Math 3124A/9024A Assignment 9

University of Western Ontario

Fall 2023

- 1. (Bak-Newman E.9.3) Suppose that f is an entire one-to-one function. Show that f(z) = az + b for some $a, b \in \mathbb{C}$, $a \neq 0$. [Hint: If f is a polynomial, then the fundamental theorem of algebra says it must be linear (why?). If it is not a polynomial, then g(z) := f(1/z) has an essential singularity at z = 0 (why?), and the Casorati-Weierstrass Theorem shows that it cannot be one-to-one (why?)]
- 2. (Bak-Newman E.9.9) Classify the singularities of

(a)
$$\frac{1}{z^4 + z^2}$$

- (b) $\cot z$
- (c) $\csc z$

(d)
$$\frac{\exp(1/z^2)}{z-1}$$

3. (Bak-Newman E.9.10) Find the Laurent expansion for

(a)
$$\frac{1}{z^4 + z^2}$$
 about $z = 0$

(b)
$$\frac{\exp(1/z^2)}{z-1}$$
 about $z=0$

(c)
$$\frac{1}{z^2 - 4}$$
 about $z = 2$

4. [MATH 9024 STUDENTS ONLY] (Bak–Newman E.9.14) Show that if f is analytic in $z \neq 0$ and "odd" (i.e. f(-z) = -f(z)), then all the even terms in its Laurent expansion about 0 are 0.