1. Using the fact that $\sum_{k=0}^{\infty} (-1)^n r^k = \frac{1}{1+r}$ when |r| < 1,

$$\frac{1}{z} = \frac{1}{1+i+(z-1-i)}$$

$$= \frac{1}{(1+i)(1+\frac{z-1-i}{1+i})}$$

$$= \frac{1}{1+i} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z-(1+i)}{1+i}\right)^n$$

when |z| < 1 + i.

2. Factoring and applying partial fraction decomposition,

$$\frac{1}{1-z-2z^2} = \frac{1}{-(2z-1)(z+1)} = -\frac{A}{2z-1} - \frac{B}{z+1}$$

and solving for A, B in -A(z+1) - B(2z-1) = 1 for all z gives A = -2/3 and B = 1/3. So,

$$f(z) = \frac{2}{3} \left(\frac{1}{1 - 2z} \right) + \frac{1}{3} \left(\frac{1}{1 + z} \right)$$
$$= \frac{2}{3} \sum_{n=0}^{\infty} (2z)^n + \frac{1}{3} \sum_{n=0}^{\infty} (-1)^n z^n$$
$$= \sum_{n=0}^{\infty} \frac{2^{n+1} + (-1)^n}{3} z^n$$

when |z| < 1/2.

- 3. Proof. Suppose for contradiction that for some function f analytic in $|z| \leq 1$, $f(\frac{1}{n}) = \frac{1}{n+1}$ for all $n \in \mathbb{N}$. Consider the sequence $z_n = \frac{1}{n}$, $n \in \mathbb{N}$. Then $z_n \to 0$ as $n \to \infty$, so by the Uniqueness Theorem, $f(z) = f(z_n) = \frac{z_n}{1+z_n}$ for $|z| \leq 1$. But then, f is discontinuous at z = -1, contradicting the fact that it is analystic in $|z| \leq 1$.
- 4. Proof. Let $z_n = \frac{1}{n}$ for $n \in \mathbb{N}$. Then $z_n \subseteq \mathbb{R}$, so for some fixed $x \in \mathbb{R}$, $f(z) = \sin(x+z)$ and $g(z) = \sin x \cos z + \cos x \sin z$ coincide for all z_n (by the trigonometric identity for the reals). Since \sin and \cos are entire and $z_n \to 0$ as $n \to \infty$, by the Uniqueness theorem, f(z) = g(z) for all $z \in \mathbb{C}$. Now consider $f^*(z_1, z_2) = \sin(z_1 + z_2)$ and $g^*(z_1, z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$. Since f(z) = g(z), $f^*(z_1, z_2) = g^*(z_1, z_2)$ for all $z_1 \subseteq (z_n)$ and $z_2 \in \mathbb{C}$. Then because z_n converges to 0 and f^* and g^* are entire, $f^*(z_1, z_2) = g^*(z_1, z_2)$ for all $z_1, z_2 \in \mathbb{C}$.
- 5. Let z = x + iy. Then

$$|z^{2} - z|^{2} = |z(z - 1)|^{2}$$

$$= |(x + iy)(x + iy - 1)|^{2}$$

$$= (x^{2} - x - y^{2})^{2} + (2xy - y)^{2}$$

By the Maximum-Modulus theorem, the maximum occurs on the boundary of the disk, that is, when |z| = 1. Constraining to $x^2 + y^2 = 1$ by substituting $y^2 = 1 - x^2$ above, we have

$$|z^{2} - z|^{2} = (x^{2} - x - (1 - x^{2}))^{2} + (2x(\sqrt{1 - x^{2}}) - \sqrt{1 - x^{2}})^{2}$$
$$= 2 - 2x$$

So the modulus is monotonically decreasing with respect to x. Since the domain is $|z| \le 1$, the maximum occurs at x = -1, that is z = -1.

(The following was added after the due date. If the late penalty is too high, please ignore this part.) The minimum modulus occurs at z = 0 at z = 1, where $|z^2 - z| = 0$. (end of late addition)

6. Proof. By the Cauchy Integral Formula,

$$|f(z_0)^n| = \left| \frac{1}{2\pi i} \int_C \frac{f(z)^n}{z - z_0} dz \right|$$

$$\leq \frac{1}{2\pi} \cdot \frac{M^n}{K'} \cdot 2\pi R$$

$$= KM^n$$

by the M-L formula, where K = R/K' for some constant K' dependent on the distance between z_0 and C. Note that K' is constant and bounded since z_0 is inside C. Taking the n-th root of both sides, we have $|f(z_0)| \leq K^{\frac{1}{n}}M$, so as $n \to \infty$, $|f(z_0)| \leq M$.