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1. Proof. Let z ∈ S̃. Consider γ(t) = tz + (1− t)α for t ≥ 1. Then γ connects z to infinity and is
contained in S̃, since if it weren’t, there would be a point z′ = γ(t′) in S where t′ ≥ 1. But then
z′ is connected to α by the line segment γ(t), 0 ≤ t ≤ t′, which is not completely contained in S
since z = t(1) ∈ S̃, contradicting the fact that S is star-like.

2. Proof. Let γ : γ(t), a ≤ t ≤ b be a closed polygonal path. If it is simple we are done, so suppose
otherwise. Then γ(t1) = γ(t2) for some t1 ̸= t2 (possibly many) that are not the endpoints.
Either this is a single intersection point, that is, the intersecting line segments are secant or
touch corners, or it is a neighborhood of intersection points, that is, the intersection is two
colinear line segments. We show that we can decompose γ into closed polygonal paths and line
segments traversed twice in opposite directions without the given intersection(s), from which the
claim follows by induction by applying the same argument to each of the new closed polygonal
paths until no intersections remain.

If this is a single intersection point, that is, γ(t1) = γ(t2) for t1 ̸= t2 but γ(t′1) ̸= γ(t′2) for
all t′1 ∈ (t1 − ϵ, t1 + ϵ) \ t1 and t′2 ∈ (t2 − δ, t2 + δ) \ t2 for all ϵ, δ > 0, then γ = γ1 ∪ γ2 where
γ1 = γ(t), t ∈ [a, t1] ∪ [t2, b] and γ2 = γ(t), t ∈ [t1, t2].

If instead it is a neighborhood of intersection points, then γ(t1) = γ(t2) for some neighbor-
hoods T1 and T2 around and including t1 and t2. Define x := inf T1, y := supT1, c := inf T2, d :=
supT2. We consider two cases: where the line segments travel in the same direction and opposite
directions.

If the line segments travel in the same direction, then x = c and y = d, so we can decompose
γ as γ1 ∪ γ2, where γ1 = γ(t), t ∈ [x, y] ∪ [d, c] and γ2 = γ(t), t ∈ [a, x] ∪ [c, y] ∪ [d, b]. Note that
γ1 is a line segment traversed twice in opposite directions, and γ2 is a closed polygonal path.

If the line segments travel in opposite directions, then x = d and y = c. Decompose
γ = γ1∪γ2∪γ3 where γ1 = γ(t), t ∈ [a, d]∪[d, b], γ2 = γ(t), t ∈ [y, c] and γ3 = γ(t), t ∈ [x, y]∪[c, d].
Note that γ1 and γ2 are closed polygonal paths, and γ3 is a line segment traversed in two
directions.

3. Proof. We have
∫ z
−1 dζ/ζ =

∫ −|z|
−1 dζ/ζ +

∫ z
−|z| dζ/ζ. The first term is

∫ −|z|

−1
dζ/ζ = ln |ζ||−|z|

−1 = ln | − |z|| − ln | − 1| = ln |z| − ln 1 = ln |z|

Integrating from |z| to z along C : ζ(θ) = |z|ei(θ−π), 0 ≤ θ ≤ Arg z + π,

∫
C
dζ/ζ =

∫ Arg z+π

0

ζ ′(θ)

ζ(θ)
dθ =

∫ Arg z+π

0

i|z|ei(θ−π)

|z|ei(θ−π)
dθ =

∫ Arg z+π

0
idθ = i(Arg z + π)

So f(z) = πi+
∫ z
−1 dζ/ζ = ln |z|+ iArg(z) + i2π, so f(z) is an analytic branch of ln z.

4. Proof. Note that f(x) = xx = ex lnx. From class, we showed ln z = ln |z| + iArg z for z with
positive real part. So

f(z) = exp(z ln z) = exp(z ln |z|+ izArg z) = exp(z ln |z|) exp(izArg z)

Since ln z is analytic on this domain, f(z) is analytic on this domain. Note that when z ∈ R,
the second factor is 1, so f(x) = xx is real-valued on R. We have
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f(i) = exp(i ln 1 + i2π/2) = exp(−π/2) =
1

eπ/2

and

f(−i) = exp(−i ln 1 + i2π/2) = exp(−π/2) =
1

eπ/2

5. Proof. Since f(z) → ∞ as z → z0, f is unbounded in the deleted neighborhood of z0. So z0
is not a removable singularity. Also, since f(z) → ∞ as z → z0, we can choose some deleted
δ-neighborhood X of z0 such that |f(z)| > 1 for all z ∈ X. So, D(0; 12) ⊆ X \ C is disjoint
from X. So X is not dense in C. So by the Caserati-Weierstrass theorem, z0 is not an essential
singularity. z0 is neither an essential singularity nor a removable singularity, so it must be a
pole.
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