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1. First we prove the following lemma.

Lemma 1. Let {zn} ⊆ C be infinite and bounded. Then there exists a subsequence {znk
} ⊆ {zn}

convergent to some point z ∈ C.

Proof. Let {zn} be bounded. It suffices to show that a subsequence of {zn} where both the real
and imaginary parts converge. Since {zn} is bounded, {ℜ(zn)} is bounded, so by the lemma,
there exists a subsequence {znk

} such that the real parts converge. Since {znk
} ⊆ {zn}, it is also

bounded, so again by Bolzano-Weierstrass {ℑ(znk
)} is bounded and there exists a subsequence

{znkl
} ⊆ {znk

} such that the imaginary parts converge. Thus the real and imaginary parts of
{znkl

} converge, so the subsequence is convergent.

Now we prove the theorem.

Proof. Let f be a continuous complex-valued function on a compact set K ⊆ C. Set M :=
supz∈K |f(z)|. Consider the sequence {f(zn)} defined such that M − 1

n < |f(zn)| for all n ≥ 1,
which exists by definition of supremum. Since |f(zn)| ≤M for all zn ∈ K, the sequence converges
to an α with |α| = M . Since K is compact, it is bounded, so by Bolzano-Weierstrass, there exists
a subsequence {znk

} ⊆ {zn} convergent to some point z ∈ C. Since f is continuous, {f(znk
)}

also converges, and since {f(znk
)} ⊆ {f(zn)}, it converges to α. Finally, since K is compact and

z is a limit point of K, z ∈ K. Thus α = f(z).
Note that in the above, we assumed M was finite. This can be shown as follows. Suppose

otherwise. Then f(K) is unbounded. But this contradicts that f is continuous, since continuous
functions map compact sets to compact sets.

2. Proof. Let f be entire. Recall that in the power series expansion f(z) =
∑

Ckz
k, Ck = f (k)(0)

k! .

From the proof of Theorem 5.5, we found that Ck = 1
2πi

∫
C

f(w)
wk+1dw. where C is a circle centered

at the origin of radius |w| containing z. Setting the two equal, we have f (k)(0) = k!
2πi

∫
C

f(w)
wk+1dw

for k = 1, 2, . . . . Define g(z) := f(z + a). Then

f (k)(a) = g(k)(0) =
k!

2πi

∫
C

g(ω)

ωk+1
dω

=
k!

2πi

∫
C

f(ω + a)

ωk+1
dω

=
k!

2πi

∫
C

f(w)

(w − a)k+1
dw

using the parameterization ω = w − a.

3. (a) Proof. Suppose f is entire with |f | ≤ M along |z| = R. From above, we have that the

coefficients of the power series expansion of f about 0 is given by Ck = 1
2πi

∫
C

f(w)
wk+1dw,

where C is a circle centered at the origin of radius |w| containing z. Then, the integrand
is bounded above by M

Rk+1 . The length of C is 2πR, so by the M-L Theorem, |Ck| ≤
| 1
2πi

(
M

Rk+1

)
(2πR)| = M

Rk .

(b) Proof. Polynomial functions are entire, so by above, with M = 1 and R = 1, |Ck| ≤ M
Rk =

1.
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4. Proof. Let f be entire with |f(z)| ≤ A + B|z|k. Then, along |z| = R, |f | ≤ A + BRk. From

above, |Cj | ≤ A+BRk

Rj . Now suppose j > k. Taking circles of radius R of arbitrary size,

limR→∞
A+BRk

Rj = 0, since j > k.

5. Proof. Let f be entire with |f(z)| ≤ A + B|z|3/2. From above, |Ck| = 0 for k ≥ 3/2. That is,
|Ck| ≠ 0 only for k = 0, 1. So f(z) = C0 + C1z.

6. Proof. Suppose f is entire. Since it is entire, it is continuous, and thus bounded on the compact
set 0 ≤ x, y ≤ 1. By periodicity, it is also bounded on all 1-by-1 squares a ≤ x, y ≤ a+ 1 where
a ∈ Z. So, the function is bounded on the entire complex plane, so it is constant, by Liouville’s
Theorem.

7. Proof. (→) Suppose P (z) = (z − α)kQ(z) where Q is analytic and Q(α) ̸= 0. Then

P ′(z) = k(z − α)k−1Q(z) + (z − α)kQ′(z) = (z − α)k−1(kQ(z) + (z − α)Q′(z))

So P ′(z) = (z − α)k−1Q1(z) with Q1(α) ̸= 0. Repeating as in the first part of the proof,
P (n)(z) = (z − α)k−nQn(z) with Qn(α) ̸= 0. Note that P (k)(z) = k!Qk(z) ̸= 0 since Qk(z) ̸= 0.
So P (0)(α) = P (1)(α) = · · · = P (k−1)(α) = 0, and P (k)(α) ̸= 0.

(←) Suppose P (α) = P ′(α) = · · · = P (k−1)(α) = 0 and P (k)(α) ̸= 0. We show that
P (z) = (z − α)kQ(z) where Q is analytic and Q(α) ̸= 0. First note that since P (k−1)(α) = 0,
P (k−1)(z) = (z − α)Q(z) by the Factor Theorem. Also, Q(α) ̸= 0 since

P (k)(z) = Q(z) + (z − α)Q′(z)

and P (k)(z) ̸= 0 by assumption. We finish with induction. Suppose P (j)(z) = (z − α)nQ(z)
with Q analytic and Q(α) ̸= 0, and j < k and n ≥ 1. We show that P (j−1)(z) has root α
with multiplicity n+ 1. From the initial assumption, P (j−1)(z) = (z − α)S(z) with S analytic.
Differentiating gives

P (j)(z) = (z − α)n+1Q(z) = S(z) + (z − α)S′(z),

by the inductive hypothesis. so S(z) has multiplicity n. Thus P (j−1)(z) = (z − α)S(z), has
multiplicity n+ 1.

We have that P (k−1)(z) has root α with multiplicity 1, so P (0)(z) has root α with multiplicity
1 + k − 1 = k, as desired.
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