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1.

o

o

(a) The conjugacy classes of Qg are {1}, {£i}, {£j}, {£k}.
(b) The conjugacy classes of Ay are identified by their cycle type:

{1}
{(12)(34), (13)(24), (14)(23)}
{(123), (341), (243), (421), }
{(132), (412), (234), (314)}

(a) Proof. Recall that by Proposition 4.6 the size of the conjugacy class of z is the index of its
normalizer. Z(G) < Cg(z) so |G : Cq(x)| < |G : Z(G)| = n. O
(b) Proof. Let G be a group with exactly two conjugacy classes. Since {1} forms its own
conjugacy class, let C be the other distinct conjugacy class. By the class equation, |G| =
1+ 1C|. Since |C| | |G|, we must have |C| = 1. So |G| = 2. Thus, only the groups of cyclic
order 2 have exactly two conjugacy classes. O

Proof. We note that an element z is in the center of a group G if and only if the order of
its conjugacy class is 1, since gr = xg = gxg~ ' = z. It suffices to show then that every
non-identity element of S, has a conjugacy class of order greater than 1. Since in S, for n > 3,
there is more than one distinct m-cycle for m < n, for any o € S,, with cycle decomposition
o =Ti...Tp, we can find a distinct o/ € S,, with the same cycle type (and thus in the same
conjugacy class) as o by choosing a distinct cycle of the same length for each cycle 7,...,7,. O

Proof. Since H is normal, Ng(H) = G. So by Corollary 15, G/Cg(H) is isomorphic to some
subgroup of Aut(H). By Proposition 17, Aut(H) = |H|—1 = 6 since |H| is prime, so |G /Cq(H)| |
6. But, 7 is the smallest prime dividing |G| = 203, so |G/Cq(H)| = 1, thus G = C¢(H). So
H < Z(G). If H< Z(Q), then Z(G) = G so G is abelian. If instead H = Z(G), then G/H is
cyclic, so G is abelian. O

(a) Proof. Suppose H char K and K < G. Since K < G, every inner automorphism of G
restricted to K is an automorphism of K by Proposition 4.13. Since H char K, every
automorphism of K maps H to itself. In particular, the inner automorphism of G maps H
to itself, that is, gHg~' = H for all g € G. So H is normal. O

(b) Proof. Let ¢ € Aut(G). Since K char G, p(K) = K. So ¢ € Aut(K), and since H char K,
w(H) = H. Thus H char K. O

(a) Since 12 = 223, the Sylow 2-subgroups are the subgroups of order 4. The elements of order

2 in Dyy are {1,73,s,sr,sr%, sr3, sr%, sr%}. So the Sylow 2-subgroups are (s,r3), (r3, sr),

(r3,sr?) (these comprise all non-identity elements of order 2 and are conjugates).
Similarily, the Sylow 3-subgroups are the subgroups of order 3. The only elements of

orders 1 or 3 are {1,727}, so this is the sole Sylow 3-subgroup of Djs.
(b) Since |Sy4| = 23 -3, the Sylow 2-subgroups then are the subgroups of order 8. Let G be
a subgroup of Sy isomorphic to Dg (by Cayley’s Theorem). Then the conjugations of
G are the Sylow 2-subgroups: namely the symmetries of a square with vertices labelled
{1,2,3,4}, {1,2,4,3}, and {1,3,2,4}. That is, ((1234),(12)(34)), ((1243), (12)(43)), and
((1324)(13)(24)). By Sylow’s Theorem, ng = 1 (mod 2) and ng | 3, so these are all of them.
The Sylow 3-subgroups are the subgroups of order 3, which are generated by the 3-cycles
in Si: ((123)), ((134)), ((234)), ((124)).



7.
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(a) 105 =3-7-5. By Sylow’s Theorem, n; = 1 (mod 7) so ny = 1,8,16,... and n7 | 15, so
ny = 1. Thus there is one Sylow 7-subgroup, so it is normal, by Corollary 20.

(b) 351 = 33.13. By Sylow’s Theorem, n3 = 1 (mod 3) and n3 | 13. Song =13 or 1. If ng =1
we are done so suppose n3 = 13. Since each Sylow 3-subgroup has 3% = 27 elements, there
are 13 - 26 = 338 distinct non-identity elements with orders that divide 27. This leaves
351 — 338 = 13 distinct elements. A Sylow 13-subgroup must have order 13! = 13 since the
prime factor decomposition of 351 has only 1 13 term, so the 13 distinct elements form the
unique Sylow 13-subgroup. So it is normal.

Proof. Let G be a simple group of order 168 = 7 % 3 x* 23. There are ny = 1 (mod 7) Sylow
7-subgroups with n7 | 168. Since 168/7 = 24, ny < 24. Since G is simple, the Sylow 7-subgroups
are not normal, so ny > 1. Thus ny = 8, so there are 6-8 = 48 elements of order 7 (note that the
order of each element except the identity in each Sylow 7-subgroup is 7, since 7 is prime). [

ns = 6 since ns (mod 5) and ns | 60 and 1 < ny < 60/5 = 12, since A is simple. Similarily,
n3 is 10 or 4. But since there are (5)(4)(3)/3 = 30 3-cycles, and each 3-cycle is in a Sylow
3-subgroup, we must have ng = 10. We've used (3 — 1)(10) + (4)(6) = 44 non-identity elements,
leaving 15 non-identity elements left. Finally, ny = 3,5,15 by the same reasoning as above.
Since As consists only of 3-cycles, 5-cycles, and the product of 2 2-cycles, the 15 non-identity
elements left are products of 2 2-cycles. We can generate 15/3 = 5 groups of order 22 = 4 with
these non-identity elements, so ny = 5.

First a lemma (Exercise 42 in Chapter 3):

Lemma 1. Let HL K QG with HNK =1. Then xy =yx for allz € H andy € K.

Proof. Let x € H,y € K. Then v 'y 'y = 27'h € H where h = y~'zy € H by normality
of H. Similarily, 27!y 'y = ky € K where k = 27!y~ € K by normality of K. So
z iy laye HNK =1, so xy = yx. O

Now we prove the theorem.

Proof. Let H be a proper, non-trivial normal subgroup of S,. Since A,, < S,,, we have HNA,, <
Sy,. Since HNA, < A,, HNA, < A,. But, A,, is simple, so either HNA,, =1or HNA, = A,.
If HN A, = A, then, H < A, < S, and because [S,, : A,] =[S, : H|[H : A,] = 2, one of the
indices is 1, so either H = A,, or H = S,,, and we are done. So suppose instead H N A, = 1. By
Lemma 1, H C Z(S,) = 1 by Question 3. So H = 1. O



