
Introduction
von Neumann architecture: shared memory banks + buses for instructions
and data

Harvard architecture: seperate memory banks + buses for instructions and
data

CPU-Memory Gap: increasing difference in speeds between DRAM, disk, and
CPU speeds * contributor to the Memory Wall: the point where a program’s
speed is entirely determined by memory speed

Eight Great Ideas in Computer Architecture

1. Use abstraction to simplify design
2. Design for Moore’s Law
3. Make the common case fast
4. Performance via parallelism
5. Performance via pipelining
6. Make the common case fast
7. Hierarchy of memories
8. Dependability via redundancy

CPU
Runtime of a program determined by: 1. CPU clock speed 2. Type of instructions
performed (e.g. multiplication/division take longer than addition/subtraction) 3.
Memory speed (access time)

Performance largely measured through throughput, latency, and clock speed.

CPI

CPI = clock cycles per instruction = average CPI = effective CPI

CPU time = CPI × instruction count × clock cycle

Power

power wall: limitation in processor development preventing processors from
consuming any more power * decreasing transistor size lowers voltage but
increases power density, causing extra heat * reducing voltage usage is hard,
removing extra heat is even harder * reason for possbile failing of Moore’s Law *
alternative: use multi-core processors or multiprocessors

Memory Hierarchy
The memory hierarchy was introduced to tackle the memory wall and reduce the
effects of the Processor-Memory gap. Also: * fast storage technologies (SRAM)

1

are expensive and take more room * gap between DRAM (main memory) and
CPU continues to widen * principle of locality

Principle of Locality

temporal locality: recently accessed items are likely to be accessed again in
the near future

spatial locality: recently accessed items are likely to have nearby items accessed
in the near future

Cache Hierarchy

CPU looks in L1 cache, then L2, then L3, then main memory.

NOTE: despite the numbering, L3 is a “lower level cache” than L2, which is a
lower level cache than L1.

placement (mapping) policy: where should a new block to be loaded in the
cache go? replacement policy: which block should be evicted from the cache
(to load a new block)

cold miss (at level k): occurs when a block is missing for the first time at
level k; these are unavoidable

conflict miss (at level k): mapping policies dictate where blocks can go in
the cache: conflict misses occur when multiple data items from level k + 1 map
to the same position in level k

capacity miss (at level k): a conflict miss that occurs because the cache is full:
these would occur even if the cache was fully-associative with LRU replacement

Cache and Memory Performance

With caching, the CPU time formula changes:

CPU Time = instruction count × clock cycle × (CPI + average memory stall
cycles)

Average memory stall cycles = access rate × miss rate × miss penalty

(CPI + average memory stall cycles) is called CPI stall CPI inside CPI stall
is also called CPI ideal

banked cache: cache divided into two sections: one for instructions and one
for data: L1 is usually banked cache

unified cache: cache where instructions and data are stored together

average memory access time (AMAT): average time to access memory
considering both hits and misses

AMAT = hit time + miss penalty × miss rate

2

For multiple cache levels:

AMAT = L1 hit time + L1 miss rate × L1 miss penalty

L1 miss penalty = L2 hit time + L2 miss rate × L2 miss penalty

. . .

L3 miss penalty = Main memory hit time

Cache Implementation
Hierarchy management: * registers <-> cache memory: compiler decides which
values goes into registers * cache memory <-> main memory: cache controller
(hardware) handles memory movement * main memory <-> disk: OS (virtual-
ization), TLB (hardware), programmer (files)

The cache is split into S sets, with B blocks in each. Each block has a tag field
used to differentiate between different items currently loaded in the cache.

A memory address is decomposed as the tag | set index | block offset

Addresses are assumed to be byte addresses (not word addresses).

Cache Organization Schemes

direct-mapped: one block per set; each memory address mapped to exactly
one line in the cache; no tag needed

fully associative: one set: memory address can be mapped to any block; tag is
whole address except block offset

N-way set associative: N sets

Set Associativity Cost

• N comparators for LRU, MUX delay, can’t assume a hit and recover later
(since block isn’t available until after hit/miss decision)

Handling Cache Hits and Misses

Read hit: do nothing

Write hit policies (data only) 1. write-through: maintain consistency between
cache and main memory by writing to cache AND main memory; amortize
performance by using a write buffer 2. write-back: allow inconsistency, marking
blocks as dirty when written to. Only write back to main memory on eviction
(requires >2 cycles, 1 to check dirty and 1 to write-back; alternatively, use
write-buffer for just 1 cycle)

Read miss policies: 1. stall execution, fetch block from lower cache level, install
into higher cache level, and resume

3

Write miss policies (data only): stall execution and 1. write-allocate: fetch block
from lower cache, write updated value, and install in cache 2. no write-allocate:
write to lower cache without installing into cache (or use a write buffer)

Cache Design

• primary cache should focus on minimizing hit time
• secondary caches should focus on minimizing miss penalty of primary

cache

Reducing hit time: * smaller cache size, smaller block size * direct-mapping *
use write buffer for write-through/write-back policies

Reducing miss rate: * larger cache, larger block size * increase associativity *
use victim-cache: cache of most recently evicted blocks

Reducing miss penalty: * smaller block size * use write-buffer * check write-
buffer/victim cache on read miss * use multi-level cache * faster main memory *
improve memory bandwidth for memroy transfer between cache levels

Boolean Algebra
conjunctive normal form (CNF): conjuction of disjunctions

disjunctive normal form (DNF): disjunction of conjunctions

A set of operators is functionally complete if it is enough to describe any
operation in boolean algebra * NAND, NOR, {∧, ¬}, {∨, ¬} are functionally
complete

Stateless Circuits
combinational circuits = stateless circuits = functional blocks * circuits whose
output depend solely on its inputs

block (schematic) diagram: specifies inputs, outputs, number of bits for each,
and formula/truth table

1-bit half-adder: XOR gate for sum, AND for carry

1-bit full-adder:

4

n-bit full-adder:

• unsigned addition: overflow if last carry bit cn is 1
• signed addition: overflow if cn ⊕ cn−1

n-bit subtractor:

5

multiplexer: select between multiple inputs with control signal c:

MUX(a, b, c) = ac̄ + bc

• output a when c = 0 and b when c = 1

demultiplxer chooses among its outputs

State Circuits
• combinational circuits cause propagation delay: need to synchronize with

a clock
– faster components use a clock multiplier

delay flip-flop: sets state to input after some delay

D Q Qnext

0 0
1 1

toggle flip-flop: T toggles state if T ≡ 1, otherwise does nothing

SR flip-flop: * S ≡ 1 sets the state * R ≡ 1 clears the state * S ≡ 0, R ≡ 0
doesn’t change anything * S ≡ 1, R ≡ 1 not allowed

JK flip-flop: SR flip-flop except both set to 1 toggles the state

parallel-in parallel-out:

6

serial-in parallel-out:

serial-in serial-out: one input bit, one output bit

parallel-in serial-out: one bit output at a time, bits shifted over on each
output; requires additional control signal for write/shift operation

clk-to-q delay: propagation delay of a flip-flop

setup time: stable signal value to the input of a flip-flop required before the
rising edge of the clock

hold time: stable signal value to the input of a flip-flop required after the rising
edge of the clock * usually less than clk-to-q delay

clocked accumulator:

7

• note that we only need to clock the register, not the combinational circuit

minimum clock period = combinational circuit delay + clk-to-q delay + setup
time

Finite State Machines
Mealy machine: FSM whose output depends on current state and current
input

8

1. Generate truth table
2. Simplify boolean expressions for next state and output bits
3. Draw logic diagram

Introduction to MIPS
MIPS ISA is a RISC architecture with pipelining and without interlocking.

MIPS is big-endian.

MIPS Registers

32 32-bit registers * $0 always holds the value 0 * $at reserved for compiler *
$v0-v1 return values * $a0-a3 arguments * $t0-t9 temporaries * $s0-s7 saved
registers (must be saved/restored by the callee) * $gp global pointer for static
data * $fp frame pointer * $sp stack pointer * $ra return address

MIPS Instruction Formats

R-type (register) instructions

opcode source 1 source 2 destination shift amount function type
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

9

• for instructions that use shamt (shift amount), source 1 is always 0
– e.g. sll $s0, $t0, 4

∗ source 1 = 0
∗ source 2 = $t0
∗ destination = $s0
∗ shamt = 4

• for arithmetic instructions, function type determines the function the ALU
will perform (opcode is usually 0 here)

I-type (immediate) instructions

opcode source 1 source 2 (or destination) immediate
6 bits 5 bits 5 bits 16 bits

• note for sw $t1, 32($t0), $t1 is the destination and $t0 is the source
• relative PC addressing: branch immediates are multiplied by 4 before

being added to the PC

J-type (jump) instructions

opcode target (jump address)
6 bits 26 bits

• only j and jal instructions
• pseudo-direct addressing: target is multiplied by 4 and OR-ed with

the upper 4-bits of the PC to form the new PC

MIPS Single-Cycle Datapath

minimum clock cycle needs to be long enough to run all 5 stages in one clock
cycle

Instruction Fetch

1. Update value of PC on rising clock edge
2. Fetch instruction from memory and pass to next stage
3. Compute PC + 4

Instruction Decode

1. Decompose instruction into bit segments
2. Read opcode, determine R/I/J instruction type
3. Access operand values from registers
4. Extend to 32-bit immediate if needed

10

Execute

• do the actual work of the instruction in the ALU: add, subtract, shift, etc.
• for data-transfer instructions, compute the absolute address from the

immediate and base address

Memory Access

• access memory with the address calculated in the execute stage

Write Back

• write back the calculated/accessed value to the destination register

Multiplexers needed in datapath for: * choosing between PC + 4 and PC
branch/jump * write-back from ALU or from memory * choosing between
register or immediate for ALU input

11

	Introduction
	Eight Great Ideas in Computer Architecture

	CPU
	CPI
	Power

	Memory Hierarchy
	Principle of Locality
	Cache Hierarchy
	Cache and Memory Performance

	Cache Implementation
	Cache Organization Schemes
	Handling Cache Hits and Misses
	Cache Design

	Boolean Algebra
	Stateless Circuits
	State Circuits
	Finite State Machines
	Introduction to MIPS
	MIPS Registers
	MIPS Instruction Formats
	MIPS Single-Cycle Datapath

