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1. (a) Proof. Suppose it were. Then let ⟨A⟩ = Q with A ⊆ Q where A is finite. Let d be the
product of every denominator in A. Then any linear combination of the rationals in a can
be written as x/d for some term x. Now choose a prime p that does not divide d. Then
1/p ∈ Q can not be generated by A, since x/d is reducible to 1/p if and only if p divides d,
which it doesn’t by construction; a contradiction.

(b) Proof. Consider A := { a
2n : n ∈ N, a ∈ Z}. It is a subgroup of Q since A ⊆ Q and

a/2n − b/2n = (a− b)/2n ∈ A, and it is proper since 1/3 ∈ Q− A. It is not cyclic since if
it were generated by a single rational, say r ∈ A, then r/2 ∈ A but ar ̸= r/2 for a ∈ Z.

(c) Proof. Let a/b ∈ Q+. By closure, it suffices to show that a and 1/b are generated by
the set of interest A. Let a = pe11 . . . penn be the prime factorization of a. Then a =

(p−1
1 )−e1 . . . (p−1

n )−en , so a ∈ ⟨A⟩. Similarily, let b = qf11 . . . qfmm be the prime factorization
of b, then 1/b = ((q1)

−1)−f1 . . . (q−1
m )−fm , so 1/b ∈ ⟨A⟩.

2. (a) The centralizers for ⟨i⟩, ⟨j⟩, and ⟨k⟩ are at least the subgroups themselves, since each are
cyclic and thus Abelian. The only greater subgroup is Q8 itself, which is not Abelian and
thus cannot be part of the centralizer. So the centralizers for ⟨i⟩, ⟨j⟩, ⟨k⟩ are the subgroups
themselves. The centralizer for ⟨1⟩ and ⟨−1⟩ is Q8, since 1 and −1 commute with all of Q8.
Finally, the centralizer for Q8 is {1,−1}, since neither i, j, nor k commutes with j, k, nor
i, respectively and ny the lattice diagram, there are no greater subgroups for Q8 that could
be the centralizer.

Since the centralizer is a subgroup of the normalizer, the normalizer of ⟨1⟩ and ⟨−1⟩ is
Q8. For the normalizer of ⟨i⟩, note that j⟨i⟩j−1 = {1, i,−1,−i} = ⟨i⟩. So, j ∈ NQ8(⟨i⟩),
and since CQ8(⟨i⟩) = ⟨i⟩, the normalizer must be Q8. Symmetrically, the normalizer for ⟨j⟩
and ⟨k⟩ is Q8. Finally, every group is its own normalizer, so NQ8(Q8) = Q8.

(b) From above, since the normalizer of every subgroup is Q8, every subgroup is normal.
For the isomorphism type of the quotient of each subgroup: we have |Q8 : ⟨−1⟩| = 4, so

Q8/⟨−1⟩ is congruent to either V4 or Z4. But, for any g ∈ Q8/⟨−1⟩, g2⟨−1⟩ = ⟨−1⟩, so the
elements i⟨−1⟩, j⟨−1⟩, k⟨−1⟩ have order 2, so Q8/⟨−1⟩ cannot be congruent to Z4. Thus
Q8/⟨−1⟩ ∼= V4.

Next, we have |Q8 : ⟨i⟩| = 2. Thus Q/⟨i⟩ ∼= Z2. Similarily, Q/⟨j⟩ ∼= Q/⟨k⟩ ∼= Z2.

3. (a) Proof. Let A be divisible with B ≤ A. Let aB ∈ A/B with a ∈ A. Since xn = a for some
non-zero integer n and x ∈ A, aB = (xn)B = (xB)n. So A/B is divisible.

(b) • Finite Abelian groups are not necessarily divisible: consider Z2 under addition. There
is no element y ∈ Z2 such that 2y = 1, since 2(0) = 2(1) = 0.

• Z is not divisible: there is no element y ∈ Z such that 2y = 1 since the product of an
even integer with any integer is even.

• Q is divisible since for any r ∈ Q and n ∈ N, r/n ∈ Q and (r/n)n = r.

• Q/Z is divisible: let rZ ∈ Q/Z and n ∈ N. Then (r/n)Z ∈ Q/Z and (r/n)Z · nZ = rZ.
4. (a) Proof. If A is Abelian, then A × A is Abelian since (x, y)(u, v) = (xu, yv) = (ux, vy) =

(u, v)(x, y) for x, y, u, v ∈ A. The subgroup of any Abelian group is normal, so D ≤ A×A
is normal.

(b) Proof. Let σ = (1 2 3), τ = (1 2), and ρ = (2 3), with σ, τ, ρ ∈ S3. Then (ρ, ρ) ∈ D and
(σ, τ) ∈ S3 × S3, but

(σ, τ)−1(ρ, ρ)(σ, τ) = (τ, σ−1) ̸∈ D.
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so D is not normal.

5. (a) Proof. First we show that for any g ∈ G, g = xnz where z ∈ Z(G), n ∈ Z, and x is such
that G/Z(G) = ⟨xZ(G)⟩. Let g ∈ G. Then gZ(G) = xnZ(G) for some m, so x−ng ∈ Z(G).
So there is some z ∈ Z(G) with x−ng = z, that is, g = xnz.

Now let g, h ∈ G. From above, gh = (xnz1)(x
mz2) = (xmz2)(x

nz1) = hg, using
commutativity from the fact that z1, z2 ∈ Z(G).

(b) Proof. By Lagrange’s theorem, the order of Z(G) is either pq, p, q or 1. If the order is pq,
then Z(G) = G so G is Abelian. If it is p (or q), then |G/Z(G)| = q (or p), so it is cyclic
and thus Abelian by (a). To see that G/Z(G) is cyclic, note that for some non-identity
element x ∈ Z(G), |x| = q (or p) by Lagrange’s theorem and the fact that q (or p) is prime.
So, |⟨x⟩| = |Z(G)|, so ⟨x⟩ = Z(G).

Thus, G is either Abelian or |Z(G)| = 1 so Z(G) = 1.

6. Proof. Since xH = Hy and 1 ∈ H, choose h ∈ H such that x(1) = x = hy. Thus xy−1 = h ∈ H,
so xy−1 ∈ H, which implies Hx = Hy. Hence xH = Hy = Hx. Finally, since xH = Hx,
xHx−1 = H, so x ∈ N(H).

7. Proof. Since G is finite and H,N ≤ G, |HN | = |H||N |
|H∩N | . Also, from Corollary 15 in Chapter 3,

since N ⊴ G, HN ≤ G. And, |G : N | = |G|/|N | implies |N | = |G|/|G : N |. So,

|G| = |H||N |
|H ∩N |

|G : HN |

=
|H||G|

|H ∩N ||G : N |
|G : HN |

Dividing on both sides by |G| gives |H||G : HN | = |H ∩ N ||G : N |. Finally, since (|H|, |G :
N |) = 1, we must have |H| = |H ∩N | and |G : HN | = |G : N |. So H ≤ N .

8. Proof. Since |H||G : M | = p, either (|H|, |G : M |) = 1, or (|H|, |G : M |) = p. From 7, if the
first is true then H ≤ M . So suppose the second is true. We have that HM is a subgroup and
again from 7, |H||G : HM | = |H ∩M ||G : M |. Also, HM is a subgroup and M ≤ HM . Since

|HM | = |H||K|
|H ∩K|

= |H : H ∩K||K|

we have |HM = k|K| for some positive integer k, so either |G : HM | = p or |G : HM | = 1.
If it is p then from 7, |H = |H ∩M |, so H ≤ M . If instead it is 1, then |HM | = |G|, so HM = G
and |HM | = p|M |. So |HM | = |H : H ∩M ||K| and |H : H ∩M | = p.

9. Proof. Define ϕ : G → G/M × G/N, a 7→ (aN, aM). First we show that ϕ is well-defined.
Suppose g1 = g2 ∈ G/(M ∩ N), so g1 = g2m for some m ∈ M ∩ N . Then (g1M, g1N) =
(g2M, g2N) so ϕ(g1) = ϕ(g2).

Next we show that ϕ is a homomorphism. Let a, b ∈ G/(M ∩N). Then,

ϕ(ab) = (abN, abM) = (aM, aN)(bM, bN) = ϕ(a)ϕ(b)

.
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For surjectivity, let (aN, bM) ∈ (G/N)× (G/M). Since G = MN , a = m1n1 and b = m2n2

for some m1,m2 ∈ M and n1, n2 ∈ N . So aM = m1n1M = m1Mn1 = n1M , so gM = Mg
where g = mn. Similarily, bN = m2N . Thus ϕ(m2n1) = (n1M,m2N) = (aM, bN).

Finally, note that ϕ(a) = (1M, 1N), with a ∈ M ∩ N . So, Ker(ϕ) = M ∩ N . Thus, by
the First Isomorphism Theorem, since ϕ : G → G/M × G/N is a surjective homomorphism,
G/(M ∩N) ∼= G/M ×G/N .
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