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1. Proof. Suppose f is an entire one-to-one function. If f is a polynomial, then by the Fundamental
Theorem of Algebra, it has n zeros (counting multiplicity), where n is the degree of f . Since f
is one-to-one, it has at most 1 zero of degree 1. Thus, n = 1, so f is a linear function. It remains
to show that f must be a polynomial.

Suppose f(z) is not a polynomial. Then since f is entire, its Taylor expansion at z = 0
converges everywhere and has infinitely many terms. So, the principal part of the Laurent series
of f(1/z) has infinitely many negative terms. Note that these expansions must be equivalent
by the Uniqueness of Laurent expansions. Thus, f(1/z) has an essential singularity at z = 0.
By the Casorati-Weierstrass Theorem, f(1/z) maps the deleted neighborhood D of z = 0 to a
dense subset f(D) ⊆ C. Choose an open set disjoint from D, say U . By the density of f(D)
in C, there is an element x ∈ f(D) arbitrarily close to an element in f(U). Since f(U) is open
by the open mapping theorem, x ∈ f(U). So f(D) and f(U) are not disjoint despite D and U
being disjoint, so f is not injective; a contradiction. So f is a polynomial.

2. (a) z = 0 and z = ±i are poles since 1 and z4 + z2 are polynomials and thus entire, and
z4 + z2 = 0 at these values. z = 0 is a pole of order 2 since it is a zero of order 2 of
z4 + z2 = z2(z2 + 1).

(b) z = kπ for k ∈ Z are poles since cot z = cos z/ sin z and sin z = 0 at these values. And,
sin z and cos z are entire.

(c) z = kπ for k ∈ Z are poles since csc z = 1/ sin z and sin z = 0 at these values. And, sin z
and 1 are entire.

(d) z = 1 is a pole since z − 1 = 0 there and z − 1 and exp(1/z2) are analytic at z = 1. z = 0
is an essential singularity since it is not a pole since exp(1/z2) is analytic at z = 0. And,
z = 0 is not a removable singularity since exp(1/z2) is an essential singularity (its Laurent
expansion has infitely many terms in its principal part).
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