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1. Proof. (i =⇒ ii) Let G be a simple group with |G| odd. Suppose |G| weren’t prime. Then there
exists a prime decomopsition |G| = pnm where n > 0 and p ̸| m with p prime. So, by Sylow’s,
there exists a proper subgroup H ≤ G. Since |G| is odd, G is solvable by (i), so G/1 = G is
Abelian. But then, every subgroup of G must be normal including H: contradicting that |G| is
prime.

(ii =⇒ i) Let G be a group with odd order. If |G| is prime, then it is also cyclic, thus
Abelian, and thus solvable since 1 ⊴ G is a composition series with G/1 = G Abelian. If |G|
isn’t prime, then by (ii) it is not simple. If G is trivial then we are done, so suppose otherwise.
By Jordan-Holder, G has a composition series with simple composition factors. Since |G| is odd,
the order of each subgroup in the series is odd, so the order of each composition factor is odd.
By (ii), each composition factor is prime, and thus Abelian. In either case, G is solvable.

2. (a) (Note we seperate elements by commas in this cycle notation.)

σ = (1, 13, 5, 10)(2)(3, 15, 8)(4, 14, 11, 7, 12, 9)(6)

τ = (1, 14)(2, 9, 15, 13, 4)(3, 10)(5, 12, 7)(6)(8, 11)

σ2 = (1, 5)(13, 10)(2)(3, 8, 15)(4, 11, 12)(14, 7, 9)(6)

στ = (1, 11, 3)(2, 4)(5, 9, 8, 7, 10, 15)(6)(12)(13, 14)

τσ = (1, 4)(2, 9)(3, 13, 12, 15, 11, 5)(6)(7)(8, 10, 14)

τ2σ = (1, 2, 15, 8, 3, 4, 14, 11, 12, 13, 7, 5, 10)(6)(9)

(b) Using the fact that the order of a permutation is the least-common multiple of the cycle-
lengths of its disjoint cycle decompisition, |τ | = 12, |τ | = 30, |σ2| = |τσ| = |στ | = 6, |τ2σ =
13.

(c) Using the fact that odd length cycles have an even number of transpositions and vice-versa
and that the sign of permutations obey Z/2Z parity laws, σ is even, τ is odd, σ2 is even,
στ is odd, τσ is odd, and τ2σ is even.

3. Let a = (1 2)(3 4) and b = (1 3)(2 4).

(a) Proof. . First, note that V4
∼= ⟨a, b⟩ ≤ A4 since a2 = b2 = (ab)2 = 1. To show that ⟨a, b⟩ is

normal, it suffices to show that any conjugate of a or b in A4 is in ⟨a, b⟩, since the product of
conjugates and the inverse of a conjugate is the conjugate of products and the conjugate of
the inverse, respectively. Recall that in Homework 1, we showed that conjugation preserves
order. So, the conjugate of a or b by any element in A4 must have order 2. But, the only
elements in A4 with order 2 are a, b, ab ∈ ⟨a, b⟩. So ⟨a, b⟩ is normal.

(b) Let N1 = ⟨a⟩ and N2 = ⟨a, b⟩. Then 1 ⊴ N1 ⊴ N2 ⊴ A4, and since N1/1 ∼= Z/2Z ∼= N2/N1

and A4/N2
∼= Z/3Z, each of the composition factors are Abelian, so A4 is solvable.

4. Proof. The elements of order 4 ±i,±j,±k ∈ Q8 have the same square, but the elements of order
4 in S4 (the 4-cycles) do not. So S4 can’t have a subgroup isomorphic to Q8.

5. Proof. Define a mapping ϕ : Sn−2 → An as

ϕ(σ) =

{
σ, σ is even

(n− 1 n)σ, σ is odd

We show first that ϕ is a homomorphism. Let σ, τ ∈ Sn−2. If both are even, thene ϕ(σ)ϕ(τ) =
στ = ϕ(στ). If both are odd, then ϕ(σ)τ(σ) = (n − 1 n)σ(n − 1 n)τ = στ = ϕ(στ). Finally,
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without loss of generality suppose σ is even and τ is odd. Then ϕ(σ)ϕ(τ) = σ(n − 1 n)τ =
(n− 1 n)στ = ϕ(στ) since the product of and odd and even permutation is odd.

ϕ is clearly injective and σ(Sn−2) ≤ An since every permutation in σ(Sn−2) is even by
construction. So ϕ : Sn−2 → ϕ(Sn−2) ≤ A defines an isomorphism.

6. (a) Proof. Let a ∈ A and g ∈ Ga. Then σgσ−1(σ(a)) = σg(a) = σ(a), so σgσ−1 ∈ Gσ(a), so
σGaσ

−1 ⊆ Gσ(a). Conversely, let g ∈ Gσ(a). Then g = (σσ−1)g(σσ−1) = σ(σ−1gσ)σ−1.
Since σ−1gσ(a) = σ−1σ(a) = a, σ−1σaσ ∈ Ga, so σ(σ−1gσ)σ−1 ∈ σGaσ

−1. So Gσ(a) ⊆
σGaσ

−1. Thus, σGaσ
−1 = Gσ(a).

So,
⋂

σ∈G σGaσ
−1 =

⋂
σ∈GGσ(a) fixes every element σ(a) ∈ A, which, if G acts transi-

tively on A, is every element of A. So the intersection of all of them must fix every element,
that is, 1.

(b) Proof. Let a ∈ A and σ ∈ G − {1}. Since G acts transitively on A and G is Abelian and
thus normal, Gσ(a) = σGaσ

−1 = Ga. By transitivity of G on A, Ga = Gb for all b ∈ A, so
Ga = {1}. Thus, σ(a) ̸= a.

Thus, |A| = |G : Ga| = |G : {1}| = |G|.
7. (a) Proof. Let a ∈ A, g ∈ Ga and x ∈ A − {a}. Note that Ga ≤ G so it suffices to show

that gx ̸= a. If it were that gx = a, then since g ∈ Ga, x must be a; contradicting that
x ∈ A− {a}.

(b) Proof. Let n ≥ 2, 1 ≤ i ≤ n. Since Sn is transitive in its usual action on {1, 2, . . . , n} and
the stabilizer Si = {σ ∈ Sn : σ(i) = i} ≤ Sn is isomorphic to Sn−1, we have that Si

∼= Sn−1

acts transitively on {1, 2, . . . , n} − {i}. So Sn is doubly transitive on {1, 2, . . . , n}.
(c) Proof. Let a, b be any vertex with (labels) a ≤ b. The usual action of D8 on V is transitive

since a = rb−ab, where r is a clockwise rotation. But, it is not doubly transitive, since, for
example, if a = 1 and b = 2, there is no action h in a subgroup H = {σ ∈ D8 : σ(a) = a}
where a = hb: the only actions in H is the identity and the reflection along the diagonal
intersecting a.

8. Proof. We label the elements of Q8 1,−1, i, j, k,−i,−j,−k as 1, 2, 3, 4, 5, 6, 7, 8 respectively and
left-multiply each by the generators of Q8 = ⟨i, j⟩. Left-multiplying first by i yields σi =
(1 3 2 6)(4 5 7 8). Similarily, left-multiplying each element by j yields σj = (1 4 2 7)(3 8 6 5).
So, Q8

∼= ⟨σi, σj⟩ ≤ S8.
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