
David Tran
251169871 HW 1

Math 3120
January 26, 2024

1. Proof. Let x, g ∈ G a group. Suppose |x| = n with n finite. Then xn = 1, so

(g−1xg)n = (g−1xg) . . . (g−1xg) = g−1xng = g−1g = 1.

If m < n with m ∈ N, then similarily (g−1xg)m = g−1xmg. Since |x| = n, xm ̸= 1, so xmg ̸= g
and g−1xmg ̸= 1, since g is the unique inverse of g−1. So |g−1xg| = n = |x| when n is finite. If
|x| =∞, then |g−1xg| =∞, for otherwise

(g−1xg)k = g−1xkg = 1 =⇒ xk = gg−1 = 1

for some k ∈ N, contradicting that |x| =∞.
Consequently, |ab| = |a−1(ab)a| = |ba|.

2. There are 3 ”actions” to represent: a horizontal reflection, a vertical reflection, and a half-
rotation. Represent these as

h = (1 4)(2 3)

v = (1 2)(3 4)

r = (1 3)(2 4)

respectively. Then K := {1, h, v, r}, where 1 is the identity function and K ≤ S4. The order
of each element except the identity (which has order 1) is 2, since h, v, r are composed entirely
of 2-cycles. Finally, note that K ≤ S4 since K ⊆ S4 is finite and closed under products, since
r2 = h2 = v2 = 1, hr = v = rh and vr = h = rv.

3. We use the fact that the order of a permutation is the least-common multiple of its cycles.
Consider the lengths of the cycles in every permutation, its least-common multiple, and the
number of such elements in S6:

6 =⇒ 6, 120

5 + 1 =⇒ 5, 144

4 + 2 =⇒ 4, 90

4 + 1 + 1 =⇒ 4, 90

3 + 3 =⇒ 3, 40

3 + 2 + 1 =⇒ 6, 120

3 + 1 + 1 + 1 =⇒ 3, 40

2 + 2 + 2 =⇒ 2, 15

2 + 2 + 1 + 1 =⇒ 2, 45

2 + 1 + 1 + 1 + 1 =⇒ 2, 15

1 + 1 + 1 + 1 + 1 + 1 =⇒ 1, 1

To the count the elements of each possible order, it suffices to count the number of per-
mutations with each cycle pattern. To compute this, take the total number of permutations
and divide out the product of the lengths of each cycle (since each t-cycle can be represented t
equivalent ways, i.e. (1 2) = (2 1)), as well as the number of ways to choose each cycle. For

1



example, there are 6!
(23)(3!)

= 15 ways to permute 6 elements into a 3 2-cycles, since each 2-cycle

can be represented 2 different ways, and there are 3! ways to choose the 2-cycles. Summing up
the permutations that have identical least-common multiple cycle-lengths, we have there are 240
elements of order 6, 144 elements of order 5, 180 elements of order 4, 80 elements of order 3, 75
elements of order 2, and 1 element of order 1.

4. Proof. There is an element in r ∈ D24 with order 12. The possible cycle lengths in every element
of S4 are 1 + 1 + 1 + 1, 2 + 1 + 1, 2 + 2, 3 + 1, 4, none of which have a least-common multiple of
12. So there is no element of order 12 in S4, so there can not be an isomorphism between D24

and S4, since isomorphisms preserve order.

5. Proof. (→) Suppose φ is a homomorphism. Let a, b ∈ G. Then φ(ab) = (ab)2 = φ(a)(b) = a2b2,
so abab = aabb =⇒ ba = ab, by the Cancellation Law of a on the left and b on the right.

(←) Suppose G is Abelian. Let a, b ∈ G. Then φ(ab) = (ab)2 = a2b2 = φ(a)φ(b).

6. Proof. Let a ∈ G. We have 1 · a = a1 = a, so the identity property holds. Also, for x, y ∈ G,
x · (y · a) = x · (ay−1) = (ay−1)x−1 = a(y−1x−1) = xy · a, by associativity. So compatibility also
holds, thus g · a is a group action.

7. Proof. a ∼ a since a = 1a, so reflexivity holds. If a ∼ b, then a = gb for g ∈ G, so b = g−1a
and b ∼ a, so symmetry holds. Finally, suppose a ∼ b and b ∼ c. Then a = gb and b = hc for
some g, h ∈ G. We have a = gb = ghc = (gh)c, so transitivity holds. So ∼ is an equivalence
relation.

8. Proof. First we show that for any group G acting on S, its stabilizer Gs is a subgroup of G. We
have 1 ∈ Gs by the axiom of group actions. Also, Gs is closed under inverses since if x ∈ Gs,
then s = x−1x · s = x−1 · (xs) = x−1s. It is also closed under products since if x, y ∈ Gs, then
(xy) · s = x · (y · s) = x · s = s. So Gs ≤ G.

Finally we prove the proposition: note that σ · s = σ(s) is a group action of G = Sn on
{1, 2, . . . , n}, since id(s) = s and σ(τ(s)) = (σ ◦ τ)(s), where σ, τ ∈ G, by composition of
functions. So Gi is a stabilizer of G, thus Gi ≤ G.
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