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First we prove the following lemma.

Lemma 1. Let {z,} C C be infinite and bounded. Then there exists a subsequence {zp, } C {zn}
convergent to some point z € C.

Proof. Let {z,} be bounded. It suffices to show that a subsequence of {z,} where both the real
and imaginary parts converge. Since {z,} is bounded, {R(z,)} is bounded, so by the lemma,
there exists a subsequence {z,, } such that the real parts converge. Since {2, } C {25}, it is also
bounded, so again by Bolzano-Weierstrass {(zy, )} is bounded and there exists a subsequence
{zni,} € {#n,} such that the imaginary parts converge. Thus the real and imaginary parts of
{anl} converge, so the subsequence is convergent. O

Now we prove the theorem.

Proof. Let f be a continuous complex-valued function on a compact set K C C. Set M :=
sup,cg | f(2)|. Consider the sequence {f(z,)} defined such that M — 1 < |f(z,)| for all n > 1,
which exists by definition of supremum. Since |f(z,)| < M for all z,, € K, the sequence converges
to an « with || = M. Since K is compact, it is bounded, so by Bolzano-Weierstrass, there exists
a subsequence {z,,} C {z,} convergent to some point z € C. Since f is continuous, {f(zn,)}
also converges, and since { f(zn, )} € {f(zn)}, it converges to a. Finally, since K is compact and
z is a limit point of K, z € K. Thus a = f(z).

Note that in the above, we assumed M was finite. This can be shown as follows. Suppose
otherwise. Then f(K) is unbounded. But this contradicts that f is continuous, since continuous
functions map compact sets to compact sets. [

. Proof. Let f be entire. Recall that in the power series expansion f(z) =Y, Cp = f(k)( .

(w)

From the proof of Theorem 5.5, we found that C}, = 2m fc ~irrdw. where C'is a mrcle centered

at the origin of radius |w| containing z. Setting the two equal, we have f(*)(0) = ﬁ fC wkﬂdw
for k =1,2,.... Define ¢g(z) := f(z 4+ a). Then

@) = g0) = o [
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using the parameterization w = w — a. ]

(a) Proof. Suppose f is entire with |f| < M along |z| = R. From above, we have that the
coefficients of the power series expansion of f about 0 is given by Cj, = 5= [, f; Sﬁ)l dw,

where C' is a circle centered at the origin of radius |w| containing z. Then, the integrand

is bounded above by R%rl' The length of C is 2w R, so by the M-L Theorem, |Cy| <
‘27r7, (Rk-‘rl) (27TR)’ - ]
(b) Proof. Polynomial functlons are entire, so by above, with M =1 and R =1, |Cy| < % =
1. ]



. Proof. Let f be entire with |f(z)] < A+ B|z|¥. Then, along |z| = R, |f| < A+ BR*. From

above, |Cj| < %. Now suppose j > k. Taking circles of radius R of arbitrary size,
A+BRF

limp_oo 7~ = 0, since j > k. ]
. Proof. Let f be entire with |f(z)| < A+ B|z|>/2. From above, |C}| = 0 for k > 3/2. That is,
|Ck| # 0 only for k =0,1. So f(z) = Cy + Ci 2. O

. Proof. Suppose f is entire. Since it is entire, it is continuous, and thus bounded on the compact
set 0 < x,y < 1. By periodicity, it is also bounded on all 1-by-1 squares a < x,y < a + 1 where
a € Z. So, the function is bounded on the entire complex plane, so it is constant, by Liouville’s
Theorem. O

. Proof. (=) Suppose P(2) = (z — a)*Q(z) where @Q is analytic and Q(a) # 0. Then

P'(z) = k(z =) 'Q(2) + (2 = 0)*Q'(2) = (z = @) 1 (kQ(2) + (2 = ) Q'(2))

So P'(z) = (z — a)*71Q1(z) with Q1(a) # 0. Repeating as in the first part of the proof,
P (2) = (z — )" "Q,(2) with Q,(a) # 0. Note that P*)(z) = klQx(2) # 0 since Qp(z) # 0.
So PO)(a) = PW(a) =--- = P*D(a) =0, and P¥)(a) # 0.

(+-) Suppose P(a) = P'(a) = --- = P*V(a) = 0 and P¥(a) # 0. We show that

P(z) = (2 — @)*Q(z) where Q is analytic and Q(a) # 0. First note that since P*~1(a) = 0,
PE1(2) = (2 — a)Q(2) by the Factor Theorem. Also, Q(«) # 0 since

PP (2) = Q(2) + (2 — a)Q'(2)

and P®)(z) # 0 by assumption. We finish with induction. Suppose PY)(z) = (2 — a)"Q(2)
with @ analytic and Q(a) # 0, and j < k and n > 1. We show that PU~1(z) has root a
with multiplicity n 4 1. From the initial assumption, PU=1(z) = (z — a)S(2) with S analytic.
Differentiating gives

PO (z) = (z — )" Q(2) = S(2) + (z — @) §'(2),

by the inductive hypothesis. so S(z) has multiplicity n. Thus PU=Y(2) = (z — a)S(2), has
multiplicity n + 1.

We have that P*~1)(2) has root a with multiplicity 1, so P()(z) has root o with multiplicity
1+k—1=k, as desired. O



