1. Proof. Let f be analytic and non-constant on the closure of a bounded region D. Suppose for contradiction that Re f is maximum at an interior point $z_0 \in D$. By the open mapping theorem, f(D) is open, so $f(z_0) + \epsilon \in f(D)$ for some positive real ϵ . But then $\text{Re}(f(z_0) + \epsilon) > \text{Re}(f(z_0))$, contradicting that Re f is maximum at z_0 .

Similarly, if Re f is minimum at an interior point $z_0 \in D$, then $f(z_0) - \epsilon \in f(D)$ for some positive real ϵ , and Re $(f(z_0) - \epsilon) < \text{Re}(f(z_0))$, contradicting that Re f is minimum at z_0 .

Analogously, Im f can't be maximum or minimum at an interior point $z_0 \in D$, for then $f(z_0) \pm \epsilon \in f(D)$ for some imaginary ϵ with positive modulus would be smaller than the supposed minimum or larger than the supposed maximum.

Thus, $\operatorname{Re} f$ and $\operatorname{Im} f$ must both attain their maximum and minimum on the boundary of D.

2. First we prove the following lemma.

Lemma 1. Let $f: S \to T$ be a non-constant analytic function on its domain. If $f(z) \in T$ is a boundary point of T, then z is a boundary point of S.

Proof. Suppose otherwise: that f(z) is a boundary point of T but z not a boundary point of S. Then z is an interior point of S, so there exists a disk $D(z;r) \subset S$. By the open mapping theorem, f(D(z;r)) is open, so f(z) is an interior point of T, contradicting that f(z) is a boundary point of T.

Now we prove the theorem.

Proof. We have that $B_{\alpha}: D(0;1) \to A$ is analytic in its domain. We show that A is the unit disk, and B_{α} is a bijection. First, note that if |z|=1, then $|B_{\alpha}(z)|=1$. So,by the Maximum-Modulus theorem, since B_{α} is non-constant, (e.g. $B_{\alpha}(0)=-\alpha\neq 1$), there is some $|B_{\alpha}(z)|<1$ for some $z\in \operatorname{Int} D(0;1)$. Let $\alpha\in A$ be one such value, with $|\alpha|<1$. Consider an arbitrary chord T of C(0;1) passing through α . Let $X=T\setminus C(0;1)$ (that is, T excluding its endpoints). Then, $X\subseteq A$, since if it weren't, then there would be some $f(z)\in X$ that is a boundary point of A. But, this isn't possible, since by the Lemma, z would be a boundary point with |z|=1. But then |f(z)|=1, contradicting that f(z) is on a chord in the interior of D(0;1). So $X\subseteq A$. Thus, A contains all chords (minus their endpoints) passing through α , so A is the interior of the unit disk. Finally, since f is continuous and D(0;1) is compact, A is compact. So A is the unit disk.

Now we show that B_{α} is a bijection by showing that it, composed with its inverse, is an identity map in D(0;1). Define its inverse $B_{\alpha}^{-1}:A\to D(0;1)$ by

$$B_{\alpha}^{-1}(\beta) = \frac{\beta + \alpha}{1 + \overline{\alpha}\beta}$$

Then

$$(B_{\alpha}^{-1} \circ B_{\alpha})(z) = \frac{\frac{z-\alpha}{1-\overline{\alpha}z} + \alpha}{1+\overline{\alpha}\frac{z+\alpha}{1+\overline{\alpha}z}}$$
$$= \frac{z-\alpha\overline{\alpha}z}{1-\alpha\overline{\alpha}}$$
$$= z$$

Finally, note that this inverse is analytic on the unit disk, since it is a rational functions whose denominator is non-zero within the unit disk, since $1 + \overline{\alpha}z = \overline{\alpha}(1/\overline{\alpha} + z)$, and $|1/\overline{\alpha}| > 1$ since $|\alpha| < 1$, and $|z| \le 1$.

3. Proof. First, note that f has finitely many zeroes inside the unit disk, for if it didn't, then by compactness of the unit disk, there would be a sequence of zeroes convergent to a point within the domain of analycity of f. Then by the Uniqueness Theorem, $f \equiv 0$; contradicting that |f| = 1 on |z| = 1. So let $\alpha_1, \ldots, \alpha_n$ be the finitely many zeros of f. Then

$$g(z) = \frac{f(z)}{\prod_{j=1}^{n} \frac{z - \alpha_j}{1 - \overline{\alpha_j} z}}$$

is non-zero at all points inside the unit disk, and |f| = 1 on the unit disk boundary. So by the Maximum-Modulus and Minimum-Modulus theorems, g is constant. So

$$f(z) = C \prod_{j=1}^{n} \frac{z - \alpha_j}{1 - \overline{\alpha_j} z}$$

Finally, since f is entire, $\alpha_1 = \cdots = \alpha_n = 0$, so $f(z) = Cz^n$.

4. Let $\alpha_1, \ldots, \alpha_n$ be the zeroes of Q. Define

$$g(z) = f(z) \prod_{j=1}^{n} B_{\alpha_j}(z)$$

then $B_{\alpha_j}(z) = 0$ when $z = \alpha_1, \dots, \alpha_n$, so g has no poles within the unit disk. And since $|B_{\alpha}(z)| = 1$ when |z| = 1 (from above), |f(z)| = |g(z)| when |z| = 1.

5. Let $g(z) = \frac{1}{10}f(2z)$ so that the image of g is contained in the unit disk and g(1/2) = 0.

$$g(z) \ll B_{1/2}(z) = \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z}$$

So $g(1/4) \ll 2/7$. So $f(1/2) \ll 20/7$. This upper bound is attained by $f(z) = 10B_{1/2}(z/2)$ since $f(1/2) = 10B_{1/2}(1/4) = 20/7$.

6. Proof. We prove the contrapositive. Suppose that a region D is not simply connected. Then there is a point in its complement $z \in \tilde{D}$ such that every path connecting z to ∞ has some point on the path $\gamma(t)$ with $d(\gamma(t), \tilde{D}) > \epsilon$ for some $\epsilon > 0$. Consider the straight line paths connecting z to ∞ , $\alpha(t) = z + t$ and $\beta(t) = z - t$. Choose t_{α} and t_{β} such that $\alpha(t_{\alpha}) = a$ and $\beta(t_{\beta}) = b$ are epsilon away from \tilde{D} . Then $a, b \in D$, but the straight line path L connecting a and b is not entirely contained within D, since $z \in L$. So D is not convex.