a positive constant. (We will show in the next section that the value of
c is 2/

√
π.) Hence

∞∑
n=1

zn

√
n

= c
∞∑

n=1

[∫ ∞

0
(ze−t2

)n dt

]

= c
∫ ∞

0

[ ∞∑
n=1

(ze−t2
)n

]
dt, for |z| < 1

= c
∫ ∞

0

z

et2 − z
dt . ♦

Again, while the interchange of summation and integration is valid only in the
original domain |z| < 1, the integral defines an analytic extension to the larger region:
C\[1, ∞). Again, by 17.10, the integral has a discontinuity at every point of [1, ∞).

Many problems of this type can be solved by expressing the coefficients cn in the
form

cn =
∫ ∞

0
e−nt g(t) dt .

(In this case, cn is obtained as the “Laplace Transform” of g at the integer n.) Some
well-known formulae are listed below:

1

n + a
=

∫ ∞

0
e−nt e−at dt

a

n2 + a2
=

∫ ∞

0
e−nt sin at dt

n

n2 + a2
=

∫ ∞

0
e−nt cos at dt

1

n p
= cp

∫ ∞

0
e−nt t p−1 dt, p > 0.
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(The constants cp are determined in terms of the � function which we will study in
the next section. See Exercise 5.)

EXAMPLE

Let

f (z) =
∞∑

n=0

n2

n2 + 1
zn.

Then

f (z) = z
d

dz

( ∞∑
n=0

nzn

n2 + 1

)
.

Using one of the above formulae

∞∑
n=0

n

n2 + 1
zn =

∞∑
n=0

[∫ ∞

0
(e−nt cos t)zn dt

]

=
∫ ∞

0

et cos t

et − z
dt for |z| < 1.

Thus

f (z) = z
∫ ∞

0

et cos t

(et − z)2
dt .

[Alternatively, we could write

f (z) =
∞∑

n=0

(
1 − 1

n2 + 1

)
zn = 1

1 − z
−

∞∑
n=0

1

n2 + 1
zn, etc. . . . .] ♦

18.2 Analytic Continuation of Dirichlet Series

Dirichlet series, unlike power series, do not necessarily have a singularity on their
boundary of convergence. For example, we will see in the next section that

∞∑
n=1

(−1)n

nz

can actually be continued to the full complex plane. However, if all the coefficients
an are positive, we have the following analogue of Theorem 18.3.

18.6 Landau’s Theorem

Suppose that an ≥ 0 for all n, and that b is the real boundary point of the region of
convergence of

f (z) =
∞∑

n=1

an

nz
.

Then f has a singularity at b.
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Proof

We will show that if f is regular at b; that is, if it can be analytically extended to
a region containing the point b, then the Dirichlet series will converge at some real
number less than b, which contradicts the definition of b. Toward that end, choose
a real number a > b, and consider the power series representation of f , centered at
z = a. Since

f (k)(z) =
∞∑

n=1

an(− log n)k

nz
,

the power series representation for f in a disc centered at z = a is

f (z) =
∞∑

k=0

ck(z − a)k with ck =
∞∑

n=1

an(− log n)k

nak!
(1)

If f is regular at z = b, the radius of convergence of the series in (1) is greater
than a − b so that the series converges at a point of the form b − ε, with ε > 0.
That is,

∞∑
k=0

(

∞∑
n=1

an(log n)k

nak!
)(a − b + ε)k (2)

converges. Since an ≥ 0 for all n, all the terms in (2) are nonnegative. Hence it is an
absolutely convergent series and, as such, its terms can be rearranged in any form.
Suppose then that we first sum over k. Then

∞∑
k=0

(log n)k

k!
)(a − b + ε)k = e(a−b+ε) logn = na−b+ε

and the convergent series in (2) becomes

∞∑
n=1

anna−b+ε

na

which is exactly the Dirichlet series with z = b − ε. �

18.7 Corollary

If a Dirichlet series has nonnegative coefficients and can be analytically continued
to the entire complex plane, then it converges throughout the complex plane.

Proof

If the series did not converge for all z, according to Theorem 18.6, the function
represented by the Dirichlet series would have a singularity at the real boundary
point of its region of convergence. �
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18.3 The Gamma and Zeta Functions

The Gamma Function. Consider the integral

In =
∫ ∞

0
e−t tndt n = 0, 1, 2 . . . .

Integration by parts shows that

In = n
∫ ∞

0
e−t tn−1dt = nIn−1.

Since I0 = 1, the above recurrence relation implies

In = n!

for all positive integers n. Moreover, the above integral allows us to extend this
“factorial” function to the complex plane. Note that

|t z | = |ez log t | = e(Re z) log t = tRe z for t ≥ 0

so that if we replace n by the complex variable z, the resulting function f (z) =∫ ∞
0 e−t t zdt is uniformly convergent for Re z > −1. A translate of this function,

�(z) =
∫ ∞

0
e−t t z−1dt, (1)

is the classical Gamma Function. Thus � is analytic in the right half-plane Re z > 0
and �(n) = (n − 1)! for all positive integers n.

It is clear that � has a singularity at z = 0 since

�(ε) =
∫ ∞

0

e−t

t1−ε
dt → ∞ as ε → 0+.

On the other hand, although (1) defines � only in the right half-plane, the function
can be extended to the whole plane with the exception of isolated poles. We may
carry out this extension in several ways.

I. Integration by parts shows that

�(z + 1) = z�(z) for Re z > 0,

or equivalently,

�(z) = �(z + 1)

z
for Re z > 0. (2)

Identity (2) allows us to define an extension of � to the half-plane Re z > −1, z �= 0.
This extension is analytic for −1 < Re z < 0 and is continuous along the nonzero
y-axis since the “original” � is continuous on the line Re z = 1. That is,

lim
z→iy

�(z) = lim
z→iy

�(z + 1)

z
= �(iy + 1)

iy
= �(iy), y �= 0.
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Hence by Morera’s Theorem the extended function is analytic throughout Rez > −1,
z �= 0. Identity (2) also reveals the nature of the singularity at z = 0, since as z → 0

�(z) = �(z + 1)

z
∼ �(1)

z
= 1

z
.

Hence � has a simple pole with residue 1 at z = 0.
Continuing in the same manner, we can define

�(z) = �(z + 1)

z
= �(z + 2)

z(z + 1)
for Re z > −2,

�(z) = �(z + 3)

z(z + 1)(z + 2)
for Re z > −3, . . . ,

�(z) = �(z + k + 1)

z(z + 1) · · · (z + k)
for Re z > −k − 1. (3)

Note then that the only singularities are the isolated (simple) poles at the non-positive
integers, and as z → −k

�(z) ∼ �(1)

(−k)(−k + 1) · · · (−1)(z + k)
= (−1)k

k!(z + k)
.

Hence
Res(�(z); −k) = (−1)k

k!
.

II. Set �(z) = �1(z) + �2(z), where

�1(z) =
∫ 1

0
e−t t z−1dt

�2(z) =
∫ ∞

1
e−t t z−1dt, Re z > 0.

Since |t z−1| = tRe z−1, �2 is uniformly convergent for all z and represents an entire
function. Thus, to extend �, we need only to extend �1. But for Re z > 0

�1(z) =
∫ 1

0

(
1 − t + t2

2!
− + · · ·

)
t z−1dt

=
∫ 1

0
t z−1dt −

∫ 1

0
t zdt +

∫ 1

0

t z+1

2!
− + · · ·

= 1

z
− 1

(z + 1)
+ 1

2!(z + 2)
− + · · · .

The above series defines an analytic extension of �1 to the whole plane except for
isolated poles at 0, −1, −2, . . .. Note again that

Res(�; −k) = Res(�1; −k) = (−1)k

k!
.
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III. Using the fact that (1 − t/n)n converges to e−t as n → ∞, one can show
that

�(z) = lim
n→∞

∫ n

0
t z−1

(
1 − t

n

)n

dt

= lim
n→∞

1

nn

∫ n

0
t z−1(n − t)ndt, Re z > 0.

(See Exercise 7.)
Integrating by parts, we have

�(z) = lim
n→∞

1

nn
· n

z

∫ n

0
t z(n − t)n−1dt

= lim
n→∞

1

nn

n(n − 1) · · · 1

z(z + 1) · · · (z + n − 1)

∫ n

0
t z+n−1dt

= lim
n→∞

nz

z

(
1

z + 1

)(
2

z + 2

)
· · ·

(
n

z + n

)
.

Thus,
1

�(z)
= lim

n→∞ zn−z(1 + z)
(

1 + z

2

)
· · ·

(
1 + z

n

)

= lim
n→∞ zn−z

n∏
k=1

(
1 + z

k

)
.

To examine the above limit, we insert “convergence factors” e−z/k and obtain

1

�(z)
= lim

n→∞ zn−zez(1+1/2+···+1/n)
n∏

k=1

(
1 + z

k

)
e−z/k

= lim
n→∞ ez(1+1/2+···+1/n−log n)

[
z

n∏
k=1

(
1 + z

k

)
e−z/k

]
.

By the lemma below, 1+ 1
2 +· · ·+1/n − log n approaches a positive limit γ (known

as the Euler constant) so that

1

�(z)
= zeγ z

∞∏
k=1

(
1 + z

k

)
e−z/k .

Using the above identity to define an extension of � to the left half-plane, we obtain

1

�(z)�(−z)
= −z2

∞∏
k=1

(
1 − z2

k2

)
= −z

sin πz

π
.

Thus
�(z)�(−z) = −π

z sin πz
,
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and since �(1 − z) = −z�(−z),

�(z)�(1 − z) = π

sin πz
. (4)

Two immediate consequences of identity (4) are

i. � is zero-free,
ii. �( 1

2 ) = √
π . Applying the identity �(z + 1) = z�(z), we have also �(3/2) =

1
2

√
π, �(5/2) = 3

√
π/4, etc.

18.8 Lemma

If sn = 1 + 1
2 + · · · + 1/n − log n, then limn→∞ sn exists. This limit is called the

Euler constant, γ .

Proof

tn = 1 + 1
2 + · · ·+ 1/(n − 1)− log n increases with n. Geometrically this is obvious

since tn represents the area of the n −1 regions between the upper Riemann sum and
the exact value for

∫ n
1 (1/x) dx . We can write

tn =
n−1∑
k=1

[
1

k
− log

(
k + 1

k

)]

and

lim
n→∞ tn =

∞∑
k=1

[
1

k
− log

(
1 + 1

k

)]
.

The series above converges to a positive constant since

0 <
1

k
− log

(
1 + 1

k

)
= 1

2k2
− 1

3k3
+ 1

4k4
− + · · · ≤ 1

2k2
.

This proves the lemma, because limn→∞ sn = limn→∞ tn . �

The Zeta Function. Recall that the Zeta Function ζ(z) is defined by the Dirichlet
series

ζ(z) = 1 + 1

2z
+ 1

3z
+ · · · , Re z > 1.

This function is of special interest in number theory because it provides a link between
the prime numbers and analytic function theory. To see this connection, note that

1

2z
ζ(z) = 1

2z
+ 1

4z
+ 1

6z
+ · · ·

so that (
1 − 1

2z

)
ζ(z) = 1 + 1

3z
+ 1

5z
+ · · · .
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Similarly, (
1 − 1

2z

)(
1 − 1

3z

)
ζ(z) = 1 + 1

5z
+ 1

7z
+ 1

11z
+ · · · ,

and because of the unique prime factorization of the integers, we can continue in-
definitely to obtain (in the limit)

∏
p prime

(
1 − 1

pz

)
ζ(z) = 1.

That is

ζ(z) = 1

/ ∏
p prime

(
1 − 1

pz

)
, Re z > 1. (5)

To best exploit identity (5), we need to extend ζ beyond the domain Re z > 1. Note
that ζ does have a singularity at z = 1 since ζ(1 + ε) → ∞ as ε → 0+. We shall
see below that this is the only singularity of the ζ function.

We extend ζ by the method of moments. Note that∫ ∞

0
e−nt t z−1dt = 1

nz

∫ ∞

0
e−t t z−1dt = �(z)

nz

so that

�(z)
∞∑

n=1

1

nz
=

∫ ∞

0
t z−1

( ∞∑
n=1

e−nt

)
dt

=
∫ ∞

0

t z−1

et − 1
dt .

That is,

ζ(z) = 1

�(z)

∫ ∞

0

t z−1

et − 1
dt

or

ζ(z) = 1

�(z)

[∫ 1

0

t z−1

et − 1
dt +

∫ ∞

1

t z−1

et − 1
dt

]
. (6)

Recall that 1/�(z) (with the appropriate limiting value of zero at the poles of �) is
entire, as is

∫ ∞
1 (t z−1/(et −1))dt . Furthermore, the Laurent Expansion for 1/(et −1)

around t = 0,

1

et − 1
= 1

t
+ A0 + A1t + A2t2 + · · · ,
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converges absolutely for t = 1 so that

∫ 1

0

t z−1

et − 1
dt =

∫ 1

0
(t z−2 + A0t z−1 + A1t z + · · · )dt

= 1

z − 1
+ A0

z
+ A1

z + 1
+ · · · (7)

provides an analytic extension of
∫ 1

0 (t z−1/(et − 1)) dt except for isolated poles.
According to (6), then

ζ(z) = 1

�(z)

[(
1

z − 1
+ A0

z
+ A1

z + 1
· · ·

)
+ g(z)

]
(8)

where g(z) is entire. Note that while he bracketed expression above has a simple
pole at z = 1 as well as at every non-positive integer, all these poles are cancelled
by the zeros of 1/�(z) except z = 1. Hence ζ has a single (simple) pole at z = 1
with residue 1.
For future reference, then, we record

18.9 Theorem

The only singularity of the Zeta function ζ(z) is a simple pole with residue 1 at z = 1.

According to (5), ζ is zero-free for Re z > 1. The celebrated Riemann hypothesis
asserts that all the complex zeroes of the Zeta function lie on the line Re z = 1

2 .
While this hypothesis has neither been proved nor disproved, the following theorem
offers an important extension of the zero-free region of ζ.

18.10 Theorem

ζ is zero-free throughout Re z ≥ 1.

Proof

A key element in the proof is the observation that if ζ(1 + ia) = 0, then the function
f (z) = ζ(z)ζ(z + ia) is entire. At z = 1, the pole of ζ(z) is cancelled by the zero
of ζ(z + ia). Also, since ζ(z) is real-valued for real z, according to the Schwarz
Reflection Principle, ζ(z) = ζ(z). Hence ζ(1 − ia) = 0, and the pole of ζ(z + ia)
at z = 1 − ia is cancelled by the zero of ζ(z) at that point. Note that f (z − ia) =
ζ(z − ia)ζ(z) will also be entire as will the product g(z) = f (z) f (z − ia) =
ζ 2(z)ζ(z + ia)ζ(z − ia). The desired contradiction will be based, in part, on the fact
that the Dirichlet series for g(z) has all nonnegative coefficients. To see that, we first
consider log(g(z)) which, according to Euler’s formua for ζ(z), is given by

log(g(z)) =
∑

p

[ − 2 log(1 − p−z) − log(1 − p−z+ia) − log(1 − p−z−ia)]

=
∑
p,n

1

npnz
(2 + p−ina + pina)
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The sum is taken over all primes p and all positive integers n. Since 2 + p−ina +
pina = 2 + 2 cos(na log p) ≥ 0, all of the coefficients in the above Dirichlet series
for log(g(z)) are nonnegative. But if a Dirichlet series S(z) = ∑

ann−z has all
nonnegative coefficients, so does

eS(z) =
∏

n

∑
k

ak
n

nkzk!

Hence g(z) represents an entire function whose Dirichlet series has all nonnegative
coefficients. According to Corollary 17.12, then, its Dirichlet series must converge
for all z! But this is clearly impossible. Since all of the coefficients of

g(z) =
(∑

n

n−z

)2 ∑
n

n−z−ia
∑

n

n−z+ia

are nonnegative, the sum is clearly positive for all real z. Moreover, the sum must
be larger than the sum over any subset of the positive integers. So if we consider
nonnegative real values of z and limit ourselves to the subseries corresponding to
integers n of the form 2k , we have

|g(z)| >
1

(1 − 2−z)2 · 1

1 − 2−z−ia
· 1

1 − 2−z+ia

Finally, since z is nonnegative, |(1 − 2−z−ia)(1 − 2−z+ia)| ≤ 4, and

|g(z)| >
1

4(1 − 2−z)2

Letting z → 0 through positive real values, then, shows that the Dirichlet series
for g diverges at 0. �

Exercises

1. Let f (z) = log z, Re z > 0, Im z > 0. Let g1 be the continuation of f to the plane minus the negative
axis (and 0) and let g2 be the continuation of f to the plane minus the negative imaginary axis (and 0).
Show that g1 �= g2 throughout the third quadrant.

2.* a. Suppose f (z) = ∑
an zn has radius of convergence 1 and assume that an analytic continuation

of f has a pole at z = 1. Show that
∑

an zn diverges at every point on the unit circle. (Hint:
Show that if {an} → 0, then (1 − z) f (z) → 0 as z → 1 from below, along the x−axis.)

b. Generalize the result; i.e. show that if f (z) = ∑
an zn has a positive radius of convergence and

an analytic continuation of
∑

an zn has a pole at any point on its circle of convergence, then∑
an zn diverges at all points on the circle of convergence.

3. Prove: If
∑∞

n=0(−1)nan zn, an ≥ 0 has a finite radius of convergence, then it has a singularity on the
negative axis.
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4. Define an analytic continuation of

a.
∑∞

n=1

zn

3√n
, b.

∑∞
n=0

zn

n2 + 1
.

5. Show that ∫ ∞
0

e−nt t p−1dt = �(p)

n p for p > 0.

6. Use the Gamma Function to show ∫ ∞
0

e−t2
dt =

√
π

2
.

7. Prove

�(z) = lim
n→∞

∫ n

0
t z−1

(
1 − t

n

)n
dt, Re z > 0.

[Hint: First show, for t ≤ n,

0 ≤ e−t/n −
(

1 − t

n

)
≤ t2

2n2

and then use the identity
an − bn ≤ nan−1(a − b) for a > b

to show ∣∣∣∣e−t −
(

1 − t

n

)∣∣∣∣ ≤ e−t

(
et2

2n

)
· ]

8.* Use the product formula for 1/�(z) to prove that �′(1) = −γ.

9. Show that

1 − 1

2z + 1

3z − 1

4z + − · · ·
can be continued analytically to the full plane. That is, show that it represents an entire function.

10. Use identity (5) to prove
∑

p prime(1/p) diverges.



Chapter 19
Applications to Other Areas of Mathematics

Introduction

We have already seen, especially in Chapter 11, how the methods of complex analysis
can be applied to the solution of problems from other area of mathematics. In this
chapter we will get some insight into the fantastic breadth of such applications. For
that reason, the topics chosen are rather disparate. Section 19.1 involves calculating
the total variation of a real function, and illustraties how the methods of Chapter 11
can be applied to yet another nontypical problem. Section 19.2 offers a proof of
the classic Fourier Uniqueness Theorem using two preliminary results from real
analysis and a surprising application of Liouville’s theorem. In Section 19.3 we see
how the use of a generating function allows complex analytic results to be applied
to an infinite system of (real) equations. Generating functions are also the key to
the four different problems in number theory that comprise section 19.4. Finally, in
section 19.5, we offer a well-trimmed analytic proof of the prime number theorem
based on properties of the Zeta function and another Dirichlet series.

19.1 A Variation Problem

PROBLEM

Calculate the total variation of sin2 x/x2 on (−∞, ∞).

Note: (sin2 x/x2) is nonnegative and clearly has one local maximum between each
pair of adjacent zeros. Hence the total variation is simply twice the sum of its max-
imum values. This problem is related to the type of sums encountered in 11.2. The
novelty here lies in the fact that while we will not explicitly determine the maximum
points xk ; k = 1, 2, . . . , we will be able to find the desired sum:

∞∑
k=1

sin2 xk

x2
k

.

273
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SOLUTION

The maximum points of sin2 x/x2 are given by those zeros of its derivative that are
not zeroes of sin x/x , and these are the (real) solutions of x cos x − sin x = 0, or
simply tan x = x . We leave it as an exercise to verify that tan z = z has no nonreal
solutions. Thus we need only sum the values of sin2 x/x2 at the zeroes of tan z − z.

Except for z = 0, all the zeroes of tan z − z are simple. We recall that f ′/ f has
residue 1 at every simple zero of f , thus we see that

∑ sin2 xk

x2
k

= 1

2π i

∫
CN

f1(z)dz − Res( f1; 0)

where

f1(z) = sin2 z tan2 z

z2(tan z − z)
and where the sum is taken over all the nonzero maximum points xk that lie inside
CN . However, we must find a sequence of suitable contours CN which contain all the
points xk (in the limit) and are such that limN→∞

∫
CN

f1(z)dz can be determined.
If we take CN to be the square of side 2πN centered at z = 0, it follows that

| tan z| < 2 throughout CN . [See 11.2 and use the fact that tan z = cot(π/2 − z)].
However, there are several difficulties. Not only is sin z unbounded throughout CN ,
but f1(z) introduces an infinity of residues at the poles of tan z. To overcome these
difficulties we replace

sin2 z tan2 z

z2

by another analytic function with the same values at the zeroes of tan z − z. Thus we
substitute z2 for tan2 z and since

sin2 z = tan2 z

1 + tan2 z
,

we consider

f2(z) = z2

(1 + z2)(tan z − z)
.

Again, however, there is a difficulty. While f2(z) → 0 along CN (as N → ∞), it

is not true that
∫

CN
f2(z)dz → 0 since for large z, f2(z) ∼ −1/z. (See Exercise 2.)

Hence we make one more adjustment and consider finally

f3(z) = z tan z

(1 + z2)(tan z − z)
.

Note that f3 is analytic at the poles of tan z and that | f3(z)| ≤ A/|z|2 throughout
CN . Thus it follows that ∫

CN

f3(z)dz → 0 as N → ∞, (1)
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while, on the other hand,∫
CN

f3(z)dz → 2π i
∑

Res( f3(z))

= 2π i

⎡
⎢⎣ ∞∑

k=1
xk �=0

sin2 xk

x2
k

+ Res( f3; 0) + Res( f3; i) + Res( f3; −i)

⎤
⎥⎦ . (2)

A direct calculation shows that Res( f3; i) = Res( f3; −i) = (1 − e2)/4. Expanding

f3(z) = z sin z

(1 + z2)(sin z − z cos z)

around z = 0, we see that Res( f3; 0) = 3. Since sin2 x/x2 = 1 at x = 0, a
comparison of (1) and (2) shows that

Var

(
sin2 x

x2

)
= 2

∞∑
k=1

sin2 xk

x2
k

= e2 − 5. ♦

19.2 The Fourier Uniqueness Theorem

Suppose f is Lebesgue-integrable on (−∞,∞). Then, by definition,∫ ∞
−∞ | f (t)|dt < ∞, and for any real x,

∫ ∞
−∞ f (t)eixt dt exists. The function f̂ (x)

defined as f̂ (x) = ∫ ∞
−∞ f (t)eixt dt is called the Fourier transform of f . The ques-

tion we consider is whether f is uniquely determined by f̂ . That is, does f̂ ≡ 0
imply f ≡ 0 in the L1 sense: that is, almost everywhere? The answer is yes and is
usually found by appealing to an inversion formula which allows one to recover f
from f̂ . The analytic proof below is somewhat more direct. We do, however, require
two elementary results from the Lebesgue theory.

19.1 Lemma

If gn(x) is a sequence of measurable functions such that |gn(x)| ≤ G(x), where
G(x) is integrable, for all values of x and n, and if

lim
n→∞ gn(x) = g(x)

for all x , then

lim
n→∞

∫ ∞

−∞
gn(x) dx =

∫ ∞

−∞
g(x) dx .
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Proof

See [Titchmarsh, p. 345]. �

19.2 Lemma

If f is integrable and if
∫ a
−∞ f (t)dt = 0 for all real a, then f = 0 almost everywhere.

Proof

[Titchmarsh, p. 360]. �

19.3 Fourier Uniqueness Theorem

If f is integrable and if

f̂ (x) =
∫ ∞

−∞
f (t)eixt dt ≡ 0,

then f = 0 almost everywhere.

Proof

By hypothesis, for any real a,∫ a

−∞
f (t)eix(t−a)dt = −

∫ ∞

a
f (t)eix(t−a)dt . (3)

If we set

L(z) =
∫ a

−∞
f (t)eiz(t−a)dt, R(z) = −

∫ ∞

a
f (t)eiz(t−a)dt,

then L(z) is defined for Im z ≤ 0 while R(z) is defined for Im z ≥ 0. Moreover
each is analytic in the interior of its domain, continuous to the boundary (according
to Lemma 19.1), and bounded by

∫ ∞
−∞ | f (t)|dt . Since, by (3), they agree on the

boundary, we can invoke Theorem 7.7 to prove that the “combined” function

F(z) =
{

L(z) Im z ≤ 0
R(z) Im z > 0

is entire. By Liouville’s Theorem (5.10), the boundedness of F implies that F is
constant. Finally, setting z = Ni we have F(Ni) = R(Ni) = ∫ ∞

a − f (t)e−N(t−a)dt
which approaches 0 as N → ∞, by Lemma 19.1. Hence F(z) ≡ 0. In particular,
setting z = 0 yields

F(0) =
∫ a

−∞
f (t)dt = 0.

Since this holds for all real a, according to Lemma 19.2, f = 0 almost
everywhere. �
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19.3 An Infinite System of Equations

Consider the infinite system of equations

a1 + b1 = 2

a2 + 2a1b1 + b2 = 4

a3 + 3a2b1 + 3a1b2 + b3 = 8

· · ·
an +

(
n
1

)
an−1b +

(
n
2

)
an−2b2 + · · · + bn = 2n.

· · ·
PROBLEM

Assuming a1 = b1 = 1 and ak, bk ≥ 0 for all k, does there exist a solution to the
system above other than an ≡ 1, bn ≡ 1? �

Note that if we do not insist ak, bk ≥ 0, there are an infinite number of solutions,
since each equation introduces two new unknowns. Somewhat surprisingly, then, the
answer to the given problem is no. (Somehow, any scheme to solve the equations
successively is doomed to eventually introduce negative values for ak or bk .)

SOLUTION

Assume the sequences {an} and {bn} yield a solution to the above system. To study
these sequences, we consider their “exponential generating functions”. That is, we
define

f (z) =
∞∑

n=0

anzn

n!
, g(z) =

∞∑
n=0

bnzn

n!

with a0 = b0 = 1. Since ak, bk ≥ 0, for all k, it follows that ak, bk ≤ 2k , so that
both f (z) and g(z) are entire functions.

Note that

f (z)g(z) =
∞∑

n=0

Cnzn where Cn =
n∑
j=0

an− jb j
(n − j)! j !

=
n∑
j=0

(
n
j

)
an− jb j

n!
,

so that according to the hypothesis

f (z)g(z) =
∞∑

n=0

2nzn

n!
= e2z.
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Thus f and g are entire functions with no zeros and both are of linear order. According
to Theorem 16.13, then,

f (z) = eαz+β and g(z) = eγ z+δ.

Since
f (0) = g(0) = a0 = b0 = 1,

f (z) = eαz and g(z) = eγz. On expanding

f (z) = eαz = 1 + αz + α2z2

2!
+ · · · = 1 + z + a2z2

2!
+ · · ·

g(z) = eγz = 1 + γz + γ 2z2

2!
+ · · · = 1 + z + b2z2

2!
+ · · ·

it follows that α = γ = 1 and hence an ≡ bn ≡ 1. ♦

19.4 Applications to Number Theory

Like the example in Section 19.3, all of the problems in this section involve sequences
of real numbers, and in each case we will consider an appropriate generating function.
Note, therefore, that the ordinary generating function of a sequence {cn} is the power
series

∑
cnzn.

I A Partition Problem

PROBLEM

Can the positive integers {1, 2, 3, . . .} be partitioned into a finite number of sets
S1, S2, . . . , Sk , each of which is an arithmetic progression - that is,

S1 = {a1, a1 + d1, a1 + 2d1, . . .}
S2 = {a2, a2 + d2, a2 + 2d2, . . .}

· · ·
Sk = {ak, ak + dk, ak + 2dk, . . .}

and such that there are no equal common differences (i.e. di �= d j for i �= j)?

Note that if we allowed equal common differences, the answer would be obviously
yes. For example, we could take S1 = { odd integers } and S2 = { even integers }.
With the given hypothesis, as we shall see, the answer is no.

SOLUTION

For any set S ={a, a + d, a + 2d, . . .}, consider the sequence {cn}, where cn = 1 if
n ∈ S, and cn = 0 otherwise. Then the generating function for the sequence {cn} is



19.4 Applications to Number Theory 279

the geometric series ∑
n∈S

zn = za

1 − zd

Assume that S1, S2, . . . , Sk (as above) partition the set of positive integers. Taking
the various generating functions, we would then have

∞∑
n=1

zn =
∑
n∈S1

zn +
∑
n∈S2

zn + · · · +
∑
n∈Sk

zn

or
z

1 − z
= za1

1 − zd1
+ za2

1 − zd2
+ · · · + zak

1 − zdk
. (4)

Since di �= d j , we may assume d1 > d j for j �= 1. It follows that as z → e2π i/d1

the first term on the right side of (4) will approach infinity while all the others
approach a finite limit. This clearly contradicts (4) and hence no partition of the
desired type is possible. �

II Making Change

Suppose the coins in a certain country had the values 3 cents, 8 cents, and 15 cents.
How many ways could we offer change for $1.00 using those coins? A direct check
would show that the answer is 15, but would not really suggest an approach to
the more general question: Can we find a formula for C(n), the number of ways
that an arbitrary nonnegative integer n can be expressed as a (nonnegative) integral
combination of 3’s, 8’s and 15’s ? Note that, by the familiar rule for the product of
power series, the generating function for the sequence {C(n)} is

∞∑
n=0

C(n)zn = (1 + z3 + z6 + · · · )(1 + z8 + z16 + · · · )(1 + z15 + z30 + · · · )

or ∞∑
n=0

C(n)zn = 1

1 − z3
· 1

1 − z8
· 1

1 − z15
(5)

So our search for C(n) leads to a search for the coefficient of zn in the prod-
uct on the right side of (5). To that end, we would like to find the partial fraction
decomposition for the function

R(z) = 1

1 − z3
· 1

1 − z8
· 1

1 − z15

Note that since R is a proper rational function; i.e., R(z) → 0 as z → ∞, the
partial fraction decomposition is simply the sum of the principal parts of the Laurent
expansions about each of the singularities (see Theorem 9.13). Let

α = e2π i/3, β = e2π i/8, γ = e2π i/15
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and express R(z) as

R(z) = −
3∏

n=1

1

z − αn

8∏
n=1

1

z − βn

15∏
n=1

1

z − γ n
.

R has a pole of order three at z = 1(= α3 = β8 = γ 15), double poles at α(= γ 5)
and at α2(= γ 10) and simple poles at its other 19 singularities. Hence R has a partial
fraction decomposition of the form

R(z) =
3∑

k=1

ak

(z − 1)k
+

2∑
k=1

bk

(z − α)k
+

2∑
k=1

ck

(z − α2)k
+

19∑
j=1

d j
(z − z j )

(6)

where the numbers z j represent the 19 simple poles of R(z). Note that if we can find
all the coefficients ak, bk, ck and d j , we will be able to find the desired coefficient of
zn in R(z). This is because repeated differentiation of the familiar identity

1

z − ω
= −1

ω(1 − z/ω)
= −1

ω
(1 + z

ω
+ z2

ω2
+ · · · )

shows that

the coefficient of zn in (
1

z − ω
)k is

−1

ωn+1 ,
n + 1

ωn+2 , and − (n + 2)(n + 1)

2ωn+3

for k = 1, 2, and 3, respectively. (7)

Hence we can can apply the techniques discussed in Chapter 10 to find all of
the coefficients ak, bk, ck and d j , and we can then complete the job by applying
formula (7) to each of the terms of (6), taking ω = 1 and k = 1, 2, and 3; ω = α
and ω = α2 with k = 1 and 2; and w = z j for each value of j (with k = 1).

For obvious reasons, we will choose to skip the remaining details. Instead, we will
leave the reader the challenge of completing a similar exercise with more "reasonable"
numbers. However, we can easily answer a related question: That is, putting aside the
problem of finding the exact formula for C(n), can we find an asymptotic formula?
In other words, can we identify a familiar function f (n) with the property that
C(n)/ f (n) → 1 as n → ∞ ? To find f (n), we need only look at formulas (6)
and (7) to see that the "largest" contribution to C(n), the only one with order of
magnitude n2, corresponds to ω = 1 and k = 3. (Note that |ω| = 1 in all cases).
Thus an asymptotic formula for C(n) is

−a3n2

2
.

In fact, we can calculate a3 as

lim
z→1

(z − 1)3 R(z) = − lim
z→1

1 − z

1 − z3
· 1 − z

1 − z8
· 1 − z

1 − z15
= −1

360
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Finally, then, we have the asymptotic formula:

C(n) ∼ n2

720
�

The above example is easily generalized as follows: Suppose we are given any
relatively prime set of integers S = {a1, a2, · · · , ak} and we would like to find C(n),
the number of ways that an arbitrary nonnegative integer n can be expressed an a
(nonnegative) integral combination of the elements of S. As in the earlier example,
the generating function for C(n) is given by

∞∑
n=0

C(n)zn = (1 + za1 + z2a1 + · · · )(1 + za2 + z2a2 + · · · ) · · ·

× (1 + zak + z2ak + · · · )
= 1

1 − za1
· 1

1 − za2
· · · 1

1 − zak
.

Thus C(n) is the coefficient of zn in

R(z) = 1

1 − za1
· 1

1 − za2
· · · 1

1 − zak
,

and we can find C(n) by obtaining the partial fraction decomposition. Again, as in
the special case treated above, finding an exact formula for C(n) is rather forebod-
ing. However, to find an asymptotic formula for C(n), we need only establish the
following points (whose proofs we leave to the reader):

(i) R has a pole of order k at z = 1.
(ii) Every other pole of R(z) is of order less than k.

(iii)

The coefficient of zn in

(
1

1 − z

)k

is

(
n + k − 1

k − 1

)
∼ nk−1

(k − 1)!

(iv) The coefficient a−k in the Laurent expansion of R(z) about the point z = 1 is
(−1)k/(a1a2 · · · ak)

Combining all of the above gives the general asymptotic formula:

C(n) ∼ nk−1

(k − 1)!a1a2 · · · ak
�

An immediate, but nontrivial, corollary of the above formula is the fact that for
sufficiently large values of n, C(n) > 0. That is, every “sufficiently large” integer
can be expressed as a nonnegative integral combination of the integers in S. This also
highlights the necessity of the condition that S be a relatively prime set of integers.
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Otherwise, all the elements of S would be multiples of some integer greater than 1,
and so would any nonnegative integral combination of the elements of S.

III An Identity of Euler’s

Consider expressing n as the sum of distinct positive integers, i.e., where repeats are
not allowed. (So for n = 6, we have the expression 1 + 2 + 3 as well as 1 + 5 and
2 + 4, and just plain 6.)

Also consider expressing n as the sum of positive odd integers, but this time
where repeats are allowed. (So for n = 6, we have 1 + 5, 3 + 3, 1 + 1 + 1 + 3,
and 1 + 1 + 1 + 1 + 1 + 1.) In both cases we obtained four expressions for 6, and a
theorem of Euler’s says that this is no coincidence.

19.4 Euler’s Theorem

The number of ways of expressing n as the sum of distinct positive integers is the
same as the number of ways of expressing n as the sum of (not necessarily distinct)
odd positive integers.

Proof

To prove the theorem, we produce two generating functions. The latter is exactly the
“coin-changing” function where the coins have denominations 1, 3, 5, 7, . . . This
generating function is given by

1

(1 − z)(1 − z3)(1 − z5) · · ·
Note that the infinite product in the denominator converges uniformly on compacta
and represents a nonzero analytic function for |z| < 1.

The other generating function is not of the coin-changing variety because of the
distinctness condition. However this generating function is the product

(1 + z)(1 + z2)(1 + z3) · · ·
for, when these are multiplied out, each of the various terms which contribute to any
particular power in the product is comprised of a product of distinct powers. Euler’s
theorem in its analytic form is then just the identity

1

(1 − z)(1 − z3)(1 − z5) · · · = (1 + z)(1 + z2)(1 + z3) · · · (8)

throughout |z| < 1.
To prove this identity, note that the product on the right can be expressed as

∞∏
k=1

(1 + zk) =
∞∏

k=1

1 − z2k

1 − zk
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But since the factors in the numerator, and those in the denominator, each determine
a convergent infinite product, we can also express the above product as

limN→∞
N∏

k=1
(1 − z2k)

limN→∞
N∏

k=1
(1 − zk)

=
limN→∞

N∏
k=1

(1 − z2k)

limN→∞
2N∏
k=1

(1 − zk)

= lim
N→∞

1
N∏

k=1
(1 − z2k−1)

which is precisely the expression on the left side of (8). �

IV Another “Splitting” Problem

Can we split the nonnegative integers into two sets A and B so that every nonnegative
integer n can be expressed the same number of ways as the sum of two distinct
members of A, as it can as the sum of two distinct members of B? If we experiment
a bit and begin by placing 0 in A, then 1 ∈ B , otherwise 1 would be expressible
as a + a′ but not as b + b′. Similarly 2 ∈ B and 3 ∈ A (why?). Continuing in
this manner we find that if the sets A and B exist, then A = {0, 3, 5, 6, 9, . . .} and
B = {1, 2, 4, 7, 8, . . .}. But there is no obvious pattern, nor do we have any assurance
that A and B even exist. So we turn to generating functions. Let

A(z) =
∑
n∈A

zn and B(z) =
∑
n∈B

zn

and let a(n) and b(n) denote the number of ways that n can be expressed as the sum
of distinct members of A and B , respectively. (To be precise, we will assume that
order does not count so that, for example, a(6) = b(6) = 1, rather than 2. Of course,
if we counted order, it would have no effect on the problem of determining A and B .)
Then the generating function for {a(n)} is 1

2 [A2(z) − A(z2)]. So if A and B exist,
they must satisfy

1

2

[
A2(z) − A(z2)

]
= 1

2

[
B2(z) − B(z2)

]
(9)

In addition, since A and B partition the integers,

A(z) + B(z) = 1

1 − z
(10)

Combining (9) and (10) shows that

[A(z) − B(z)] · 1

1 − z
= A(z2) − B(z2)

or
A(z) − B(z) = (1 − z)

[
A(z2) − B(z2)

]
(11)
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Now, (11) can be iterated, giving

A(z2) − B(z2) = (1 − z2)
[

A(z4) − B(z4)
]

and, applying (11) once again,

A(z) − B(z) = (1 − z)(1 − z2)
[

A(z4) − B(z4)
]

Continuing in this manner, we have

A(z) − B(z) = (1 − z)(1 − z2) · · · (1 − z2n−1
)
[

A(z2n
) − B(z2n

)
]

Finally, letting n → ∞, and using the facts that zn → 0, A(0) = 1, and B(0) = 0,
we have

A(z) − B(z) =
∞∏

k=1

(1 − z2k
) (12)

Expanding the above shows that

A(z) − B(z) = 1 − z − z2 + z3 − z4 + z5 · · · =
∞∑

n=0

(−1)d(n)zn

where d(n) is equal to the number of 1′s in the binary representation of the inte-
ger n. The above identity, together with (10), implies that if the sets A and B exist
(and if we assume 0 ∈ A), then A consists of all nonnegative integers whose binary
representations contain an even number of 1′s, while B consists of those integers
whose binary form has an odd number of 1′s. So the solution, if it exists, is unique.
But do the sets described above actually provide a solution to the original prob-
lem? In other words, if rA(n) and rB(n) denote the number of representations of
n as the sum of two distinct integers of A and B , respectively, is rA(n) = rB(n)
for all n?

Fortunately, now that the generating functions have revealed the nature of the sets
A and B , it is easy to see that the answer to the above question is YES! In fact, we can
establish a 1 − 1 correspondence between sums of the form a + a′ and those of the
form b+b′, which equal the same number n, as follows. In the binary representations
of a and of a′, simply switch the 1 and the 0 in the first binary digit where they differ.
For example, the number 12 is equal to the two sums 12 + 0 and 9 + 3, whose terms
all belong to A. However we can also obtain representations of 12 of the form b + b′
by noting that 12 + 0 = (1100)2 + (0000)2 = (1000)2 + (0100)2 = 8 + 4, and
9 + 3 = (1001)2 + (0011)2 = (1011)2 + (0001)2 = 11 + 1. �

As an aside, it might be interesting to determine all integers for which rA(n) =
rB(n) = 0. We leave it to the reader to verify that for n > 4, those are precisely the
integers of the form 22k+1 − 1; that is, those integers whose binary representation
consists of a single string of an odd number of 1′s.
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19.5 An Analytic Proof of The Prime Number Theorem

We conclude (this chapter and our textbook) with an analytic proof of the famous
prime number theorem.

19.5 Prime Number Theorem

Let π(N) denote the number of primes less than or equal to N . Then π(N) ∼ N
log N .

That is,
π(N) log N

N
→ 1 as N → ∞.

Riemann seems to have been the first person to note the connection between the
zeta function and the prime number theorem. The first complete proofs of the theorem,
however, were not given until 1896, when de la Vallée Poussin and Hadamard each
gave a complete but complicated “analytic” proof. The proof below is based on
some key results concerning the zeta function along with an ingenious lemma of
Chebychev and an application of Cauchy’s theorem.

The properties of the zeta function which we will use are

(1) Euler’s Identity: ζ(z) = 1/
∏

p pr ime
(1 − 1/pz) if Re z > 1 (See section 18.3)

(2) (z − 1)ζ(z) is analytic and zero-free for Re z ≥ 1. (See theorems 18.9 and
18.10)

According to (1), if Re z > 1

log ζ(z) = −
∑

p pr ime

log(1 − 1

pz
) =

∑
p pr ime

[
1

pz
+ 1

2 p2z
+ 1

3 p3z
+ · · ·

]

=
∑

p pr ime,n≥1

1

npnz

Note, moreover, that

∑
p pr ime,n≥2

1

npnz
=

∑
p pr ime

[
1

2 p2z
+ 1

3 p3z
+ · · ·

]

is analytic for Re z > 1
2 (see Exercise 9). So the function

L(z) =
∑

p pr ime

1

pz
= log ζ(z) −

∑
p pr ime,n≥2

1

npnz
(3)

is also analytic for Re z > 1. In addition, since

log ζ(z) + log(z − 1)
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is analytic for Re z ≥ 1 (see (2) above), so is the function L(z) + log(z − 1) as well
as

L ′(z) + 1

z − 1
=

∑
p pr ime

− log p

pz
+ 1

z − 1
(4)

Our proof will center on two functions: One is the analytic function

φ(z) =
∑

p pr ime

log p

pz
.

So, for future reference, note that, according to (4),

19.6 Lemma

If φ(z) = ∑
p pr ime

log p
pz , then

φ(z) − 1

z − 1

is analytic for Re z ≥ 1. �

The other function which plays a critical part in our proof is defined for positive
real values x as θ(x) = ∑

p≤x log p. There are several equivalent versions of the
prime number theorem. The one below, involving θ(x), is very straightforward.

19.7 Lemma

The prime number theorem is equivalent to the assertion that θ(x) ∼ x .

Proof

Note that, on the one hand,

θ(x) =
∑
p≤x

log p ≤
∑
p≤x

log x = π(x) log x

while, on the other hand, for any ε > 0,

θ(x) ≥
∑

x1−ε<p≤x

log p ≥
∑

x1−ε<p≤x

(1 − ε) log x = (1 − ε) log x
[
π(x) − π(x1−ε)

]

Since, obviously, π(x1−ε) ≤ x1−ε, the two above inequalities combine to give

θ(x)

x
≤ π(x) log x

x
≤ 1

1 − ε

[
θ(x)

x

]
+ log x

xε

and the lemma follows by letting x → ∞. �
Chebychev was well aware of the importance of θ(x) to the proof of the prime

number theorem. While he was unable to prove that θ(x) ∼ x , he was able to prove
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that, for sufficiently large x, 0.92 < θ(x)
x < 1.11, which gave the corresponding

double inequality for π(x) log x
x . We will not prove this double inequality, but we will

use the following weaker result obtained by Chebychev.

19.8 Lemma (Chebychev)

θ(x) < x log 16

Proof

Note that
( 2n

n

)
is an integer whose prime factorization contains every prime number

in the closed interval [n + 1, 2n] and hence
∏

n<p≤2n
p ≤

( 2n
n

)
. On the other hand,

( 2n
n

)
is only one of the terms in the binomial expansion of (1 + 1)2n =

( 2n
0

)
+( 2n

1

)
+ · · · +

( 2n
2n

)
, so that

( 2n
n

)
≤ 4n . Combining the two inequalities shows

that
∏

n<p≤2n
p ≤ 4n , and taking the logarithm of both sides:

∑
n<p≤2n

log p ≤ n log 4. (5)

Adding inequality (5) with n = 1, 2, 4, . . . , 2M where M is the least integer for
which 2M+1 ≥ x, shows then that

θ(x) ≤
∑

1<p≤2M+1

log p < 2M+1 log 4 < 2x log 4. �

Note that, for Re z > 1,

φ(z) =
∑

p

log p

pz
=

∫ ∞

1

dθ(x)

x z
= z

∫ ∞

1

θ(x)

x z+1 dx = z
∫ ∞

0
e−ztθ(et)dt

since θ(x)
xz = 0 for x = 1, and limx→∞ θ(x)

xz = 0, according to Lemma 19.8.
Hence

φ(z + 1)

z + 1
=

∫ ∞

0
e−(z+1)tθ(et )dt (6)

and subtracting the identity: 1
z = ∫ ∞

0 e−ztdt from (6) yields

φ(z + 1)

z + 1
− 1

z
=

∫ ∞

0
e−zt [θ(et )e−t − 1]dt
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Let g(z) = φ(z+1)
z+1 − 1

z , and f (t) = θ(et )e−t − 1. Then

(i) g(z) = ∫ ∞
0 e−zt f (t)dt

(ii) g(z) is analytic for Re z ≥ 0. This follows since Lemma 19.6 asserts that φ(z+1)
has a simple pole with residue 1 at z = 0, and the same is obviously true for
φ(z+1)

z+1 .
(iii) f (t) is bounded (according to Lemma 19.6) and locally integrable.

According to the Analytic Theorem below, then,∫ ∞

0
f (t)dt =

∫ ∞

0
[θ(et )e−t − 1]dt =

∫ ∞

1

θ(x) − x

x2
dx converges. (7)

19.9 Analytic Theorem

Let f (t), t ≥ 0, be a bounded and locally integrable function and suppose that
g(z) = ∫ ∞

0 e−zt f (t)dt, Re z > 0, extends analytically to Re z ≥ 0. Then
∫ ∞

0 f (t)dt
exists (and equals g(0)).

Proof

For T > 0, set gT (z) = ∫ T
0 e−zt f (t)dt . g is clearly an entire function. What we

must show is that limT →∞ gT (0) = g(0).
Let R be large and let C be the boundary of the region {z : |z| ≤ R, Re z ≥ −δ},

where δ = δ(R) > 0 is small enough so that g(z) is analytic inside and on C. Then

g(0) − gT (0) = 1

2π i

∫
C
(g(z) − gT (z))ezT (1 + z2

R2
)
dz

z

by Cauchy’s Theorem. On the semicircle C+ = C ∩ {z : Re z > 0} the integrand is
bounded by 2B/R2, where B = maxt≥0 | f (t)|, because

|g(z) − gT (z)| = |
∫ ∞

T
e−zt f (t)dt| ≤ B

∫ ∞

T
|e−zt |dt = Be−T Re z

Re z

while

|ezT | = eT Re z and |1 + z2

R2
| = | zz̄ + z2

R2
| = |z + z̄|

R
= 2 Re z

R
.

So, by the familiar M − L formula, the contribution to g(0) − gT (0) from the
integral over C+ is bounded in absolute value by B

R .
For the integral over C− = C ∩ {z : Re z < 0}, we look at the terms involving

g(z) and gT (z) separately. Since gT is entire, the path of integration for the term
involving gT can be replaced by the semicircle C

′
− = {z : |z| = R and Re z < 0}.

The contribution to g(0) − gT (0) from the integral along this semicircle is also
bounded by B/R, since

|gT (z)| = |
∫ T

0
e−zt f (t)dt| ≤ B

∫ T

−∞
|e−zt |dt = Be−T Re z

|Re z| , Re z < 0.
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Finally, the remaining integral over C− tends to 0 as T → ∞ because the integrand
is the product of the function g(z)(1 + z2/R2)/z, which is independent of T, and
the function ezT , which goes to 0 rapidly and uniformly on compact sets as T → ∞
in the half-plane Re z < 0. For example, we can choose T large enough so that

1√
T

< δ, and then split C− into two parts: C1− = {z ∈ C− : Re z ≥ −1√
T
} and

C2− = {z ∈ C− : Re z < −1√
T
}. The integral over C1− is bounded by M − L, where

M = Max |g(z)| for z ∈ C−

and L = the length of C1−, which is bounded above by 4√
T .

. The integral over C2− is

bounded by π RMe−√
T . Hence

lim sup
T →∞

|g(0) − gt(0)| ≤ 2B/R

and since R is arbitrary, the proof is complete. �
We now complete the proof of the Prime Number Theorem by showing that the

convergence of the integral in (7) guarantees that θ(x) ∼ x .

19.10 Lemma

Suppose h(x) is a non-decreasing function and∫ ∞

1

h(x) − x

x2
dx (8)

converges. Then h(x) ∼ x .

Proof

Assume that for some λ > 1, there are arbitrarily large values of x with h(x) ≥ λx .
Then

∫ λx

x

h(t) − t

t2
dt ≥

∫ λx

x

λx − t

t2
dt =

∫ λ

1

λ − t

t2
dt > 0

for all such x , contradicting (8). Similarly, the inequality h(x) ≤ λx with λ < 1
would imply

∫ x

λx

h(t) − t

t2
dt ≤

∫ λx

x

λx − t

t2
dt =

∫ λ

1

λ − t

t2
dt < 0

which, according to (8), cannot be true for a fixed λ and arbitrarily large values of x .
�
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Exercises

1. Show that tan z = z has only real solutions.

2. With CN as in 19.1, use the fact that

f2(z) = z2

(1 + z2)(tan z − z)
∼ − 1

z

to conclude
∫

CN
f2(z) dz → −2π i . (Compare with 12.1, Example 3.) Conclude that

Var

(
sin2 x

x2

)
= e2 − 5

by considering the various contributions to

lim
N→∞

∫
CN

f2(z) dz.

3. Recall (Section 16.2) that ez = z has infinitely many solutions zk ; k = 1, 2, . . .. Find
∑∞

k=1 1/z2
k .

4. Find all solutions to the system of equations in 19.3 if we require only ak , bk ≥ 0 for all k.

5. Show that the positive integers cannot be partitioned into a finite number of arithmetic progressions
if one of the differences is relatively prime to the others.

6.* (The following exercise shows how generating functions can be used to "solve a difference equa-
tion"; i.e., to find an explicit form for a recursively-defined sequence.) Suppose a sequence is defined
recursively by c0 = c1 = 1 and cn+2 = cn+1 + 2cn for n ≥ 0. Let F(z) = ∑∞

0 cn zn .

a. Prove by induction that cn ≤ 3n , and hence show that the radius of convergence of F(z) ≥ 1
3 .

b. Show that (1 − z − 2z2)F(z) = 1, and express F(z) as a sum of two simple rational functions.
c. Find (a closed form) for the sequence of coefficients {cn}

7.* Let cn = 12 + 22 + · · · + n2, and F(z) = ∑∞
1 cn zn . Show that (1 − z)F(z) = ∑∞

1 n2zn and
thereby obtain a closed form for cn .

8.* Use the method outlined in 19.4 II to find a formula for C(n), the number of ways of expressing the
positive integer n as a nonnegative integral combination of 3′s and 4′s.

9. Prove ∑
p prime
n ≥ 2

1

npnz

is analytic in Re z > 1
2 . [Hint: Show

∑
n ≥ 2

p prime

∣∣∣∣ 1

npnz

∣∣∣∣ <
∑

p prime

2

p2x
.]



Answers

Chapter 1

1. a. 3
20 − 1

20 i. b. −3
2 + 11

2 i.

c. −1
2 +

√
3

2 i. d. − 1,−i, 1, i, . . . .
2. ±(1 + 3i).
3. 1 + (3 − √

8)i ; −1 − (3 + √
8)i .

4. a. b., d.: Let z1 = x1 + iy1, z2 = x2 + iy2, etc.
c. Use properties (a), (b) and the fact that a real number is its own conjugate.

5. Use Exercise (4c): P(z) = P(z).
6. If z = x + iy = reiθ , then z2 = x2 − y2 + 2i xy = r2e2iθ , etc.
7. (c) Equality occurs if, and only if, Re z or Im z = 0.
8. (b) |z1 + z2| = |z1| + |z2| if, and only if, Re(z1z2) = |z1||z2|, i.e., if, and only if,

z1z2 is a real number, or, equivalently, Arg z1 = Arg z2.
11. Note that tan−1 is always between −π

2 and π
2 whereas Arg z takes values

(modulo 2π) in the interval 0 to 2π .
12. a. 1, cis π

3 , cis 2π
3 , −1, cis 4π

3 , cis 5π
3 .

b. cis θ ; θ = π
4 , 3π

4 , 5π
4 , 7π

4 .
c. 21/4 cis θ ; θ = π

6 , 2π
3 , 7π

6 , 5π
3 .

13. Note that the nth roots of unity are all zeroes of zn − 1 = (z − 1)(zn−1 + zn−2 · · ·
+1).

14. Using (13) and the fact that zn − 1 = (z − z1)(z − z2) · · · (z − zn) where
z1, z2, . . . , zn are the nth roots of unity, we have (assuming z1 = 1)

zn−1 + zn−2 + · · · + 1 = (z − z2) · · · (z − zn)

Let z = 1, and consider the absolute value of the two sides of the above equation.
15. a. Closed disc centered at i with radius 1; not a region.

b. The imaginary axis; not a region.
c. The open half-plane: Re z > 5/2; a region.
d. The upper half of the unit disc, centered at the origin; a region.
e. The unit circle centered at the origin; not a region.
f. The circle centered at 1

2 i with radius 1
2 ; not a region.

291
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g. The set of points satisfying r2 < 2 cos 2θ, r �= 0; not connected and, therefore,
not a region.

17. Arg
(

z−1
z+1

)
= Arg(z − 1)− Arg(z + 1).Consider the diagram below for Re z > 0

and an analogous argument for Re z < 0.

 1 –1

z

α
β

21. a. For |z| ≤ r < 1,
∑ |kzk| <

∑
krk < ∞. Apply Theorem 1.9.

b. For Re z ≥ 0,
∑∣∣∣ 1

k2+z

∣∣∣ ≤ ∑ 1
k2 . Apply Theorem 1.9.

22. Assume S is polygonally connected, and S is “disconnected” by open sets A and
B with a ∈ A, b ∈ B . Consider the polygonal line L(t), 0 ≤ t ≤ 1, connecting
a and b, and let c = L(t0), t0 = sup{t1 : L(t) ∈ A, 0 ≤ t ≤ t1}. Then, c ∈ A,
but, because A is open, so is L(t0 + δ), unless c = b.

23. Note that no curve in S (of finite length) can connect a point of S, not on the y axis,
with a point on the y axis. Nevertheless, S cannot be “disconnected” because any
open set which contains a point of the form (0, t), −1 < t < 1, would also have
to contain points of the form y = sin 1

x , x > 0.

24. ζ ≥ ζ0 ⇒ x2 + y2 ≥ ζ0
1−ζ0

25. A(x2 + y2) + Bx + Cy + D = 0 is equivalent to A
(

ζ
1−ζ

)
+ Bξ

(
1

1−ζ

)
+

Cη
(

1
1−ζ

)
+ D = 0 or Aζ + Bξ + Cη + D(1 − ζ ) = 0, ζ �= 1. Consider A = 0

and A �= 0.
26. If P(z) = anzn + an−1zn−1 + · · · + a0, an �= 0, then P(z) = zn

(
an + an−1

z +
· · · + a0

zn

)
, etc.

27. a. Use formulas (3) for (ξ, η, ζ ) and the fact that 1
z = 1

x+iy = x
x2+y2 − iy

x2+y2

to show that (ξ ′, η′, ζ ′) = (ξ, −η, 1 − ζ ).
b. Consider the corresponding points on

∑
and apply 27 (a).

28. Note that according to (27), Aξ+Bη+Cζ = D is equivalent to Aξ ′−Bη′−Cζ ′ =
D − C .
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Chapter 2

1. For P(x, y) = (x + iy)n, Px = n(x + iy)n−1 and Py = in(x + iy)n−1.
3. a. Analytic: P(z) = z3 − z.

b. Not analytic.
c. Analytic: P(z) = −i z2.

4. Py = i Px would imply Py ≡ Px ≡ 0 because both Py and Px would be imaginary.
5. In (3a), P ′(z) = 3z2 − 1 = 3x2 − 3y2 − 1 + i6xy. In (3c), P ′(z) = −2i z =

2y − 2i xy.
6. Use the usual properties of limits, etc.
7. limh→0

(z+h)n−zn

h = limh→0 [(z + h)n−1 + (z + h)n−2z + · · · + zn−1] = nzn−1

8. log Sn = log n
n → 0 as n → ∞, so Sn = elog Sn → 1.

9. a. 1. b. 1/2.
10. a. R. b. R. c. R2.
11. The radius of convergence must be greater than or equal to min(R1, R2). It may

exceed both if, e.g., bn = −an for all n and R1, R2 < ∞.
12. Use the facts that

∑ sin nθ
n converges for all θ and

∑ cos nθ
n converges for

θ : 0 < θ < 2π (both can be proven by Dirichlet’s Test).

13. a. Write an = a1

(
a2
a1

)
· · ·

(
an

an−1

)
and note that, according to the hypothesis,

for any ε > 0, there is some k such that j > k ⇒
∣∣∣ a j

a j−1
− L

∣∣∣ < ε. Thus,

Mk(L − ε)n−k < an < Mk (L + ε)n−k , etc.
b. Note that, for an = 1

n! ,
an+1

an
= 1

n+1 and apply (13a).
14. a. ∞. b. ∞. c. e. d. ∞.
17. If

∑ |ak | and
∑ |bk| converge and if dk = ∑k

j=0 |a j ||bk− j |, then, clearly,∑n
k=0 dk ≤ ∑n

k=0 |ak| · ∑∞
k=0 |bk| ≤ ∑∞

k=0 |ak|∑∞
k=0 |bk| so that

∑
dk con-

verges. Moreover An Bn = Cn + Rn where |Rn | = ∑n
k, j=0

n<k+ j≤2n

akb j ≤ dn+1 +
dn+2 + · · · + d2n, etc.

18. Use the fact that
∑

anzn and
∑

bnzn converge absolutely within their circles of
convergence and apply Exercise (17).

19. a. Let N → ∞ in the identity

(1 − z)(1 + z + z2 + · · · + zN ) = 1 − zN+1

b.
(∑∞

n=0 zn
) (∑∞

n=0 zn
) = ∑∞

n=0(n + 1)zn = 1
(1−z)2 so that

∞∑
n=0

nzn = 1

(1 − z)2 − 1

(1 − z)
= z

(1 − z)2 .

20. If S has an accumulation point at 0, we can find z1 ∈ S with |z1| < 1, z2 ∈ S
with |z2| ≤ 1

2 |z1|, etc.
21. If f (z) = 1 for z = 1

2 , 1
3 , 1

4 , · · · , by (2.13), f ≡ 1 and f ′ ≡ 0.

22. Let g(z) = f (z + α) = ∑
Cnzn . Then, Cn = g(n)(0)

n! = f (n)(α)
n! .
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23. a. |z − i | < 1.
b. all z.
c.

∣∣∣z − 1
2

∣∣∣ < 1
2 .

Chapter 3

1. fx = limh → 0
h real

f (x+h,y)− f (x,y)
h = limh → 0

h real

f (z+h)− f (z)
h

fy = limh → 0
h real

f (x,y+h)− f (x,y)
h = limh → 0

h real

f (z+ih)− f (z)
h

2. fy = 2iy = i fx = 2i x if, and only if, y = x .
3. The equality in the hint follows from the differentiability of g at f (z). Divide

both sides by h to complete the argument.

4. Because g2(z)−g2(z0)
z−z0

= 1, g(z)−g(z0)
z−z0

= 1
g(z)+g(z0)

, so that limz→z0
g(z)−g(z0)

z−z0
=

1
2g(z0)

by the continuity of g at z0.
5. Note that fx ≡ fy ≡ 0, and apply Theorem 1.10.
6. Note that [ f 2(z)]′ = 2 f (z) f ′(z) ≡ 0.
7. If f maps a region into a straight line or into a circular arc, then there are constants

A, B so that g(z) = A f (z)+ B maps the region into the imaginary axis or into a
circle centered at the origin, respectively. But, then, according to Propositions 3.6
and 3.7, g is constant, and so is f .

8. f (x, y) = x2 − y2 + 2i xy + iC = z2 + iC , where C is a real constant.
9. Note that the Cauchy-Riemann equations cannot be satisfied.

10. The Cauchy-Riemann equation ux = vy implies, in this case, that u′(x) = v ′(y).
Because u′(x) is a function of x alone and v ′(y) is a function of y alone, both
u′(x) and v ′(y) are constants; in fact, u′(x) = v ′(y) = a and f (z) = u + iv =
az + b.

11. a. Because u = ex cos y and v = ex sin y, ux = vy = ex cos y and uy = −vx =
−ex sin y.

b. With z1 = x1 + iy1, z2 = x2 + iy2
ez1+z2 = ex1+x2 [ cos(y1 + y2) + i sin(y1 + y2)] = ex1(cos y1 + i sin y1) ·

ex2(cos y2 + i sin y2) = ez1ez2 .

12. |ez| =
√

e2x cos2 y + e2x sin2 y = ex

13. ez = exeiy → ∞ if x → +∞ (i.e., along rays in the right half-plane). ez → 0 if
x → −∞ (i.e., along rays in the left half-plane). On the imaginary axis, ez = eiy

traverses the unit circle infinitely often.
14. a. 2πki ; k any integer.

b. (π
2 + 2πk)i.

c. ln 3 + (2k + 1)π i.
d. 1

2 ln 2 + (π/4 + 2πk)i.
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15. a. 2 sin z cos z = 2
[

1
2i (eiz − e−iz) 1

2 (eiz + e−iz)
]

= 1
2i (e2iz − e−2iz) =

sin 2z.
b. cos2 z + sin2 z = 1

4 (eiz + e−iz)2 − 1
4 (eiz − e−iz)2 = 1

c. (sin z)′ = 1
2i (ieiz + ie−iz) = cos z.

17. − sin z.
18. z = (π

2 + 2πk) − i ln(2 ± √
3), k any integer.

20. sin(x + iy) = 1
2i (e−y+ix − ey−ix) = 1

2i [e−y(cos x + i sin x) − ey(cos x −
i sin x)] = 1

2 (e−y sin x + ey sin x) + i
2 (ey cos x − e−y cos x) = sin x cosh y +

i cos x sinh y.

21. f (z) f (w) = ∑∞
n=0

zn

n!

∑∞
n=0

wn

n! = ∑∞
n=0

(∑n
k=0

zkwn−k

k!(n−k)!

)
= ∑∞

n=0
(z+w)n

n! =
f (z + w).

22. Because eiz = 1 + i z − z2

z! − iz3

3! + · · · and e−iz = 1 − i z − z2

z! + iz3

3! + · · · ,
eiz−e−iz

2i = z − z3

3! + z5

5! − + · · · .

23. cos z = 1 − z2

2! + z4

4! − · · · = ∑∞
n=0(−1)n z2n

(2n)!

Chapter 4

1. Use the facts that a 1-1 C1 mapping λ(t) : [c, d] → [a, b] with λ′ > 0 has a 1-1
C1 inverse λ−1 : [a, b] → [c, d] with (λ−1)′ > 0 and, if λ : [c, d] → [a, b]
and λ2 : [e, f ] → [c, d], then λ1 ◦ λ2 : [e, f ] → [a, b] with all the desired
properties of λ1 and λ2.

2.
∫

C f (z)dz = ∫ 1
0 (t4 + i t4)(2t + i2t)dt = 2

3 i . The result is the same as in
Example 1, because the curves are equivalent.

3.
∫

C f (z)dz = ∫ 2π
0

1
(sin t+i cos t) (cos t − i sin t)dt = ∫ 2π

0 −idt = −2π i . Note that
the curve in this case is in the opposite direction of the curve in Example 2.

4. Let f = u1 + iv1, g = u2 + iv2, C : z(t) = x(t) + iy(t) and α = a + bi , etc.
5. F(b)− F(a) = ∫

γ F ′(z)dz where γ is any curve with initial point a and terminal
point b.

6. As in Lemma 4.9, let
∫
|z|=1 f (z)dz = Reiθ so that R =

∣∣∣∫|z|=1 f (z)dz
∣∣∣ =∫

|z|=1 e−iθ f (z)dz. Note, then, that

R =
∫

|z|=1
e−iθ f (z)dz =

∫ 2π

0
f (eit )iei(t−θ)dt =

∫ 2π

0
g(t)iei(t−θ)dt

where g(t) = f (eit ) is a real-valued function of t

= Re
∫ 2π

0
g(t)iei(t−θ)dt =

∫ 2π

0
g(t) sin(θ − t)dt

and because |g(t)| ≤ 1, R ≤ ∫ 2π
0 | sin(θ − t)|dt = ∫ 2π

0 | sin t|dt = 4.
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7. Note that, on any line segment from z0 to z1, i.e., if γ (t) = z0 + t (z1 − z0),

0 ≤ t ≤ 1,
∫
γ 1dz = z1 − z0 and

∫
γ zdz = z2

1
2 − z2

0
2 , etc.

8. a. Because zk =
(

zk+1

k+1

)′
and because zk+1

k+1 is analytic on C (as long as k is an

integer other than −1), by Proposition 4.12,
∫

C zkdz = 0.

b.
∫

C zkdz = ∫ 2π
0 Rkeikθ i Reiθ dθ = i Rk+1

∫ 2π
0 e(k+1)iθ dθ = Rk+1

k+1 e(k+1)iθ

∣∣∣∣
2π

θ=0= 0.

9. a.
∫

C (z − i)dz = z2

2 − i z

∣∣∣∣
1+i

−1+i
= 0.

b. Let z(t) = t + i, −1 ≤ t ≤ 1.
∫

C (z − i)dz = ∫ 1
−1 tdt = 0.

Chapter 5

1. z2 = 4 + 4(z − 2) + (z − 2)2

2. Because all the derivatives of ez are ez, ez = ∑∞
k=0 ea (z−a)k

k! = eaez−a

3. a. f (z) = − f (−z) ⇒ f ′(z) = f ′(−z). Hence, the derivative of an odd function
is even. Similarly, the derivative of an even function is odd. Furthermore, if f
is odd, i.e., if f (z) = − f (−z), it follows that f (0) = 0. So, if f is odd,

f (z) =
∞∑

k = 1
k odd

f (k)(0)

k!
zk .

b. By analogous reasoning, an even function has only even powers in its power
series expansion about 0.

4. According to Theorem 5.5, Ck = 1
2π i

∫
C

f (w)
wk+I dw while, according to Corollary

2.11, Ck = f 1(k)
(0)

k! .
5. Let g(z) = f (z + a), so that g(k)(0) = f (k)(a), etc., and apply the result of

Exercise 4.
6. a. Using Exercise 4 and the M − L formula, |Ck | ≤ M

Rk .
b. Apply (6a) with R = 1 and M = 1 to conclude that |Ck | ≤ 1 for all k.

7. According to Exercise (6a) |C j | ≤ A+B Rk

R j . Because j > k, we conclude that
C j = 0 by letting R → ∞.

8. As in the previous exercise, note that Ck = 0 for k ≥ 2.
9. By Liouville’s Theorem, f ′(z) is a linear function. Moreover, | f ′(z)| ≤ |z| =⇒

f ′(0) = 0 so that f (z) = f (0)+ f ′(0)z+ f ′′(0)
2 z2 = a+bz2 with |b|=

∣∣∣ f ′′(0)
2

∣∣∣ ≤ 1
2

because f ′′(0) = 1
2π i

∫
|w|=1

f ′(w)
w2 dw � 1.

10. f is bounded in the compact domain: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Moreover,
by the two equations of periodicity, for any z = x + iy, f (z) = f (x, y) =
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f (x − Intx, y − Inty), where Int w, the integer part of w, is the greatest integer
less than or equal to w. Hence, f is bounded throughout the complex plane and
must be constant.

11. By the remarks following the Fundamental Theorem of Algebra, a polynomial of
odd degree must have an odd number of zeroes (counting multiplicity). According
to Exercise 5 of Chapter 1, a real polynomial has a zero at the conjugate of any
nonreal zero, so that the complex zeroes come in conjugate pairs. Thus, there must
be at least one real zero.

12. Let P(z) = anzn + · · · a0 = an(z − z1)(z − z2) · · · (z − zn) and note that, if
zk = a + bi and z j = a − bi are complex conjugates, (z − zk)(z − z j ) =
z2 − 2az + (a2 + b2) is a real quadratic polynomial.

13. a. If ν > 0 for y > 0, then we must have ν < 0 for y < 0. (By the Fundamental
Theorem of Algebra, ν ≥ 0 for all z is impossible!) Hence νy ≥ 0 throughout
the real axis. Similarly, if v < 0 for y > 0, νy ≤ 0 throughout the real axis.

b. Follows from the Cauchy-Riemann equations.
c. Because ux(x, 0) is a polynomial in x which is either consistently ≥ 0 or

consistently ≤ 0 for all x, u(x, 0) = α cannot have more than one solution.
Hence P(z) = α has, at most, one solution for real α and, by the Fundamental
Theorem of Algebra, P is a linear polynomial.

14. If P(z) = (z − α)k Q(z) with Q(α) �= 0, P ′(z) = (z − α)k−1[(z − α)Q′(z) +
k Q(z)] = (z − α)k−1 R(z) with R(α) �= 0. Proceed by induction.

15. Let f (z) = f (z0) + ∫ z
z0

f ′(w)dw where the path of integration is along the ray
from 0 to z, beginning at z0, with z0 = t0z, where t0 = sup{t1 : | f (tz)| ≤ 1, 0 ≤
t ≤ t1}. Clearly, then | f (z0)| ≤ max{1, | f (0)|} and the integral is bounded by |z|.

Chapter 6

1. For any complex α,

1

z
= 1

α + (z − α)
= 1

α
[
1 + z−α

α

]
= 1

α

[
1 − (z − α)

α
+ (z − α)2

α2
− + · · ·

]

=
∞∑

k=0

(−1)k(z − α)k

αk+1 .

Take α = 1 + i .
3. Because 1+ z + z2 +· · · = 1

1−z , 1+2z +3z2 +· · · = ∑∞
n=1 nzn−1 = 1

(1−z)2 and∑∞
n=1 nzn = z

(1−z)2 . Similarly,
∑∞

n=1 n2zn−1 = 1+z
(1−z)3 and

∑∞
n=1 n2zn = z(1+z)

(1−z)3 .
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4. If f ( 1
n ) = 1

n+1 , then for all points zn = 1
n , f (zn) = 1

1
zn

+1
or f (zn) = zn

1 + zn
. Be-

cause {zn} has an accumulation point at 0, this implies that f (z) = z
1+z throughout

its domain of analyticity which yields a contradiction since f was assumed ana-
lytic at z = −1.

5. Let z2 be a fixed real number. Then, f (z) = sin(z + z2) and g(z) =
sin z cos z2 + cos z sin z2 are two entire functions (of z) which agree for all
real values z = z1 and, hence, for all complex values z = z1, as well.
Let z = z1 be any such complex number. Then, f (z) = sin(z1 + z) and
g(z) = sin z1 cos z + cos z1 sin z agree for all real values z = z2 and, hence,
for all complex values z = z2 as well.

6. If f (x) = tan x, 0 ≤ x ≤ 1, f (z) must equal the analytic function sin z
cos z through-

out the domain of analyticity of f (z). Thus, f (z) = i ⇒ sin z
cos z = i ⇒ eiz −e−iz

2i =
i(eiz +e−iz)

2 ⇒ eiz = 0, which is impossible.
7. Because | f (z)| > |z|N for large z, f (z) → ∞ as z → ∞ and, hence, f is a

polynomial (Theorem 6.11). Moreover, | f (z)| ≥ |z|N for large z implies that the
degree of f (z) must be at least N .

8. g(z) = f (z) f (−z) is bounded in modulus by 6 throughout |z| = 1. Thus |g(0)| ≤6
and | f (0)| ≤ √

6.
9. |ez| = ex so that max |ez | occurs at a point in the domain with maximal x and

min |ez| occurs at a point in the domain with minimal x (i.e., at points farthest to
the right and to the left, respectively).

10. Because z2 − z = z(z − 1), the minimum modulus occurs at z = 0 and the
maximum modulus (which occurs on the boundary) is assumed at z = −1, i.e.,
max|z|≤1 |z2 − z| = 2; min|z|≤1 |z2 − z| = 0.

12. Suppose | f (z)|+ |g(z)| assumed its maximum at the interior point z0 (and not on
the boundary). Let f (z0) = Ae−iα and g(z0) = Be−iβ . Then h(z) = f (z)eiα +
g(z)eiβ would satisfy h(z0) = | f (z0)|+ |g(z0)| while |h(z)| ≤ | f (z)|+ |g(z)| <
|h(z0)| throughout the boundary. Thus, the analytic function h(z) would assume
its maximum at the interior point z0 (and not on the boundary) which is impossible.

13. If P(z) �= 0, then, the minimum modulus of P(z) in |z| ≤ R would have to occur
on the boundary. However, because P(z) → ∞ as z → ∞, we could choose R
so that |P(z)| > |P(0)| for all |z| = R, yielding a contradiction.

14. According to Exercise (6b) of Chapter 5 P(z) = a0 + a1z + · · · + anzn

with |ak| ≤ 1 for k = 0, 1, . . . , n. Consider Q(z) = P(z)
zn in the annulus

1 ≤ |z| ≤ R. Throughout |z| = 1, |Q(z)| = |P(z)| ≤ 1 and, if |z| = R,
|Q(z)| = |an + an−1

z +· · ·+ a0
zn | ≤ |an|+εR ≤ 1+εR where εR → 0 as R → ∞.

Hence, |Q(z)| = | P(z)
zn | ≤ 1 for all z : |z| ≥ 1 ⇒ |P(z)| ≤ |z|n .

[NOTE: The related question: What is the maximum value of Pn(x) for real x ,
given |Pn(x)| ≤ 1 for −1 ≤ x ≤ 1, can be answered in terms of Chebychev
polynomials and is considerably more complicated.]
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Chapter 7

1. According to the Open Mapping Theorem, the image under f of any open set
D containing z0 in its interior is an open set containing f (z0) in its interior.
Hence, both Re f and Im f assume larger and smaller values in D than the values
Re f (z0) and Im f (z0).

2. Note that continuous functions map connected sets into connected sets and apply
the Open Mapping Theorem to complete the argument.

3. a. By the Open Mapping Theorem, if f (z) is a boundary point of T, z cannot be
an interior point of S.

b. Note that T = f (S) is D(0; 4) so that f maps the boundary points: {z:|z| = 1,
Re z ≥ 0} and {iy:1 < y < 2 or −2 < y < −1} into the interior of T .

4. Because | f | = 1 on C(0; 1), by the Maximum Modulus Theorem | f | ≤ 1
throughout D(0; 1). Because D(0; 1) is compact so is its image under the contin-
uous function f . To show that f maps D(0; 1) onto D(0; 1), consider f (0) and
let T be the points on any chord of C(0; 1) passing through f (0). If T were not
contained in the range of f , there would have to be some point w ∈ T, |w| < 1
which is a boundary point of the range of f . By the previous exercise, however,
this is impossible.

5. Let f (z) have zeroes at α1, . . . , αN . Then g(z) = f (z)/(
∏N

i=1
z−αi

1−ᾱi z ) would have
modulus 1 throughout the circle: |z| = 1, and g(z) �= 0 at any points z:|z| < 1.
Thus, both the maximum and modulus theorems can be applied to conclude that
|g| ≡ 1 throughout D(0; 1) and, hence, g is constant i.e., f (z) = C

∏N
i=1

z−αi
1−ᾱi z .

Because f is entire, it follows that αi = 0 for all i and, thus, f (z) = CzN .
8. Note that f (z)

z2 has modulus 1 throughout the boundary of the annulus and apply
the Maximum Modulus Theorem.

9. Let g(z) = 1
10 f (2z). Then |g| < 1 for |z| < 1 and g(1/2) = 0 so that |g(z)| ≤∣∣∣∣ z− 1

2

1− 1
2 z

∣∣∣∣. In particular, |g(1/4)| ≤ 2/7 and | f (1/2)| ≤ 20/7.

10. Let g(z) = f (z)− f (α)
1− f (α) f (z) . Then g is also analytic and bounded by 1 in the unit disc

and a direct calculation shows that g′(α) = f ′(α)
1−| f (α)|2 . Thus, g′(α) � f ′(α).

11. Because f (α) = 0, f ′(α) = limz→α
f (z)
z−α � limz→α

Bα(z)
z−α (because | f (z)| ≤

|Bα(z)| for all |z| ≤ 1) ⇒ f ′(α) � B ′
α(α). [NOTE: B ′

α(α) = 1
1−|α|2 .]

12. Consider g(z) = (z−i R)2(z+i R)2 f (z) = (z2+R2)2 f (z). As in Proposition 7.3,
it can be shown that |g(z)| ≤ 8R2 throughout |z| = R, and, hence, |g(z)| =
|(z2 + R2)2 f (z)| ≤ 8R2 as long as |z| < R. Thus | f (z)| ≤

∣∣∣ 8R2

(z2+R2)2)

∣∣∣, and

letting R → ∞, we conclude that f ≡ 0.
13. a.

∫
� f (z)dt = ∫

�

∫ 1
0

sin zt
t dt dz = ∫ 1

0

∫
�

sin zt
t dz dt = ∫ 1

0 0 dt = 0.

b. f (z) = ∫ 1
0

sin zt
t dt = ∫ 1

0

(
z − z3t2

3! + z5t4

5! − · · ·
)

dt = z − z3

3(3!) + z5

5(5!) −
+ · · · .

14. a. f (z) = ∫ 1
0

sin zt
t dt = ∫ 1

0

∫ z
0 cos zt dz dt = ∫ z

0

∫ 1
0 cos zt dt dz so that f ′(z) =∫ 1

0 cos ztdt .
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b. According to (13b) f ′(z) = 1 − z2

3! + z4

5! − + · · · and

∫ 1

0
cos zt dt =

∫ 1

0

(
1 − z2t2

2!
+ z4t4

4!
− + · · ·

)
dt

= 1 − z2

3(2!)
+ z4

5(4!)
− + · · · = 1 − z2

3!
+ z4

5!
− + · · ·

15. Note that g is a linear function of z with g(0) = z0; g(|z1 − z0|) = z0 + eiθ |z1 −
z0| = z0 + (z1 − z0) = z1.

16. By the Schwarz Reflection Principle, f can be extended to the entire plane and
would then be a bounded entire function. Hence, f is constant.

17. By the Schwarz Reflection Principle, if f (z) = f (x+iy) = u(x+iy)+iν(x+iy),
then f (z̄) = f (x − iy) = u(x − iy) + iv(x − iy) = u(x + iy) − iv(x + iy) and
f (−z) = f (−x − iy) = −u(x − iy)+ iν(x − iy) = −u(x + iy)− iv(x + iy) =
− f (z).

19. Note that g is differentiable for |z| < 1, and for |z| > 1 because g′(z) = h′(z̄)
where h(z) = f (1/z) for |z| > 1. Moreover, g is continuous on the upper
semicircle so that g is analytic throughout the upper half-plane.

20. Arguing as in Exercise (19), such an analytic function could be extended to a
bounded entire function.

21. If f (x) = |x |, by the Schwarz Reflection Principle, f can be extended to be
analytic in the unit disc. However, f ′(0) cannot exist because limh→0

f (h)− f (0)
h

yields different values as h → 0 along the positive real axis and along the negative
real axis.

Chapter 8

1. γ represents the portion of the ray from α through z to ∞, starting at z. Thus, if
z is in the complement of S, so is all of γ . For, if any z1 ∈ γ belonged to S, so
would the entire segment connecting α and z1, including z.

3. As suggested in the hint, let C = {z : |z − α| = r} and consider δz =
max{t :D(z; t) ⊆ S}. δz is a continuous function of z ∈ C and δ = minz∈C δz

exists. Hence, the annulus B = {z : r − δ ≤ |z − α| ≤ r + δ} is contained in S.
It follows that any z0 ∈ D(α; r) must belong to S. For any path γ connecting z0
to ∞ must intersect C , and, at that point, d(γ, S̃) ≥ δ.

4. S̃ is closed because it contains all its accumulation points. Moreover, any point

(x0, sin 1
x0

) can be connected by the curve y = sin 1
x to

(
1

kπ , 0
)

which is within

ε of (0, 0) as long as k > 1
πε . The positive y axis, contained in S, then, connects

the origin to ∞.
6. As in Lemma 8.3, we can view a simple closed curve � with k levels as a union

of rectangles and one or more closed curves �′ with k − 1 levels. We can then
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define the inside of � as the points in the rectangles together with the inside of
the closed curves �′. As in the proof of Lemma 8.3, it follows by induction that
points inside � belong to any simply connected domain containing �.

7. Suppose γ (t):a ≤ t ≤ b has γ (t2) = γ (t1). Then γ can be written as a union of
γ1 and γ2 where γ1 = γ (t); t ∈ [a, t1] ∪ [t2, b] and γ2 = γ (t); t ∈ [t1, t2].

8. Note that, for points z on the negative axis, π i + ∫ z
−1

dζ
ζ = π i + ∫ −|z|

−1
dζ
ζ =

π i + ln |z|. Hence, Im(log z) = π i for all points on the negative axis. For any
z, we can, then, choose the path of integration from −1 to −|z|, followed by the
circular arc from −|z| to z.

Chapter 9

1. Note that z0 cannot be a removable singularity nor can it be an essential singularity.

2. No. According to Exercise 1, | f (z)| ∼ exp
(

1
|z|

)
⇒ f has a pole at z = 0, but

then | f (z)| ∼ A
|z|k near z = 0.

4. By Riemann’s Principle, the singularity is removable; hence f is (can be con-
sidered) entire! But then | f (z)| ≤ A|z| for large z implies that f is a linear
polynomial, and | f (z)| ≤ A

√|z| for large z implies that f is constant.
6. e1/z �= 0. To solve e(1/z) = w for any w �= 0, take (1/z) equal to any of the

infinitely many values of log w. Note that infinitely many of these values for 1/z
correspond to values of z in the unit disc.

7. f + g will have a pole of order max(m, n) if m �= n and a (possible) pole of order
≤ m if m = n; f · g will have a pole of order m + n; f/g will have a pole of order
m − n if m > n, a zero of order n − m if n > m, and a removable singularity if
m = n.

9. a. Double pole at z = 0; simple pole at ±i .
b. Simple pole at z = kπ, k any integer.
c. Same as (b).
d. Essential singularity at z = 0; simple pole at z = 1.

11. a.
∑∞

k=−1(−1)k+1z2k

b.
∑∞

k=−∞ akzk with

ak =

⎧⎪⎨
⎪⎩

−e if k ≥ 0,

−e + 1 + 1
1! + 1

2! + · · · + 1
( j−1)! if k = −2 j or k = −2 j + 1,

j = 1, 2 · · ·

c.
∑∞

k=−1
(−1)k+1(z−2)k

4k+2

14. Use f (z) = f (z)− f (−z)
2 .

15. a. 1
z2 − 1

2i(z−i) + 1
2i(z+i)
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b. 1
2i(z−i) − 1

2i(z+i)

16. If | f (z) − w| > δ, g(z) = 1
f (z)−w would be analytic in D with zeroes at all the

points of {zn} which would imply that g is identically zero.
17. a. Because the range of sin 1

z is dense in the plane, so is the range of csc 1
z = 1

sin 1
z

b. Note that csc 1
z has a pole at all the points z = 1

kπ , k an integer.
18. If f is a polynomial, according to the Fundamental Theorem of Algebra, the

range of f is the full complex plane. Otherwise, note that f (1/z) has an essential
singularity at 0.

Chapter 10

1. a. 1
z4+z2 = 1

z2(z2+1)
= 1

z2 (1−z2+z4−· · · ) around z = 0. Hence Res
(

1
z4+z2 ; 0

)
=

0; 0 is a double pole.
1

z4+z2 = 1
z2(z+i)(z−i)

. Hence, 1
z4+z2 has a simple pole at i , with Res = i

2 , and

a simple pole at z = −i, with Res = −i
2 (see Chapter 9, Exercise (15a)).

b. cot z = cos z
sin z has a simple pole at every integral multiple of π with

Res(cot z; πk) = 1 for all k.
c. csc z = 1

sin z has a simple pole at every integral multiple of π with

Res(csc z; πk) = 1
cos(πk) = (−1)k .

d.
exp 1

z2

z−1 has a simple pole at z = 1 with Res = e. Around z = 0,

e1/z2

z − 1
=

(
1 + 1

z2 + 1

2!z4 + 1

3!z6 · · ·
)

(−1 − z − z2 · · · ).

Hence, Res

(
e1/z2

z−1 ; 0

)
= −e + 1 (see Chapter 9, Exercise (11b); 0 is an

essential singularity!).
e. 1

z2+3z+2
= 1

(z+1)(z+2) . Hence 1
z2+3z+2

has simple poles at −1 and −2 with

Res
(

1
z2+3z+2

; −1
)

= 1; Res
(

1
z2+3z+2

; −2
)

= −1.

f. Essential singularity at z = 0 with Res = 1.
g. Essential singularity at z = 0 with Res = 9/2.

h. If b2 − 4ac �= 0, there are simple poles at −b±
√

b2−4ac
2a with residues of

1

±
√

b2−4ac
. If b2 − 4ac = 0, 1

az2+bz+c
= 1

a
(

z+ b
2a

)2 , so that there is a double

pole at z = −b
2a with residue zero.
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2. a. 2π i (see (1b)).
b.

2π i
3∑

k=1

1

(zk − 4) · 3z2
k

= 2π i

3

3∑
k=1

zk

zk − 4
where zk = e2kπ i/3, k = 1, 2, 3,

= −2π i

63

c. 2π i (see Exercise (1f)).
d. 9π i (see Exercise (1g)).

3. Let C be any regular closed curve surrounding z = 0 and not surrounding any of

the other singularities: z = 2πki, k = ±1, ±2, . . . . Then Res
(

1
(1−e−z)n ; 0

)
=

1
2π i

∫
C

dz
(1−e−z)n . Letting

w = 1 − e−z,

e−z = 1 − w

−e−zdz = −dw

dz = dw

e−z
= dw

1 − w

and
1

2π i

∫
C

dz

(1 − e−z)n
= 1

2π i

∫
C∗

dw

wn(1 − w)

where C∗ is the image under w = 1 − e−z of C . [To see that C∗ surrounds 0
and not 1 in the w-plane, we can consider C to be the boundary of the rectangle
−1 ≤ x ≤ 1; −π

2 ≤ y ≤ π
2 in which case C∗ can be seen to be the left half

of the annulus centered at 1 with inner radius 1/e and outer radius e.] Thus,

Res
(

1
(1−e−z)n ; 0

)
= Res

(
1

(wn(1−w) ; 0
)

= 1 because 1
(wn(1−w) = 1

wn (1 + w +
w2 + · · · ) has Res = 1 at w = 0 for all n.

6. f (z+h)− f (z)
h = ∫

γ ϕ(w)

[
1

w−(z+h) − 1
w−z

h

]
dw. Because z �∈ γ , we can take limh→0

inside the integral and limh→0
f (z+h)− f (z)

h = ∫
γ

ϕ(w)
(w−z)2 dw. In particular, be-

cause f (z) = 1
2π i

∫
C

f (w)
w−z dw where C is a regular curve surrounding z, it

follows that f ′(z) = 1
2π i

∫
C

f (w)
(w−z)2 dw and continuing inductively we can prove

Theorem 10.11.
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R

f f (–R) f (R)

–R

7. Consider the image of the circle |z| = R under the mapping w = f (z). Because
f (z) is real if, and only if, z is real, f maps the entire upper semicircle |z| = R;
y > 0 into either the upper half-plane or the lower half-plane, and, likewise,
f maps the entire lower semicircle |z| = R, y < 0 into either the upper or
the lower half-plane. Because �Arg w is at most π in either the upper or lower
half-plane, it follows that �Arg f (z), as z traverses |z| = R, is, at most, 2π and
Z( f ) in |z| ≤ R,= 1

2π �Arg f (z) ≤ 1.
9. a. 0 because |3e−z| ≥ 3

e > |z| on |z| = 1

b. 1 because |z| >
∣∣∣ 1

3 ez
∣∣∣

c. On |z| = 2, |z4| > |5z − 1|. On |z| = 1, |5z| > |z4 + 1|. Hence, there are
3 zeroes in the annulus.

d. Note that, on |z| = 1, |5z4| = 5 ≥ |z6 + 3z2 − 1| with equality possible only
at z = ±i . Because z6 − 5z4 + 3z2 − 1 �= 0 at z = ±i , it follows that there
are 4 zeroes in |z| ≤ 1.

11. Res
(

zm f ′(z)
f (z) ; zk

)
= p · zm

k where p is the order of the zero at zk .

12. Note that 1 + z + z2

2! + · · · zn

n! → ez which has no zeroes anywhere. Because the
convergence is uniform in |z| ≤ R, the result follows.

14. Use the fact that |anzn| > |an−1zn−1 + · · · + a0| on the circle |z| = R for
sufficiently large R.

15. To show that J (λ) is defined and continuous, note that | f | > |g| throughout γ
implies that f + λg is nonzero throughout γ for all λ : 0 ≤ λ ≤ 1.

16. Let f (z) = √
z2 − 1 = exp

(
1
2

∫ z√
2

2ζdζ
ζ 2−1

)
. Without loss of generality, we can

assume that the path of integration is in the upper half-plane, if Im z > 0,
and in the lower half-plane, if Im z < 0. To show that limz→x f (z) exists for
−∞ < x < −1, we must establish that the same limit exists as we approach x
through the upper half-plane or the lower half-plane. The difference between the
limits equals

∫
C

2ζ
ζ 2−1

dζ where C is a regular closed curve surrounding ζ = ±1.
By the argument principle,∫

C

2ζ

ζ 2 − 1
dζ = 2π i

∑
Res

(
2ζ

ζ 2 − 1
; ±1

)
= 4π i

Hence, limz→x
√

z2 − 1 exists because ew/2 = e(w+4π i)/2. By Theorem 7.7, then
f is analytic in the plane minus [ − 1, 1].
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17. Define f (z) = 3
√

(z − 1)(z − 2)(z − 3) as exp
(

1
3 log [(z − 1)(z − 2)(z − 3)]

)
where

log [(z − 1)(z − 2)(z − 3)] =
∫ z

4

[(z − 1)(z − 2)(z − 3)]′

(z − 1)(z − 2)(z − 3)
dz + log 6

for z in the plane minus the interval (−∞, 3]. Show then that f (z) defines a
function which is continuous at all points x on the real axis with x < 1.

Chapter 11

1. a.
∫ ∞
−∞

x2

(1+x2)2 dx = 2π i Res
(

z2

(z+i)2(z−i)2 ; i
)

= 2π i f ′(i) (where f (z) =
z2

(z+i)2 ) = π
2 .

b.
∫ ∞

0
x2

(x2+4)2(x2+9)
dx = 1

2 · 2π i
∑

Res
(

z2

(z2+4)2(z2+9)
; 2i, 3i

)
. Note that

Res
(

z2

(z2+4)2(z2+9)
; 3i

)
= (3i)2

((3i)2+4)26i
= 3

50 i and Res
(

z2

(z2+4)2(z2+9)
; 2i

)
=

f ′(2i), with f (z) = z2

(z+2i)2(z2+9)
, and equals −13

200 i . Thus,
∫ ∞

0
x2

(x2+4)2(x2+9)
=

π i
(
− 1

200 i
)

= π
200 .

c. Use the fact that z4 + z2 + 1 = 0 when z2 = − 1
2 ±

√
3

2 i or when z2 = ei 2
3 π

or ei 4
3 π . Thus, z4 + z2 + 1 has zeroes in the upper half-plane at z1 = eiπ/3

and at z2 = ei 2
3 π .

Res

(
1

z4 + z2 + 1
; z1

)
= 1

4z3 + 2z

∣∣∣∣
z=eiπ/3

= 1

−3 + √
3i

,

Res

(
1

z4 + z2 + 1
; z2

)
= 1

4z3 + 2z

∣∣∣∣
z=ei 2

3 π
= 1

3 + √
3i

so that∫ ∞

0

dx

x4 + x2 + 1
= 1

2
2π i

(
1

−3 + √
3i

+ 1

3 + √
3i

)
=

√
3π

6
.

d.
∫ ∞

0
sin x

x(1+x2)
dx = 1

2 Im
∫ ∞
−∞ = eix −1

x(1+x2)
dx = 1

2 Im
(

2π i Res
(

eiz−1
z(1+z2)

; i)
))

=
1
2 Im

(
π(e−1)i

e

)
= π(e−1)

2e .

e.
∫ ∞

0
cos x
1+x2 dx = 1

2

∫ ∞
−∞

cos x
1+x2 dx = 1

2 Re
∫ ∞
−∞

eix dx
1+x2 = 1

2 · 2π i Res
(

eiz

1+z2 ; i
)

= π/2e.
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f.
∫ ∞

0
dx

x3+8
= −∑3

k=1 Res
(

log z
z3+8

; zk

)
where z1 = 2eiπ/3, z2 = 2eiπ = −2;

z3 = 2ei 5
3 π . Note then that Res

(
log z
z3+8

; zk

)
= −zk log zk

24 and
∑3

k=1 Res
(

log z
z3+8

; zk

)
= −

√
3π

18 .

g. (1− e(α−1)2π i)

∫ ∞

0

xα−1

1 + x
dx = 2π iRes

(
zα−1

1 + z
; −1

)
= 2π ie(α−1)π i . Since

eπ i = −1; e2π i = 1,

∫ ∞

0

xα−1

1 + x
dx = −2π ieαπ i

1 − e2απ i
= −2π i

e−απ i − eαπ i
=

π

sin(πα)
.

h. ∫ 2π

0

dx

(2 + cos x)2
= 4

i

∫
|z|=1

z

(z2 + 4z + 1)2
dz

= 8πRes

(
z

(z2 + 4z + 1)2
; −2 + √

3

)

= 8π f ′(−2 + √
3), with f (z) = z

(z + 2 + √
3)2

= 8π

√
3

18
= 4

9

√
3π

i. ∫ 2π

0

sin2 x

5 + 3 cos x
dx = i

2

∫
|z|=1

(z2 − 1)2

z2(3z2 + 10z + 3)
dz

= −π
∑

Res

(
(z2 − 1)2

z2(3z2 + 10z + 3)
; −1

3
, 0

)
.

The result follows by noting that the Res at−1/3 is 8/9 and the Res at 0, which

equals f ′(0) with f (z) = (z2−1)2

3z2+10z+3
, is equal to − 10

9 .

j.
∫ 2π

0
dx

a+cos x = 2
i

∫
|z|=1

dz
z2+2az+1

= 4π Res
(

1
z2+2az+1

; z0

)
where z0 is the zero

of z2 + 2az + 1 with |z0| < 1. Thus z0 =
{−a + √

a2 − 1 if a > 1

−a − √
a2 − 1 if a < −1

∫ 2π

0

dx

a + cos x
= 4π

2z0 + 2a
= 2π

z0 + a
=

{
2π/

√
a2 − 1 if a > 1

−2π/
√

a2 − 1 if a < −1

2. Let CR, �R be as in 11.1 (I).
∫

CR

e2iz−1−2iz
z2 dz = 0 because the integrand is entire.

Thus, −2
∫ R
−R

sin2 x
x2 dx − 2i

∫
�R

dz
z + ∫

�R

e2iz−1

z2 dz = 0, and letting R → ∞, we

find
∫ ∞
−∞

sin2 x
x2 dx = π .
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3. Let Cn be the indicated contour; �n the circular segment. Then,
∫

Cn

1
1+zn dz =

2π i Res
(

1
1+zn ; eiπ/n

)
= −2π i

n eiπ/n . Note that
∫
�n

dz
1+zn → 0 as the radius of

�n → ∞. Hence, letting R → ∞, we find

lim
R→∞

∫
Cn

1

1 + zn
dz =

∫ ∞

0

1

1 + xn
dx − e2π i/n

∫ ∞

0

1

1 + xn
dx,

and

(1 − e2π i/n)

∫ ∞

0

1

1 + xn
dx = −2π ieiπ/n.

Thus,

∫ ∞

0

1

1 + xn
dx = 2π ieπ i/n

e2π i/n − 1
= 2π i

eπ i/n − e−π i/n
= π/n

sin(π/n)
.

7. a. Note that on �R, |eiz2 | = e−2xy where z = x + iy. Because x ≥ R√
2
, |eiz2 | ≤

e−Ry . Dividing �R into the lower part L = {z ∈ �R : y ≤ h} and an upper
part U = {z ∈ �R : y ≥ h}, ∫

�R
eiz2

dz = ∫
L eiz2

dz + ∫
U eiz2

dz � 2h +
e−Rh

(
π
4

)
R by the usual M-L formula. Choosing h = 1√

R
, e.g., we see that∫

�R
eiz2

dz → 0 as R → ∞.

b.
∫

CR
eiz2

dz = 0 where CR is the boundary of the indicated sector. Parametriz-

ing and letting R → ∞, we see by (a) that
∫ ∞

0 eix2
dx − eiπ/4

∫ ∞
0 e−x2

dx =
0 ⇒ ∫ ∞

0 cos x2dx + i
∫ ∞

0 sin x2dx = eiπ/4
∫ ∞

0 e−x2
dx . Using the fact

that
∫ ∞

0 e−x2
dx = √

π/2 and equating real and imaginary parts shows that∫ ∞
0 cos x2dx = ∫ ∞

0 sin x2dx =
√

2π
4 .

8. [Note that
∫
|z|=R

P(z)
Q(z)dz = 2π i

∑
k Res

(
P
Q ; zk

)
where {zk} represent the zeroes

of Q in |z| < R (assuming that Q �= 0 on |z| = R.)] If we choose R large

enough to encompass all the zeroes of Q,
∫
|z|=R

P(z)
Q(z)dz = 2π i

∑
Res

(
P
Q

)
.

On the other hand, letting R → ∞ and applying the usual M − L estimates,∫
|z|=R

P(z)
Q(z)dz → 0. Hence,

∑
Res

(
P
Q

)
= 0.

9. a. 2
∑∞

n=1
1

n2+1
= −∑3

k=1 Res
(

π cot(πz)
1+z2 ; zk

)
where z1 = 0; z2 = i ; z3 =

−i = −
(

1 + π cot(π i)
i

)
= −1 + π

(
e2π+1
e2π−1

)
.∑∞

n=1
1

n2+1
= − 1

2 + π
2

(
e2π+1
e2π−1

)
.

b.
∑∞

n=1
1

n4 = − 1
2 Res

(
π cot(πz)

z4 ; 0
)

= π4

90

c. 1+2
∑∞

n=1
(−1)n

n2+1
= −∑

zk=±i Res
(

π
(sinπz)(z2+1)

; zk

)
= − π

i sin(π i) = 2π
eπ −e−π .∑∞

n=1
(−1)n

n2+1
= πeπ

e2π−1
− 1

2 .
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13. Because
(

3n
n

) = 1
2π i

∫
|z|=R

(1+z)3n

zn+1 dz for any R > 0,
∑∞

n=0

(
3n
n

) 1
8n = − 8

2π i ×∫
|z|=1/2

dz
(z+1)3−8z

= − 8
2π i

∫
|z|=1/2

dz
z3+3z2−5z+1

(since
∣∣∣ (1+z)3

8z

∣∣∣ < 27
32 for |z| =

1/2). Because z3 + 3z2 − 5z + 1 = (z − 1)(z2 + 4z − 1), the only zero of
z3 + 3z2 − 5z + 1 inside |z| = 1

2 is at z = −2 + √
5, and

∑∞
n=0

(
2n
n

) 1
8n =

−8 Res
(

1
z3+3z2−5z+1

; −2 + √
5
)

= 5+3
√

5
5 .

14. Because
(

2n
n

)
xn = 1

2π i

∫
|z|=R

(
(1+z)2x

z

)n
dz
z and because

∣∣∣ (1+z)2x
z

∣∣∣ ≤ |4x |<1

throughout |z| = 1,
∑∞

n=0

(
2n
n

)
xn = 1

2π i

∫
|z|=1

−1
(1+z)2x−z

dz. Note that (1 +
z)2x − z = xz2 + (2x − 1)z + x has zeroes at (1 − 2x ± √

1 − 4x)/2x
and (1 − 2x − √

1 − 4x)/2x is inside the unit circle. Thus,
∑∞

n=0

(
2n
n

)
xn =

−Res
(
− 1

(1+z)2x−z
; 1−2x−√

1−4x
2x

)
= 1√

1−4x
.

15. Note that max
a2+b2=4

a2b = max
0≤b≤2

(4b − b3) = 16
9

√
3.

16. a. To maximize a2b
R2 as in the diagram below, note that (2R)2 + 22 = 2(a2 + b2),

so that a2 + b2 = 2(R2 + 1) and a2b
R2 = b(6−b2)

2 because R2 = 2.

Hence, max
∣∣∣ (z−1)2(z+1)

z2

∣∣∣ = 1
2 max(6b − b3) occurs when b = √

2 and

max
∣∣∣ (z−1)2(z+1)

z2

∣∣∣ = 2
√

2.

Rb

b

z

–z

a

a

–1 1

b. As in the diagram above

max|z|=R

∣∣∣∣∣ (z − 1)2(z + 1)

z2

∣∣∣∣∣ = max
a2b

R2 = max
b(2R2 + 2 − b2)

R2 ,
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which occurs when b2 = 1
3 (2R2 + 2), and is equal to 4

√
6

9
(R2+1)3/2

R2 .

But min0<R<∞ 4
√

6
9

(R2+1)3/2

R2 occurs when R = √
2 and equals 2

√
2 as we

saw in Exercise (16a).

Chapter 12

3. Note that
∫
�R

ez ln zdz = 0 where �R is the closed curve indicated below,

L1
R

C

L2

I2

I1

∋

γ

(1 – R2, R)

i.e., �R = γR ∪ L1 ∪ I1 ∪ Cε ∪ I2 ∪ L2. Because |ez ln z| ≤ e1−R2
(ln R + π) for

Re z = 1− R2,
∫

L1∪L2
ez ln zdz → 0 as R → ∞. Similarly,

∫
Cε

ez ln zdz → 0 as

ε → 0. Hence
∫
γ ez ln zdz = ∫ ∞

0 e−x(ln x + π i)dx − ∫ ∞
0 e−x(ln x − π i)dx =

2π i .
4.

∑
(−1)k

(
n
k

)1/3

= 1

2π i

∫
C

[ f (z)]1/3 π

sin(πz)
dz

� 1

π

∫ − 1
2 +i∞

− 1
2 −i∞

π2/3

| sin(πz)|2/3 3
√

|z(1 − z) · · · (1 − z
n

) |
dz

� A
3
√√

n + 1
= A

(n + 1)1/6

5. a. On Re z = − 3
4 ,

1√∣∣∣(1 − z) · · ·
(

1 − z
n

)∣∣∣
≤ 1√(

1 + 3
4

) (
1 + 3/4

2

)
· · ·

(
1 + 3/4

n

)
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= 1√∏n
k=1

(
1 + 3

4k

)

≤ 1√[∏n
k=1

(
1 + 1

k

)]3/4

= 1

(n + 1)3/8
.

Hence
∑n

k=0(−1)k
√(

n
k

) � A
n3/8 .

b. Let Re z = −1 + δ = −t . Then
∣∣(1 − z) · · · (1 − z

n )
∣∣ ≥∏n

k=1(1 + t
k ) ≥

[∏n
k=1

(
1 + 1

k

)]t = (n + 1)1−δ. Also, because

| sin(x+iy)| ≥ | sin x |, | sin(πz)| ≥ | sin(πδ)| ≥ 2δ. Thus,
∣∣∣∑n

k=1(−1)k
√(

n
k

)∣∣∣
≤ 2

∫ −1+δ+i∞
−1+δ−i∞

dz√
sin(πz)(1−z)···(1− z

n )
≤ A√

δ(n+1)1−δ
and, taking δ = 1

log n ,∣∣∣∑n
k=1(−1)k

√(
n
k

)∣∣∣ ≤ B
√

log n√
n

.

Chapter 13

1. Note that the solutions of zk = α are uniformly distributed around the circle of
radius |α|1/k . Hence zk is 1-1 in any set of the form Sα,β = {z : α < Arg z <

β; β − α < 2π
k }.

2. x = x0 is mapped into a circle centered at 0 with radius ex0 .
y = y0 is mapped into the ray reiy0 ; r > 0.

3. i. f3 ◦ f2 ◦ f1 where f1(z) = π
3 (z + 2); f2(z) = eiz ; f3(z) = z−i

z+i .

ii. f (z) = 4z
6−z (see Theorem 13.23).

iii. f (z) = 4
π log z

iv. f3 ◦ f2 ◦ f1 with f1(z) = √
z, f2(z) = − (z−1)2

4(z+1)2 and f3(z) = z−i
z+i .

8. a. Note that lines are mapped into lines.
b. By considering g(z) = α f (βz + γ ) + δ, we can assume without loss of

generality that f maps a rectangle R of the form: 0 ≤ x ≤ a, 0 ≤ y ≤ b
onto a rectangle S of the form: 0 ≤ x ≤ c, 0 ≤ y ≤ d . If we assume, in
addition that f maps the boundary curves of R onto the boundary curves of S,
it will follow from the Schwarz Reflection Principle that Re f (z) and Im f (z)
both grow (at most) linearly. Thus | f (z)| ≤ A|z| + B and, by the Extended
Liouville Theorem, f is linear. See Example 2 in Section 7.2 and exercise 23
of Chapter 7. The fact that the boundary lines are, in fact, mapped onto the
boundary lines, is proven in 14.9.
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9. If f1(z) = a1z+b1
c1z+d1

, f2(z) = a2z+b2
c2z+d2

, then f2 ◦ f1(z) = Az+B
Cz+D with A = a2a1 +

b2c1, B = a2b1 + b2d1, C = a1c2 + c1d2, D = b1c2 + d1d2 and AD − BC =
(a1d1−b1c1)(a2d2−b2c2). Also, as in the text, if f (z) = az+b

cz+d , f −1(z) = dz−b
−cz+a .

The other group properties are easily established.
10. a. |z| = 1.

b. The line x = − 1
2 .

c. C(− 2
3 ; 1

3 ). Note that 1
z−2 = f2 ◦ f1 with f1(z) = z − 2, f2(z) = 1

z and use
Lemma 13.10.

11. By Theorem 13.15, f (z) = eiθ z and eiθ = f ′(0) > 0.
12. Let f (z) = f1 ◦ f −1

2 (z). Then f (0) = 0, and f ′(0) = f
′
1( f −1

2 (0)) · 1
f
′
2 ( f −1

2 (0))
=

f
′
1 (z0)

f
′
2 (z0)

> 0 so that, by Exercise 11, f (z) ≡ z and f2 ≡ f1.

13. Use Theorems 13.15–13.17 and the fact that any disc or half-plane can be mapped
onto the unit disc or upper half-plane, respectively, by a linear mapping.

14. The lower half-plane.

15.
√

az2+b
cz2+d

; a, b, c, d real; ad − bc > 0.
16. Use the hint given with the exercise and the fact that h1 ◦ h2 is of the form

az+b
cz+d ; a, b, c, d real as in the proof of Exercise 9.

17. (a) i,−i . (b) 0.

18. T (z) = (z−z2)(z3−z1)
(z−z1)(z3−z2)

maps z1, z2, z3 → ∞, 0, 1, respectively, and because it

is bilinear, it maps the circle (or line) containing z1, z2, z3 onto the real line.
Moreover, T is 1-1 so that (z1, z2, z3, z4) = T (z4) is real-valued if, and only
if, z4 lies on the circle (or line) containing z1, z2, z3.

19. (a) w = − 1
z . (b) w = z + i . (c) w = z−i

z+i .

20. Note that z−α
1−ᾱz maps |z| < 1 onto |z| < 1 and g(z) = a

(
4z−1−β

1−β̄(4z−1)

)
maps

|z − 1
4 | < 1

4 onto |z| < a. Equating coefficients leads to α = 2 − √
3.

Chapter 14

1. Since g is locally irrotational and source-free, F is well defined and analytic. As
z moves along a curve C from z1 to z2

F(z2) − F(z1) =
∫ t2

t1
(u − iν)(dx + idy)

=
∫ t2

t1
udx + νdy + i(udy − νdx)

where C : z(t); zk = z(tk). If Re F(z) is constant throughout C,
∫ t2

t1
u dx+νdy≡0,

which implies that g = u + iν is orthogonal to the (tangent) direction vector(
dx
dt ,

dy
dt

)
.
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2. Note that curves satisfying Im F(z) = constant are orthogonal to curves satis-
fying Re F(z) = constant since the two families of curves are the preimages
under F of the orthogonal curves: x = constant and y = constant. Alternatively,
argue as in Exercise 1, that

∫
C udy − vdx = 0 implies that the vector (u, ν) is

orthogonal to the direction
(

dy
dt ,− dx

dt

)
.

3. a. The hyperbolas xy = c.
b. Rays from the origin.

4. Note that, if F(z) = z + A0 + A1
z + A2

z2 + · · · , with Ak = ak + ibk ; ak, bk real,

then Im F(eiθ ) = sin θ + b0 − ∑∞
k=1 ak sin(kθ) + ∑∞

k=1 bk cos(kθ). Hence, by
the uniqueness of the Fourier series, a1 = 1; ak = 0 for k > 1 and bk = 0 for
k ≥ 1, i.e., F(z) = z + A0 + 1

z .

5. a. For f (z) = 2z + 1
z , f (eiθ ) = 3 cos θ + i sin θ = u + iv with u2

9 + v2 = 1.

b. Take f (z) = f2 ◦ f1 where f1 is the inverse of 2z + 1
z , i.e., f1(z) = z+

√
z2−8

4

and f2(z) = z + 1
z .

6. Let g(z) = eiθ
[

f (z)− f (z0)
1− f (z0) f (z)

]
. Because g′(z0) = eiθ f ′(z0)

1−| f (z0)|2 , choose

θ = −Arg f ′(z0).
9. If R �= C, let f1 : R → U and f2 : R → U be such that f1(z1) = f2(z2) = 0.

Then, f = f −1
2 ◦ f1 is the desired mapping. If R = C, let f (z) = z − z1 + z2.

10. If f1: C → R were conformal, then f = f2 ◦ f1, where f2: R → U
would be a conformal mapping of C onto U which is impossible by Liouville’s
Theorem.

11. a. Note, as in the proof of the Riemann Mapping Theorem, part B, that
|g′(z0)| < 1

δ where δ is such that D̄(z0; δ) ⊂ R.
b. Let ϕ1(z) be the Riemann mapping function ϕ1 : R → U with ϕ1(z0) = 0,

ϕ′
1(z0) = M > 0 and let ϕ2 : R → U with ϕ2(z0) = 0, ϕ′

2(z0) = M∗ ≥ M .
Let f (z) = ϕ2 o ϕ−1

1 (z). Then f is analytic in the unit disc; | f | < 1 there,

f (0) = 0 and f ′(0) = ϕ
′
2(z0)

ϕ
′
1(z0)

= M∗
M ≥ 1. Hence, by Schwarz’ lemma,

M∗ = M and f (z) = z, i.e., ϕ2 = ϕ1.

Chapter 15

2. eεiz2

3. ez maps the lines y = ±π
2 onto the imaginary axis; hence, eez � 1 on the

boundary of D. If f (z) � Aεeεez
in D, then g(z) = f (log z) � Aεeε|z| in the

right half-plane.
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Chapter 16

1. u + ν = Re[(1 − i) f ]; uv = Re
(−i f 2

2

)
.

2. If g = fx , then gx x + gyy = ( fx x + fyy)x = 0. Similarly, fy is harmonic.
3. If g = u2, gx x + gyy = 2u(ux x + uyy) + 2(u2

x + u2
y) = 2(u2

x + u2
y) which cannot

be identically zero unless u is constant.
4. A direct calculation shows that, if u = log(x2 + y2), ux x + uyy = 0. If u

were the real part of an analytic f (z), z �= 0, f would have to agree up to an
additive constant with the analytic function log z in the simply connected domain
0 < Arg z < 2π . But then, f (z), like log z, would not be continuous on the
positive real axis.

5. Note that, if v(r, θ) = u(r cos θ, r sin θ), then, r2vrr +rvr +vθθ = r2(ux x +uyy).
Hence, Laplace’s equation becomes

r2νrr + rνr + νθθ = 0 or r
∂

∂r
(rvr ) + vθθ = 0.

i.e., ∂
∂r (rvr ) + 1

r vθθ = 0. If v depends on r alone, vθθ = 0, and the above
differential equation implies

v = a ln r + b.

Note also that, if vr = 0 and v is harmonic, then vθθ = 0, or
v(θ) = aθ + b.

6. 2π i f (z) = ∫
CR

f (ζ )
ζ−z dζ − ∫

CR

f (ζ )
ζ−z̄ dζ = ∫

CR

(z−z̄) f (ζ )
(ζ−z)(ζ−z̄) dζ . Let �R be the semi-

circular arc |z| = R, Im z ≥ 0. Then, as R → ∞,
∫
�R

(z−z̄) f (ζ )
(ζ−z)(ζ−z̄) dζ → 0 by the

M-L formula, so that

2π i f (z) = 2i
∫ ∞

−∞
y f (t)

(t − x)2 + y2 dt,

and, dividing by 2π i and equating real parts,

u(x + iy) = 1

π

∫ ∞

−∞
yu(t)

(t − x)2 + y2 dt

7. Note that Re(z3) = x3 − 3xy2 = 4x3 − 3x on the unit circle. Hence

u(x, y) = 1

4
(x3 − 3xy2 + 3x).

8. u(z) = 3
2 − 1

π Arg
(

z−1
z+1

)
where the Arg takes values between π

2 and 3π
2 .

u(z) = k ⇒ Arg

(
z − 1

z + 1

)
= θ = π

(
3

2
− k

)
.
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Thus, for 1
2 < k < 1, z lies on the upper arc of a circle for which [ − 1, 1] is

a chord and for which the lower arc has 2θ degrees. For 0 < k < 1
2 , z lies on

congruent arcs in the lower half-plane. The chord [ − 1, 1] is the level curve for
k = 1

2 .
9. 1

π Arg z = 1
π θ (see the note following Exercise 5).

10. sin z maps the strip onto the upper half-plane with the boundary of the strip being
mapped onto the real line segments (−∞, −1), [ − 1, 1], (1, ∞).

In the upper half-plane: w > 0, Arg(w2 − 1) has the values 2π, π, 0 on
the intervals (−∞, 1), (−1, 1) and (1, ∞), respectively, and Arg(w2 − 1) =
Im[ log(w2 − 1)] is the imaginary part of a function analytic in the upper half-
plane. Thus, the desired solution is

u(x, y) = 1

π
Arg(sin2 z − 1) = 1

π
Arg(− cos2 z)

Note, for example, that on the y axis, u(0, y) = 1
π Arg(− cosh2 y) = 1.

11. By Theorem 16.3, if ez − P(z) does not have Infinitely many zeroes,

ez − P(z) = Q(z)eR(z)

where Q, R are polynomials. Considering the growth at infinity, it follows that
R(z) = z, Q(z) = 1, and P(z) = 0. Similarly, for sin z − P(z).

12. If a function f of order j does not have infinitely many zeroes,

f (z) = Q(z)eP(z).

But if f �= 0, Q is a constant and f can be written in the form f (z) = eP(z).
Finally, because f is of order j, P is a polynomial of degree j .

Chapter 17

1.
∏N

k=2

(
1 − 1

k2

)
= ∏N

k=2
(k−1)(k+1)

k2 = N+1
2N . Hence PN → 1

2 as N → ∞.

2.
∏N

k=2

[
1 + (−1)k

k

]
=

(
3
2

) (
2
3

) (
5
4

) (
4
5

)
· · ·

[
1 + (−1)N

N

]
. Hence,

PN =
⎧⎨
⎩

1 if N is odd

1 + 1

N
if N is even

and PN → 1 as N → ∞.

4. log(1 + zk) − zk = − z2
k
2 + z3

k
3 − + · · · � z2

k if |zk| ≤ 1
2 . Hence, if

∑ |zk|2
converges, so does

∑
[ log(1 + zk)− zk] and, because

∑
zk converges, it follows

that
∑

log(1 + zk) converges. By Proposition 17.2, then, �(1 + zk) converges.
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5. Because
∑

zk = ∑ (−1)k√
k

converges, the convergence of
∑

log(1+zk) is equiva-

lent to the convergence of
∑

[ log(1+ zk)− zk]. But the latter is
∑

k

(
− z2

k
2 + z3

k
3 −

+ · · ·
)

and, for k ≥ 4, log(1 + zk) − zk ≤ −1
6k so that

∑
log(1 + zk) diverges.

6. (1 + z)(1 + z2) · · · (1 + z2N−1
) = 1 + z + z2 + · · · + z2N −1 → ∑∞

k=0 zk = 1
1−z

uniformly for |z| ≤ r < 1.

7.
∏∞

k=1

(
1 − z

k2

)
8. Using the power series expansion for sin z, it can be seen that sin π

√
z

π
√

z
is entire

and equal to zero if z = k2; k = 1, 2, · · · . Note, also, that, according to
Proposition 17.8, the solutions in (7) and (8) are identical.

9. f (z) = ∏∞
k=1

(
1 − 4z2

(2k+1)2

)/
cos πz is entire and zero-free. As in

Proposition 17.8, it can be shown (considering the magnitude of f on a square of
side 2N centered at the origin) that | f (z)| ≤ A exp(|z|3/2) and that f is, in fact,
constant, so that f (z) = f (0) = 1. The product form also be derived from the
identity:

cos πz = sin 2πz

2 sin πz
.

10. a.
∏∞

k=1

[
1 − 1

k(1−z)

]
exp

( 1
k(1−z)

)
.

b. Le {zk} be a sequence of distinct points with limk→∞ zk = z0. Then, an
entire function can be defined with zeroes at the points λk = 1

z0−zk
. Setting

g(z) = f
(

1
z0−z

)
, g will be analytic for z �= z0 and equal to zero at the points

of the original sequence {zk}.
11. F ′(z) = 1

2π i

∫
C

∫ b
a

ϕ(ζ,t)
(ζ−z)2 dt dζ = ∫ b

a
1

2π i

∫
C

ϕ(z,t)
(ζ−z)2 dζ dt = ∫ b

a
∂
∂z (ϕ(z, t))dt .

12. Because h is continuous, |h| ≤ M on [α, β]. For any ε > 0,
∫ x−ε
α

h(u)y
(u−x)2+y2 du

and
∫ β

x+ε
h(u)y

(u−x)2+y2 du are each bounded in absolute value by My(β−α)
ε2 whereas∫ x+ε

x−ε
h(u)y

(u−x)2+y2 du = h(x) · 2 tan−1
(

ε
y

)
where x − ε < x < x + ε. Hence, as

y → 0,
∫ β
α

h(u)y
(u−x)2+y2 du can be made arbitrarily close to πh(x).

13. f (z) = ∫ 1
0

dt
1−zt = − log(1−z)

z which is analytic in C − [1, ∞). By the argument
principle, � Arg(1 − z) = 2π i as z circles the point z = 1; hence, f has a jump
discontinuity of 2π i

x as z crosses from the upper half-plane to the lower half-
plane at z = x > 1. Note also that, if we consider g(z) = ∫ ∞

0
dt

et−z (Example 2

following 17.9), setting u = e−t , it can be shown that g(z) = ∫ 1
0

dt
1−zt .
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Chapter 18

1. Assuming log z is the principle branch, i.e., Im log z = 0 on the positive axis, it
follows that Im g1(z) will be between −π and −π

2 in the third quadrant, whereas
Im g2(z) will be between π and 3π

2 .
3. Note that f (−z) = ∑

anzn; an ≥ 0, and apply Theorem 18.3.

4. a. Because 1
n1/3 = 1

�(1/3)

∫ ∞
0 e−nt t−2/3dt,

∑ zn

n1/3
= 1

�(1/3)

∫ ∞

0

∑
(ze−t)

n
t−2/3dt

= 1

�(1/3)

∫ ∞

0

z

t2/3(et − z)
dt

which is analytic outside of the interval [1,∞)

b. Since 1
n2+1

= ∫ ∞
0 e−nt sin t dt ,

∑ zn

n2 + 1
=

∑∫ ∞

0
(ze−t )

n
sin t dt

=
∫ ∞

0

∑
(ze−t )

n
sin t dt =

∫ ∞

0

et sin t

et − z
dt

which is analytic outside of the interval [1,∞)
5. Make the change-of-variables u = nt .
6. Setting u = t2 yields

∫ ∞

0
e−t2

dt = 1

2
�

(
1

2

)
=

√
π

2
.

7. Because e−t/n = 1 − t
n + t2

2n2 − + · · · , 0 ≤ e−t/n − (
1 − t

n

) ≤ t2

2n2 , if t ≤ n,

so that e−t − (
1 − t

n

)n ≤ e · e−t t2

2n and

∫ n

0
t z−1

(
1 − t

n

)n

dt −
∫ n

0
t z−1e−t dt � e

2n

∫ n

0
t z−1e−t t2 dt

≤ e

2n
�(Re z + 2)

which approaches 0 as n → ∞.

9. f (z) = 1 − 1
2z + 1

3z − + · · · =
(

1 − 2
2z

)
ζ(z) so that f is certainly analytic, like

ζ(z), for z �= 1. Moreover, limz→1 f (z) = limz→1
2z−2

2z(z−1) = ln 2 so that f is
analytic at z = 1 as well.

10. Because ζ(z) → ∞ as z → 1,�
(

1 − 1
p

)
diverges to 0. Because

∑ 1
p2 con-

verges, this implies that
∑ 1

p diverges (see Chapter 17, Exercise 4).
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Chapter 19

1. Consider f (z) = tan z − z inside the square centered at the origin and with sides
of length 2π N , whose boundary is denoted CN . Then, the number of poles of f (z)
inside CN = the number of zeros of cos z inside CN = 2N . The number of real
zeros of f inside CN is 2N +1 since f has a triple zero at the origin and tan x = x
has exactly one solution in each of the intervals [(2k − 1)π

2 , (2k + 1)π
2 ]; k =

±1,±2, . . . ,±(N − 1).
Let c = the number of complex, nonreal zeros of tan z − z inside CN . Then

1

2π i

∫
CN

tan2 z

tan z − z
dz = Z − P = 1 + c

by the calculations above.

By the usual M − L estimates and the fact that | tan z| < 1 + ε throughout CN

(where ε → 0 as N → ∞), it follows that

Z − P = 1 + c < 2.

Hence c = 0.
2. With f2(z) = z2

(1+z2)(tan z−z)
, note that

∫
CN

f2(z)dz → −2π i whereas

∫
CN

f2(z)dz → 2π i

⎡
⎢⎢⎣

∞∑
k = 1
xk �= 0

sin2 xk

x2
k

+ Res( f2; i) + Res( f2; −i) + Res( f2; 0)

⎤
⎥⎥⎦ .

Note, then, that Res( f2; i) = Res( f2; −i) = −
(

e2+1
4

)
whereas Res( f2; 0) = 3

because z2

tan z−z has a simple pole at z = 0 and limz→0
z3

tan z−z = 3. Hence,∑∞
k=0

xk �=0

sin2 xk

x2
k

= e2−7
2 and Var

(
sin2 x

xk

)
= 2

∑∞
k=1

xk �=0

sin2 xk

x2
k

+ 2 = e2 − 5.

3. Let f (z) = ez−1
z2(ez−z)

. Then
∫

CN
f (z)dz → 0 as N → ∞ if CN is a square

centered at the origin with sides of length 2π N . At the same time,
∫

CN
f (z)dz →

2π i

(∑ 1
z2

k
+ Res( f ; 0)

)
where the sum is taken over the zeros of ez−z. Because

Res( f ; 0) = +1 it follows that
∑ 1

z2
k

= −1.

4. As in Section 19.3, a solution {ak}, {bk}, would imply

1 + a1z + a2z2

2!
+ · · · = eαz = 1 + αz + α2z2

2!
+ · · ·

1 + b1z + b2z2

2!
+ · · · = eβz = 1 + βz + β2z2

2!
+ · · ·
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so that α = a1 and ak = ak
1, k = 2, 3, . . ., and β = b1, bk = bk

1; k = 2, 3, . . ..
Thus, there would be infinitely many solutions of the form {ak}, { bk} with
a1, b1 ≥ 0; a1 + b1 = 2 and ak = ak

1 ; bk = bk
1 for k = 2, 3, . . ..

5. Suppose d1 is relatively prime to all d j , j �= 1, and assume that the desired
partition is possible. Then, as in Section 19.5,

z

1 − z
= za1

1 − zd1
+ za

2

1 − zd2
+ · · · + zak

1 − zdk

for |z| < 1. Then, if we let z → e2π i/d1 , the first term on the right side of the
equality would approach infinity whereas all the others would approach a finite
limit. Thus, the partition is impossible. (In fact, according to this argument, the
partition would be impossible as long as one of the differences is not a divisor of
any of the others.)

9.
∑∞

n=2

∣∣∣ 1
npnz

∣∣∣ = ∑∞
n=2

1
npnx ≤ 1

2

∑∞
n=2

1
pnx = 1

2p2x
px

(px −1) ≤ 2
p2x for x > 1

2 .

In fact, for x ≥ 1
2 + δ,

∑∞
n=2

p prime

∣∣∣ 1
npnz

∣∣∣ ≤ ∑
p prime

2
p1+2δ ≤ ∑∞

n=1
2

n1+2δ < ∞.

Thus,
∑

n ≥ 2
p prime

1
npnz is uniformly convergent on compacta and is analytic in the

half-plane Re z > 1
2 .
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Appendices

I A Note on Simply Connected Regions

The definition of simple connectedness (8.1) led to a relatively easy proof of the
General Closed Curve Theorem (8.6). At the same time, while Definition 8.1 was
somewhat complicated, we were able to establish the very intuitive result that a
simply connected region contains, along with any closed polygonal path, all of the
points which are “inside” the path. (See Lemma 8.3 and Exercise 6 of Chapter 8).
This property of a simply connected region can be generalized. That is, a simply
connected region contains, along with any closed curve, all the points inside the
curve. The difficulty in proving the general result lies in defining the “inside” of a
general closed curve. If we limit ourselves to smooth closed curves, however, we can
use complex integrals to define the “inside” of the curve and we can prove the above
property of simply connected regions.

Definition

If � is a smooth closed curve, we say that a point z0 �∈ � is inside � if
∫
�

dz
z−z0

�= 0.
The totality of such points is called the inside of �. Note that a similar definition
(10.4), under more limited circumstances, is given in Chapter 10.

Lemma

If D is a simply connected region, � is a closed curve contained in D and z0 ∈ D̃,
then there exists a differentiable curve γ(t) which connects z0 to ∞ and which does
not intersect �.

Proof

According to Definition 8.1, there exists a continuous curve γ , connecting z0 to ∞
with d(γ, D̃) < ε. If we take ε = 1

2 d(�, D̃), γ will not intersect �. Moreover, since
γ → ∞, for some N, t ≥ N ⇒ |γ(t)| ≥ max{|z| : z ∈ �}. We can, then, redefine
γ(t) = t

N γ (N) for t ≥ N so that γ will be differentiable (γ ′ will actually be constant)
for t ≥ N . Finally, because γ(t), 0 ≤ t ≤ N , can be uniformly approximated by a
differentiable curve, there exists a curve γ with all of the desired properties. �
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Theorem

If D is a simply connected region and � is a smooth closed curve contained in D,
then the inside of � is contained in D.

Proof

If not, there would be z0 ∈ D̃ for which
∫
�

dz
z−z0

�= 0. Let γ be a differentiable curve,
connecting z0 to ∞ and not intersecting � (as in the above lemma), and define

I (t) =
∫

�

dz

z − γ (t)
, t ≥ 0.

I (t) can be differentiated with respect to t and

I ′(t) = γ ′(t)
∫

�

dz

[z − γ (t)]2
.

The above integral is clearly 0 (for all t) since the integrand has, as a primitive,
the function −1

z−γ (t) . Thus we can conclude that I (t) is constant. On the other hand,
I (0) �= 0 (since γ(0) = z0) and I (t) → 0 as t → ∞ since the integrand approaches
0 uniformly, which yields the desired contradiction. �

II Circulation and Flux as Contour Integrals

Let C be a closed curve given by z(t) = x(t) + iy(t). Then a vector tangent to C is
given by

ż(t) = dx

dt
+ i

dy

dt

and a normal vector to C is given by

dy

dt
− i

dx

dt
.

(If C is parametrized so that the tangent points in the counter-clockwise direction,
the above normal vector points “outward.”) Suppose g = u + iv represents a flow
function throughout C . Then the circulation around C is found by integrating the
tangential component of g against the arclength, and the flux across C is given by
the corresponding integral of the normal component of g. Let σ, τ represent the
circulation and flux, respectively, and recall that the component of a vector �α in the
direction of �β is given by (�α ◦ �β/| �β|). Then

σ =
∫

C

(
u

dx

dt
+ v

dy

dt

)
dt =

∫
C

u dx + v dy

and

τ =
∫

C

(
u

dy

dt
− v

dx

dt

)
dt =

∫
C

u dy − v dx .
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Note, finally, that if f = ḡ = u − iv,∫
C

f (z)dz =
∫

C
(u − iv)(dx + i dy) = σ + iτ.

III Steady-State Temperatures; The Heat Equation

Let the function u denote the temperature at the points of a region D and assume that
u is independent of time. Then u = u(x, y) is a real-valued function of the position
(x, y), and we wish to show that it is harmonic. To this end, we note two basic facts:

1. Heat flows in the direction of cooler temperatures, and the amount of heat crossing
a curve per unit of time is proportional to the length of the curve and the difference
in temperature across the two sides. Thus the amount of heat crossing a horizontal
line of length �x is equal to K uy�x , while the amount of heat crossing a vertical
line of length �y is given by K ux�y.

2. The total increase in heat (the amount of heat entering minus the amount of heat
leaving) in any square S ⊂ D must be zero. Otherwise, the temperature at points
of S would change, contrary to our assumption that u is independent of time.

Using these two facts, we can obtain the following proof that u is harmonic,
assuming u ∈ C2.

Suppose that S is any square in D with horizontal and vertical sides of length h
and assume without loss of generality that the lower left vertex is (0,0). Note that for
any function f (x, y) with continuous partial derivatives at the origin,

f (x, y) − f (0, 0) = f (x, y) − f (x, 0) + f (x, 0) − f (0, 0)

= y fy(x, ξ) + x fx (η, 0)

so that

(3) f (x, y) − f (0, 0) = y( f y(0, 0) + ε1) + x( fx(0, 0) + ε2)

where ε1 and ε2 → 0 as (x, y) → (0, 0). To obtain a formula for the change in
the amount of heat in S per unit time, we first calculate the loss of heat through
the top side minus the increase through the bottom side. According to (1), over any
subinterval �x , this is given by

[K uy(x, h) − K uy(x, 0)]�x .

But according to (3),

uy(x, h) = uy(0, 0) + xuyx(0, 0) + huyy(0, 0) + ε1x + ε2h

uy(x, 0) = uy(0, 0) + xuyx(0, 0) + ε3x

so that
uy(x, h) − uy(x, 0) = huyy(0, 0) + ε4h
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where ε4 → 0 as h → 0. The net decrease in heat from the (two) subintervals thus
equals K [huyy(0, 0) + ε4h]�x , and the net loss through the top and bottom sides is
given by

K [h2uyy(0, 0) + ε4h2].

Similarly, the net loss through the vertical sides is given by

K [h2ux x(0, 0) + ε5h2].

and since the overall decrease must be zero,

ux x(0, 0) + uyy(0, 0) + ε4 + ε5 = 0.

Since, finally, h could have been chosen as small as possible, we conclude

ux x(0, 0) + uyy(0, 0) = 0

and since the origin is in no way special, it follows that u is harmonic throughout D.
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Absolute value, 5
Absolutely convergent

product, 245
sum, 13

Analytic
arc, 102, 206
branch of log z, 113
continuation, 257, 263
function, 38
part, 124
polynomial, 21, 23

Angle between curves, 169
Annulus, 120, 232
Arc length, 50
Argand, J., 4
Argument, 6

Principle, 136
Associative law, 2
Automorphism, 182
Axis

imaginary, 4
real, 4

Barrier, 197
Bilinear transformation, 177
Binomial coefficients, 154
Boundary, 13

natural, 259
Bounded set, 13

C-analytic, 86
C-harmonic, 229
Canonical regions, 200
Carathéodory

proof of open mapping theorem, 93
proof of Rouche’s theorem, 142

Carathéodory-Osgood Theorem, 205

Cardan, J., 1, 11
Casorati-Weierstrass Theorem, 119
Cauchy

product, 28, 33
Residue Theorem, 133
sequence, 12

Cauchy Integral Formula
for analytic functions, 79
for entire functions, 61, 74
general, 138

Cauchy-Riemann Equations, 24, 35, 36
Chebychev, 286, 287
Circle of convergence, 27, 257
Circulation, 322
Closed curve, 52
Closed Curve Theorem

for analytic functions, 78
for entire functions, 56
general, 112

Closed set, 13
Closure, 13
Commutative law, 2
Compact, 14
Complement, 13
Complex

integral, 45
number, 1
plane, 4

Conformal
equivalence, 169, 172, 175
mapping, 169, 175

Conjugate, 5
Connected set, 14
Continuous function, 14
Convergence

absolute, 13, 243
circle of, 27, 257
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of Newton’s method, 71
quadratic, 72
radius of, 26
uniform, 15, 99

Convergent
integral, 143, 144, 147
product, 241
sequence, 12

Convex, 67
Critical point, 87
Cross-ratio, 185
Cubic equation, 9
Curve

closed, 52
Jordan, 132
level, 238
piecewise differentiable, 45
regular closed, 133
simple closed, 52
smooth, 45

Curves
smoothly equivalent, 46

Cyclotomic equation, 19

Define Integral
complex, 45
real, 143

Deleted neighborhood, 117
Dense set, 119
Derivative

complex, 24, 35
partial, 23

Descartes, R., 1
Differentiable function, 24
Differential equation, 222
Dirichlet Problem, 229
Dirichlet series, 251
Disconnected, 14
Distributive law, 2

Entire function, 38
Equicontinuous set of functions, 202
Essential singularity, 118
Euler

constant, 268
theorem, 282

Euler, L., 1
Exponential function, 40
Extended plane, 18

Field of complex numbers, 1
Fixed point, 70, 184
Fluid flow

locally irrotational and source-free, 195

totally irrotational and source-free, 197
Flux, 195, 322
Fourier Uniqueness Theorem, 275
Fraction, partial, 125
Function

analytic, 38
complex continuous, 14
differentiable, 24
entire, 38
even, 74
exponential, 40
Gamma, 265
harmonic, 225
inverse, 38, 174
locally 1-1, 170
logarithm, 113
meromorphic, 135
of z, 21
rational, 125
trigonometric, 41
Zeta, 257, 268

Functions, equicontinuous, 202
Fundamental Theorem of Algebra, 66, 91
Fundamental Theorem of Calculus, 51

Gamma Function, 265
Gauss, C., 1
Gauss-Lucas theorem, 67
Generating functions, 273, 277, 278

Hadamard, viii
Hamilton, W., 1
Harmonic function, 225
Heat Equation, 232, 323
Hurwitz’s Theorem, 139

Imaginary
axis, 4
part, 5

Infinite product, 241
Infinity, point at, 17
Integral, 147

complex definite, 45
line, 46
real definite, 143

Integral Theorem
for analytic functions, 78, 111
for entire functions, 54

Inverse function, 38
Isolated singularity, 117
Isomorphism, 2

Jordan Curve Theorem, 132
Jordan region, 205
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Kelvin’s Theorem, 199
Kernel function

Poisson, 228

Landau
proof of the maximum modulus theorem, 91
theorem, 263

Laplace
Equation, 232
transform, 262

Laurent expansion, 120
analytic part, 124
principal part, 124

Laurent series, 120
Level curve, 238
Levels of polygonal path, 109
Lim sup, 26
Liouville’s Theorem, 65, 96

Extended, 66
for Re f , 234

Locally 1-1, 170
Logarithm function, 113

M-L Formula, 49
M-Test, 15
Mapping

bilinear, 177
conformal, 169
Theorem, 200

Maximum Modulus Theorem
for analytic functions, 86
for harmonic functions, 227
generalized, 215

Mean-Value Theorem
for analytic functions, 85
for harmonic functions, 226

Meromorphic function, 135
Minimum Modulus Theorem, 87
Modulus, 5
Moments, 261
Morera’s Theorem, 98

Neighborhood, 13
deleted, 117

Newton basins, 73
Newton’s method, 68

Open Mapping Theorem, 93
Order

in the complex plane, 4
of a pole, 118
of a zero, 67
Order of an entire function, 236, 239

Partial derivative, 23
Partial fraction decomposition, 125
Partition problem, 278
Phragmén-Lindelöf Theorem, 218
Picard’s Theorem, 120
Piecewise differentiable curve, 45
Plane

complex, 4
extended, 18

Point
at infinity, 16
fixed, 70, 184
regular, 258
saddle, 89

Poisson Integral Formula
for a disc, 229
for a half-plane, 229

Poisson Kernel, 228
Polar coordinates, 8
Pole, 118
Polygonal line, 14
Polygonal path, 16

levels of, 109
Polygonally connected, 14
Polynomial

analytic, 21
real, 18, 74

Power series, 25, 28, 80
Prime number theorem, 285
Principal parts, 124

Quadratic equation, 3

Radius of convergence, 26
Rational function, 125
Real

axis, 4
part, 5, 225, 226
polynomial, 18, 74

Rectangle Theorem
for analytic functions, 77
for entire functions, 52, 59

Reflection Principle, 101
Region, 14

convex, 116
simply connected, 107

Regular closed curve, 133
Regular point, 258
Removable singularity, 117
Residue, 129
Residue Theorem, 133
Riemann

Mapping Theorem, 200
Principle of Removable Singularities, 118
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sphere, 17
Rotation, 175
Rouché’s Theorem, 137, 142

Saddle point, 89
Schwarz

Lemma, 94
Reflection Principle, 101

Schwarz-Christoffel transformation, 187
Sequence

Cauchy, 12
Convergent, 12

Series, 12
Dirichlet, 251
power, 26, 28, 80

Simply connected, 107, 321
Singularity, 258

essential, 118
isolated, 117
removable, 117

Sphere
Riemann, 16

Square root, 3
Stereographic projection, 16
Streamlines, 213

Tangent to a curve, 169, 322
Taylor Expansion

for an analytic function, 80
for an entire function, 63

Triangle inequality, 5, 19

Uniform convergence
on compacta, 99

Uniqueness Theorem
for analytic functions, 83
for power series, 31

Value
absolute, 5

Variation, 273
Vector sum, 4
Velocity vector, 196

Wallis, J. , 4
Weierstrass Product Theorem, 244
Winding number, 130

Zero of multiplicity k, 67, 75
Zeroes of a real polynomial, 18
Zeroes of entire functions, 236, 244
Zeta function, 257, 268
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