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2. Factoring and applying partial fraction decomposition,
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and solving for A,B in −A(z + 1)−B(2z − 1) = 1 for all z gives A = −2/3 and B = 1/3. So,
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when |z| < 1/2.

3. Proof. Suppose for contradiction that for some function f analytic in |z| ≤ 1, f( 1n) =
1

n+1 for

all n ∈ N. Consider the sequence zn = 1
n , n ∈ N. Then zn → 0 as n → ∞, so by the Uniqueness

Theorem, f(z) = f(zn) =
zn

1+zn
for |z| ≤ 1. But then, f is discontinuous at z = −1, contradicting

the fact that it is analyatic in |z| ≤ 1.

4. Proof. Let zn = 1
n for n ∈ N. Then zn ⊆ R, so for some fixed x ∈ R, f(z) = sin(x + z) and

g(z) = sinx cos z + cosx sin z coincide for all zn (by the trigonometric identity for the reals).
Since sin and cos are entire and zn → 0 as n → ∞, by the Uniqueness theorem, f(z) = g(z) for
all z ∈ C. Now consider f⋆(z1, z2) = sin(z1+z2) and g⋆(z1, z2) = sin z1 cos z2+cos z1 sin z2. Since
f(z) = g(z), f⋆(z1, z2) = g⋆(z1, z2) for all z1 ⊆ (zn) and z2 ∈ C. Then because zn converges to
0 and f⋆ and g⋆ are entire, f⋆(z1, z2) = g⋆(z1, z2) for all z1, z2 ∈ C.

5. Let z = x+ iy. Then

|z2 − z|2 = |z(z − 1)|2

= |(x+ iy)(x+ iy − 1)|2

= (x2 − x− y2)2 + (2xy − y)2
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By the Maximum-Modulus theorem, the maximum occurs on the boundary of the disk, that is,
when |z| = 1. Constraining to x2 + y2 = 1 by substituting y2 = 1− x2 above, we have

|z2 − z|2 = (x2 − x− (1− x2))2 + (2x(
√

1− x2)−
√

1− x2)2

= 2− 2x

So the modulus is monotonically decreasing with respect to x. Since the domain is |z| ≤ 1,
the maximum occurs at x = −1, that is z = −1.

(The following was added after the due date. If the late penalty is too high, please ignore
this part.) The minimum modulus occurs at z = 0 at z = 1, where |z2 − z| = 0. (end of late
addition)

6. Proof. By the Cauchy Integral Formula,

|f(z0)n| =
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n

K ′ · 2πR

= KMn

by the M-L formula, where K = R/K ′ for some constant K ′ dependent on the distance between
z0 and C. Note that K ′ is constant and bounded since z0 is inside C. Taking the n-th root of
both sides, we have |f(z0)| ≤ K

1
nM , so as n → ∞, |f(z0)| ≤ M .
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