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1. Proof. Let x,g € G a group. Suppose |x| = n with n finite. Then 2™ =1, so

(97 '2g)" = (g7 2g)... (¢ 'wg) =g ta"g =g g =1.

If m < n with m € N, then similarily (¢-'zg)™ = g~ 'a™g. Since |z| =n, 2™ # 1, so 2™g # g

and g~ '2™g # 1, since g is the unique inverse of g~!. So |g7'zg| = n = |z| when n is finite. If
|| = oo, then |g~txg| = oo, for otherwise

(97 leg)t =g labg=1 = 2t =g =1
for some k € N, contradicting that |z| = oc.
Consequently, |ab| = |a~!(ab)a| = |ba]. O

2. There are 3 ”actions” to represent: a horizontal reflection, a vertical reflection, and a half-
rotation. Represent these as

h=(14)2 3)
v=(12)3 4)
r=(13)(2 4)

respectively. Then K := {1,h,v,7}, where 1 is the identity function and K < Sy. The order
of each element except the identity (which has order 1) is 2, since h, v, r are composed entirely
of 2-cycles. Finally, note that K < S4 since K C Sy is finite and closed under products, since
r?=h>=v>=1,hr=v=rhand vr =h = ro.

3. We use the fact that the order of a permutation is the least-common multiple of its cycles.
Consider the lengths of the cycles in every permutation, its least-common multiple, and the
number of such elements in Sg:

6 = 6,120
54+41 = 5,144

4+2 = 4,90

4+141 = 4,90

343 = 3,40

34241 = 6,120
3+414+1+1 = 3,40
24242 = 2,15
2424141 = 2,45
241+14+1+1 = 2,15
1+1+414+14+1+1 = 1,1

To the count the elements of each possible order, it suffices to count the number of per-
mutations with each cycle pattern. To compute this, take the total number of permutations
and divide out the product of the lengths of each cycle (since each t-cycle can be represented ¢
equivalent ways, i.e. (1 2) = (2 1)), as well as the number of ways to choose each cycle. For



example, there are % = 15 ways to permute 6 elements into a 3 2-cycles, since each 2-cycle

can be represented 2 different ways, and there are 3! ways to choose the 2-cycles. Summing up
the permutations that have identical least-common multiple cycle-lengths, we have there are 240
elements of order 6, 144 elements of order 5, 180 elements of order 4, 80 elements of order 3, 75
elements of order 2, and 1 element of order 1.

. Proof. There is an element in r € Dy4 with order 12. The possible cycle lengths in every element
of Syare 1+1+14+1,24+1+1,2+2,3+ 1,4, none of which have a least-common multiple of
12. So there is no element of order 12 in Sy, so there can not be an isomorphism between Doy
and Sy, since isomorphisms preserve order. ]
. Proof. (—) Suppose ¢ is a homomorphism. Let a,b € G. Then p(ab) = (ab)? = p(a)(b) = a?b?,
so abab = aabb = ba = ab, by the Cancellation Law of a on the left and b on the right.

(+-) Suppose G is Abelian. Let a,b € G. Then ¢(ab) = (ab)? = a®b*> = ¢(a)p(b). O
. Proof. Let a € G. We have 1-a = al = a, so the identity property holds. Also, for x,y € G,
z-(y-a)=x-(ay™") = (ay 2~ = a(y~'z™) = 2y - a, by associativity. So compatibility also
holds, thus g - a is a group action. O

. Proof. a ~ a since a = la, so reflexivity holds. If a ~ b, then a = gb for g € G, so b = g 'a

and b ~ a, so symmetry holds. Finally, suppose a ~ b and b ~ ¢. Then a = gb and b = hc for
some g,h € G. We have a = gb = ghc = (gh)c, so transitivity holds. So ~ is an equivalence
relation. O

. Proof. First we show that for any group G acting on .5, its stabilizer G, is a subgroup of G. We
have 1 € G5 by the axiom of group actions. Also, G is closed under inverses since if x € Gg,
then s = 27 '2-s = 27! - (zs) = 7 's. It is also closed under products since if z,y € G, then
(xy)-s=z-(y-s)=z-s=s. SoGs <G.

Finally we prove the proposition: note that o - s = o(s) is a group action of G = S,, on
{1,2,...,n}, since id(s) = s and o(7(s)) = (0 o 7)(s), where 0,7 € G, by composition of
functions. So G; is a stabilizer of G, thus G; < G. O]



