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1. Proof. Let f be analytic and non-constant on the closure of a bounded region D. Suppose for
contradiction that Re f is maximum at an interior point z0 ∈ D. By the open mapping theorem,
f(D) is open, so f(z0) + ϵ ∈ f(D) for some positive real ϵ. But then Re(f(z0) + ϵ) > Re(f(z0)),
contradicting that Re f is maximum at z0.

Similarily, if Re f is minimum at an interior point z0 ∈ D, then f(z0) − ϵ ∈ f(D) for some
positive real ϵ, and Re(f(z0)− ϵ) < Re(f(z0)), contradicting that Re f is minimum at z0.

Analogously, Im f can’t be maximum or minimum at an interior point z0 ∈ D, for then
f(z0)±ϵ ∈ f(D) for some imaginary ϵ with positive modulus would be smaller than the supposed
minimum or larger than the supposed maximum.

Thus, Re f and Im f must both attain their maximum and minimum on the boundary of
D.

2. First we prove the following lemma.

Lemma 1. Let f : S → T be a non-constant analytic function on its domain. If f(z) ∈ T is a
boundary point of T , then z is a boundary point of S.

Proof. Suppose otherwise: that f(z) is a boundary point of T but z not a boundary point of S.
Then z is an interior point of S, so there exists a diskD(z; r) ⊂ S. By the open mapping theorem,
f(D(z; r)) is open, so f(z) is an interior point of T , contradicting that f(z) is a boundary point
of T .

Now we prove the theorem.

Proof. We have that Bα : D(0; 1) → A is analytic in its domain. We show that A is the unit
disk, and Bα is a bijection. First, note that if |z| = 1, then |Bα(z)| = 1. So,by the Maximum-
Modulus theorem, since Bα is non-constant, (e.g. Bα(0) = −α ̸= 1), there is some |Bα(z)| < 1
for some z ∈ IntD(0; 1). Let α ∈ A be one such value, with |α| < 1. Consider an arbitrary
chord T of C(0; 1) passing through α. Let X = T \ C(0; 1) (that is, T excluding its endpoints).
Then, X ⊆ A, since if it weren’t, then there would be some f(z) ∈ X that is a boundary point
of A. But, this isn’t possible, since by the Lemma, z would be a boundary point with |z| = 1.
But then |f(z)| = 1, contradicting that f(z) is on a chord in the interior of D(0; 1). So X ⊆ A.
Thus, A contains all chords (minus their endpoints) passing through α, so A is the interior of
the unit disk. Finally, since f is continuous and D(0; 1) is compact, A is compact. So A is the
unit disk.

Now we show that Bα is a bijection by showing that it, composed with its inverse, is an
identity map in D(0; 1). Define its inverse B−1

α : A → D(0; 1) by

B−1
α (β) =

β + α

1 + αβ

Then

(B−1
α ◦Bα)(z) =

z−α
1−αz + α

1 + α z+α
1+αz

=
z − αᾱz

1− αᾱ

= z

1



Finally, note that this inverse is analytic on the unit disk, since it is a rational functions
whose denominator is non-zero within the unit disk, since 1 + αz = α(1/α + z), and |1/α| > 1
since |α| < 1, and |z| ≤ 1.

3. Proof. First, note that f has finitely many zeroes inside the unit disk, for if it didn’t, then by
compactness of the unit disk, there would be a sequence of zeroes convergent to a point within
the domain of analycity of f . Then by the Uniqueness Theorem, f ≡ 0; contradicting that
|f | = 1 on |z| = 1. So let α1, . . . , αn be the finitely many zeros of f . Then

g(z) =
f(z)∏n

j=1
z−αj

1−αjz

is non-zero at all points inside the unit disk, and |f | = 1 on the unit disk boundary. So by
the Maximum-Modulus and Minimum-Modulus theorems, g is constant. So

f(z) = C

n∏
j=1

z − αj

1− αjz

Finally, since f is entire, α1 = · · · = αn = 0, so f(z) = Czn.

4. Let α1, . . . , αn be the zeroes of Q. Define

g(z) = f(z)
n∏

j=1

Bαj (z)

then Bαj (z) = 0 when z = α1, . . . , αn, so g has no poles within the unit disk. And since
|Bα(z)| = 1 when |z| = 1 (from above), |f(z)| = |g(z)| when |z| = 1.

5. Let g(z) = 1
10f(2z) so that the image of g is contained in the unit disk and g(1/2) = 0.

g(z) ≪ B1/2(z) =
z − 1

2

1− 1
2z

So g(1/4) ≪ 2/7. So f(1/2) ≪ 20/7. This upper bound is attained by f(z) = 10B1/2(z/2) since
f(1/2) = 10B1/2(1/4) = 20/7.

6. Proof. We prove the contrapositive. Suppose that a region D is not simply connected. Then
there is a point in its complement z ∈ D̃ such that every path connecting z to ∞ has some point
on the path γ(t) with d(γ(t), D̃) > ϵ for some ϵ > 0. Consider the straight line paths connecting
z to ∞, α(t) = z + t and β(t) = z − t. Choose tα and tβ such that α(tα) = a and β(tβ) = b
are epsilon away from D̃. Then a, b ∈ D, but the straight line path L connecting a and b is not
entirely contained within D, since z ∈ L. So D is not convex.
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