Math 3124A/9024A Assignment 1

University of Western Ontario

Fall 2023

1. (Bak-Newman E1.1) Express in the form a + bi:

a.
$$\frac{1}{6+2i}$$

c. $\left(-\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^4$

b.
$$\frac{(2+i)(3+2i)}{1-i}$$
d. $i^2, i^3, i^4, i^5, \dots$

d.
$$i^2, i^3, i^4, i^5, ...$$

2. (Bak–Newman E1.4) Prove the following identities:

a.
$$\overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2$$
.

b.
$$\overline{z_1 z_2} = \overline{z}_1 \cdot \overline{z}_2$$

c.
$$\overline{P(z)} = P(\overline{z})$$
, for any polynomial with *real* coefficients.

d.
$$\overline{\overline{z}} = z$$
.

- 3. (Bak-Newman E1.5) Suppose P is a polynomial with real coefficients. Show that P(z) = 0 if and only if $P(\bar{z}) = 0$ (i.e., zeroes of "real" polynomials come in conjugate pairs).
- 4. Using the definitions from the text, show that $\lim_{k\to\infty} z_k = 0$ whenever the series $\sum_{k=1}^{\infty} z_k$ is convergent.
- 5. Using the definitions from the text, show that a set S is closed in $\mathbb C$ iff $\{z_n\}_{n=1}^{\infty}\subseteq S \text{ and } \lim_{n\to\infty}z_n=z \text{ imply } z\in S; \text{ that is, show}$

$$S \text{ is closed } \iff \forall \{z_n\}_{n=1}^{\infty} \subseteq S \text{ with } \lim_{n \to \infty} z_n = z \in \mathbb{C} \implies z \in S$$

- 6. (Bak-Newman E1.22) Prove that a polygonally connected set is connected.
- 7. (Bak–Newman E1.26) Let P be a nonconstant polynomial in z. show that $P(z) \to \infty \text{ as } z \to \infty.$

1

- 8. [MATH 9024 STUDENTS ONLY] Let S be a set. An *order* on S is a relation, denoted by " \prec ", with the following two properties:
 - (i) If $a \in S$ and $b \in S$ then one and only one of the statements

$$a \prec b$$
, $a = b$, $b \prec a$

is true.

(ii) If $a, b, c \in S$, if $a \prec b$ and $b \prec c$, then $a \prec c$.

The statement " $a \prec b$ " may be read as "a is less than b" or "a is smaller than b" or "a precedes b". It is sometimes convenient to write " $b \succ a$ " when meaning " $a \prec b$ ". It is a natural generalization of the standard ordering "<" on \mathbb{R} .

An ordered field is a field F which is also an ordered set, such that

- (i) $a+b \prec a+c$ if $a,b,c \in F$ and $b \prec c$,
- (ii) $ab \succ 0$ if $a \in F$, $b \in F$, $a \succ 0$, and $b \succ 0$.
- (iii) If $a \succ 0$ and $b \prec c$, then $ab \prec ac$.
- (iv) If $a \prec 0$ and $b \prec c$, then $ab \succ ac$.

It is not *too* difficult to see that (iii) and (iv) are consequences of the other conditions. If a > 0, we call a positive; if a < 0, a is negative.

Exercises:

- a. Write $z, w \in \mathbb{C}$ as z = a + bi and w = c + di. Define $z \prec w$ if a < c, and also if a = c but b < d. Prove this turns \mathbb{C} , as a set, into an ordered set. (This type of order relation is called *dictionary order*, or *lexicographic order*, for obvious reasons.)
- b. Prove that no order can be defined in \mathbb{C} that turns it into an ordered field. *Hint:* -1 is a square.