- 1. (a) The conjugacy classes of Q_8 are $\{1\}, \{\pm i\}, \{\pm j\}, \{\pm k\}$.
 - (b) The conjugacy classes of A_4 are identified by their cycle type:

- 2. (a) *Proof.* Recall that by Proposition 4.6 the size of the conjugacy class of x is the index of its normalizer. $Z(G) \leq C_G(x)$ so $|G: C_G(x)| \leq |G: Z(G)| = n$.
 - (b) *Proof.* Let G be a group with exactly two conjugacy classes. Since $\{1\}$ forms its own conjugacy class, let \mathcal{C} be the other distinct conjugacy class. By the class equation, $|G| = 1 + |\mathcal{C}|$. Since $|\mathcal{C}| \mid |G|$, we must have $|\mathcal{C}| = 1$. So |G| = 2. Thus, only the groups of cyclic order 2 have exactly two conjugacy classes.
- 3. Proof. We note that an element x is in the center of a group G if and only if the order of its conjugacy class is 1, since $gx = xg \implies gxg^{-1} = x$. It suffices to show then that every non-identity element of S_n has a conjugacy class of order greater than 1. Since in S_n for $n \geq 3$, there is more than one distinct m-cycle for $m \leq n$, for any $\sigma \in S_n$ with cycle decomposition $\sigma = \tau_1 \dots \tau_n$, we can find a distinct $\sigma' \in S_n$ with the same cycle type (and thus in the same conjugacy class) as σ by choosing a distinct cycle of the same length for each cycle τ_1, \dots, τ_n . \square
- 4. Proof. Since H is normal, $N_G(H) = G$. So by Corollary 15, $G/C_G(H)$ is isomorphic to some subgroup of Aut(H). By Proposition 17, Aut(H) = |H| 1 = 6 since |H| is prime, so $|G/C_G(H)| | 6$. But, 7 is the smallest prime dividing |G| = 203, so $|G/C_G(H)| = 1$, thus $G = C_G(H)$. So $H \leq Z(G)$. If H < Z(G), then Z(G) = G so G is abelian. If instead H = Z(G), then G/H is cyclic, so G is abelian.
- 5. (a) Proof. Suppose H char K and $K \subseteq G$. Since $K \subseteq G$, every inner automorphism of G restricted to K is an automorphism of K by Proposition 4.13. Since H char K, every automorphism of K maps H to itself. In particular, the inner automorphism of G maps H to itself, that is, $gHg^{-1} = H$ for all $g \in G$. So H is normal.
 - (b) Proof. Let $\varphi \in \operatorname{Aut}(G)$. Since K char G, $\varphi(K) = K$. So $\varphi \in \operatorname{Aut}(K)$, and since H char K, $\varphi(H) = H$. Thus H char K.
- 6. (a) Since $12 = 2^2 \cdot 3$, the Sylow 2-subgroups are the subgroups of order 4. The elements of order 2 in D_{12} are $\{1, r^3, s, sr, sr^2, sr^3, sr^4, sr^5\}$. So the Sylow 2-subgroups are $\langle s, r^3 \rangle$, $\langle r^3, sr \rangle$, $\langle r^3, sr^2 \rangle$ (these comprise all non-identity elements of order 2 and are conjugates). Similarly, the Sylow 3-subgroups are the subgroups of order 3. The only elements of orders 1 or 3 are $\{1, r^2, r^4\}$, so this is the sole Sylow 3-subgroup of D_{12} .
 - (b) Since $|S_4| = 2^3 \cdot 3$, the Sylow 2-subgroups then are the subgroups of order 8. Let G be a subgroup of S_4 isomorphic to D_8 (by Cayley's Theorem). Then the conjugations of G are the Sylow 2-subgroups: namely the symmetries of a square with vertices labelled $\{1,2,3,4\}$, $\{1,2,4,3\}$, and $\{1,3,2,4\}$. That is, $\langle (1234), (12)(34) \rangle$, $\langle (1243), (12)(43) \rangle$, and $\langle (1324)(13)(24) \rangle$. By Sylow's Theorem, $n_2 \equiv 1 \pmod{2}$ and $n_2 \mid 3$, so these are all of them. The Sylow 3-subgroups are the subgroups of order 3, which are generated by the 3-cycles in S_4 : $\langle (123) \rangle$, $\langle (134) \rangle$, $\langle (234) \rangle$, $\langle (124) \rangle$.

- 7. (a) $105 = 3 \cdot 7 \cdot 5$. By Sylow's Theorem, $n_7 \equiv 1 \pmod{7}$ so $n_7 = 1, 8, 16, \ldots$ and $n_7 \mid 15$, so $n_7 = 1$. Thus there is one Sylow 7-subgroup, so it is normal, by Corollary 20.
 - (b) $351 = 3^3 \cdot 13$. By Sylow's Theorem, $n_3 = 1 \pmod{3}$ and $n_3 \mid 13$. So $n_3 = 13$ or 1. If $n_3 = 1$ we are done so suppose $n_3 = 13$. Since each Sylow 3-subgroup has $3^3 = 27$ elements, there are $13 \cdot 26 = 338$ distinct non-identity elements with orders that divide 27. This leaves 351 338 = 13 distinct elements. A Sylow 13-subgroup must have order $13^1 = 13$ since the prime factor decomposition of 351 has only 1 13 term, so the 13 distinct elements form the unique Sylow 13-subgroup. So it is normal.
- 8. Proof. Let G be a simple group of order $168 = 7 * 3 * 2^3$. There are $n_7 \equiv 1 \pmod{7}$ Sylow 7-subgroups with $n_7 \mid 168$. Since 168/7 = 24, $n_7 \leq 24$. Since G is simple, the Sylow 7-subgroups are not normal, so $n_7 > 1$. Thus $n_7 = 8$, so there are $6 \cdot 8 = 48$ elements of order 7 (note that the order of each element except the identity in each Sylow 7-subgroup is 7, since 7 is prime).
- 9. $n_5 = 6$ since $n_5 \pmod{5}$ and $n_5 \mid 60$ and $1 < n_5 \le 60/5 = 12$, since A_5 is simple. Similarly, n_3 is 10 or 4. But since there are (5)(4)(3)/3 = 30 3-cycles, and each 3-cycle is in a Sylow 3-subgroup, we must have $n_3 = 10$. We've used (3-1)(10) + (4)(6) = 44 non-identity elements, leaving 15 non-identity elements left. Finally, $n_2 = 3, 5, 15$ by the same reasoning as above. Since A_5 consists only of 3-cycles, 5-cycles, and the product of 2 2-cycles, the 15 non-identity elements left are products of 2 2-cycles. We can generate 15/3 = 5 groups of order $2^2 = 4$ with these non-identity elements, so $n_2 = 5$.
- 10. First a lemma (Exercise 42 in Chapter 3):

Lemma 1. Let $H, K \subseteq G$ with $H \cap K = 1$. Then xy = yx for all $x \in H$ and $y \in K$.

Proof. Let $x \in H, y \in K$. Then $x^{-1}y^{-1}xy = x^{-1}h \in H$ where $h = y^{-1}xy \in H$ by normality of H. Similarly, $x^{-1}y^{-1}xy = ky \in K$ where $k = x^{-1}y^{-1}x \in K$ by normality of K. So $x^{-1}y^{-1}xy \in H \cap K = 1$, so xy = yx.

Now we prove the theorem.

Proof. Let H be a proper, non-trivial normal subgroup of S_n . Since $A_n \subseteq S_n$, we have $H \cap A_n \subseteq S_n$. Since $H \cap A_n \subseteq A_n$, $H \cap A_n \subseteq A_n$. But, A_n is simple, so either $H \cap A_n = 1$ or $H \cap A_n = A_n$. If $H \cap A_n = A_n$ then, $H \subseteq A_n \subseteq S_n$, and because $[S_n : A_n] = [S_n : H][H : A_n] = 2$, one of the indices is 1, so either $H = A_n$ or $H = S_n$, and we are done. So suppose instead $H \cap A_n = 1$. By Lemma 1, $H \subseteq Z(S_n) = 1$ by Question 3. So H = 1.