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1. (a) Py = −6xy+i(3x2−3y2−1) and Px = 3x2−3y2−1+i(6xy), so iPx = i(3x2−ey2−1)−6xy =
Py, so P is analytic.

(b) Px = 2x and Py = 2yi. So iPx = 2xi ̸= 2yi. so P is not analytic.

(c) Px = 2y − i2x and Py = 2x− i2y. So iPx = 2x− i2y = Py. So P is analytic.

2. Proof. Suppose P is analytic. Then Py = iPx. But, this is only true when Py = Px = 0, that is,
P is constant.

3. (a) P (z) = z3 − z, so P ′(z) = 3z2 − 1 = 3x2 − 3y2 − 1 + i(6xy) = Px.

(b) Not analytic.

(c) P (z) = −iz2, so P ′(z) = −2zi = −2xi+ 2y = Px.

4. Suppose f, g are differentiable.

(a) Proof.

(f + g)′(z) = lim
h→0

h1(z + h)− h1(z)

h

= lim
h→0

f(z + h) + g(z + h)− f(z)− g(z)

h

= lim
h→0

(
f(z + h)− f(z)

h
+

g(z + h)− g(z)

h

)
= lim

h→0

f(z + h)− f(z)

h
+ lim

h→0

g(z + h)− g(z)

h

= f ′(z) + g′(z)

(b) Proof.

(fg)′(z) = lim
h→0

f(z + h)g(z + h)− f(z)g(z)

h

= lim
h→0

f(z + h)g(z + h)− f(z + h)g(z) + f(z + h)g(z)− f(z)g(z)

h

= lim
h→0

(
f(z + h)(g(z + h)− g(z))

h
+

g(z)(f(z + h)− f(z))

h

)
= lim

h→0
f(z + h)

g(z + h)− g(z)

h
+ lim

h→0
g(z)

f(z + h)− f(z)

h

= f(z)g′(z) + g(z)f ′(z)

(c) Proof. From the hint, we have (1/g)′ = − g′(z)
(g(z))2

. So, by the product rule,(
f

g

)′
(z) =

(
f · 1

g

)′
(z) = −f(z)g′(z)

(g(z))2
+

f ′(z)

g(z)

=
f ′(z)g(z)− f(z)g′(z)

(g(z))2
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5. Proof. Let Pn(z) = αnz
n. Then

P ′(z) = α lim
h→0

(z + h)n − zn

z

= α lim
h→0

nzn−1 +
n(n− 1)

2!
zn−2h+ · · ·+ hn−1

= αnzn−1

since the terms past nzn−1 vanish due to the vanishing h factor. So for any P (z), we have
P (z) = P0(z) + P1(z) + · · ·+ Pn(z), so by the sum rule above, the statement follows.

6. We have lim supn→∞ |cn|1/n = 1/R.

(a) Since

lim sup
n→∞

|npcn|1/n = lim
n→∞

|np|1/n · lim sup
n→∞

|cn|1/n

= 1 · lim sup
n→∞

|cn|1/n

= 1/R,

the radius of convergence is R.

(b) Since lim supn→∞ ||cn||1/n = lim supn→∞ |cn|1/n = 1/R, the radius of convergence is R.

(c) Note that

lim sup
n→∞

a2n =

(
lim sup
n→∞

an

)2

if an, bn > 0. So,

lim sup
n→∞

|c2n|1/n = lim sup
n→∞

(
|cn|1/n

)2
=

(
lim sup
n→∞

|cn|1/n
)2

= 1/R2.

. So the radius of convergence is R2.

7. (a) Proof. Let ϵ > 0. Choose N ∈ N such that for all n > N ,
∣∣∣∣∣∣an+1

an

∣∣∣− L
∣∣∣ < ϵ. Then

|an| =
|an|
|an−1|

. . .
|aN+1|
|aN |

|aN | < (L+ ϵ)n−N |aN |

=⇒ |an|1/n < (L+ ϵ)1−N/n|aN |1/n

=⇒ lim
n→∞

|an|1/n ≤ L+ ϵ

and since ϵ > 0 is arbitrary, limn→∞ |an|1/n = L.

(b) Proof. Let N ∈ N. For all n > N where n is even,
∣∣∣an+1

an

∣∣∣ = ∣∣∣2−(n+1)

2−n+2

∣∣∣ = 1
8 . Similarily, when

n is odd,
∣∣∣an+1

an

∣∣∣ = 8. Clearly, the sequence does not converge since it oscillates infinitely

between 8 and 1/8, so the limit does not exist.

We have that a
1/n
n = 1/2 when n is odd and a

1/n
n = (2−n · 22)1/n = 41/n

2 when n is even,

which is monotonically decreasing since 41/n ≥ 4
1

n+1 for all n. So, sup{a1/nn : n ≥ N} =

max{1/2, 41/N2 }, so lim sup a
1/n
n = limN→∞max{1/2, 41/N2 } = 1/2.
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8. Proof. Suppose that f(z) =
∑

Cnz
n = 1 for z = 1

2 ,
1
3 , . . . . Then, since f is continuous, f(0) =

limz→0 f(z) = limk→∞ f(1/k) = 1. Now define g = f − 1. Then g is also continuous, and
g(0) = limz→0 g(z) = limk→∞ f(1/k) − 1 = 0. So g is zero at all points of a non-zero sequence
convergent to zero, so by the Uniqueness Theorem for Power Series, g ≡ 0. So f ≡ 1 and
f ′(0) = 0 ̸> 0.
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