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1. (a) The conjugacy classes of Q8 are {1}, {±i}, {±j}, {±k}.
(b) The conjugacy classes of A4 are identified by their cycle type:

{1}
{(12)(34), (13)(24), (14)(23)}
{(123), (341), (243), (421), }
{(132), (412), (234), (314)}

2. (a) Proof. Recall that by Proposition 4.6 the size of the conjugacy class of x is the index of its
normalizer. Z(G) ≤ CG(x) so |G : CG(x)| ≤ |G : Z(G)| = n.

(b) Proof. Let G be a group with exactly two conjugacy classes. Since {1} forms its own
conjugacy class, let C be the other distinct conjugacy class. By the class equation, |G| =
1 + |C|. Since |C| | |G|, we must have |C| = 1. So |G| = 2. Thus, only the groups of cyclic
order 2 have exactly two conjugacy classes.

3. Proof. We note that an element x is in the center of a group G if and only if the order of
its conjugacy class is 1, since gx = xg =⇒ gxg−1 = x. It suffices to show then that every
non-identity element of Sn has a conjugacy class of order greater than 1. Since in Sn for n ≥ 3,
there is more than one distinct m-cycle for m ≤ n, for any σ ∈ Sn with cycle decomposition
σ = τ1 . . . τn, we can find a distinct σ′ ∈ Sn with the same cycle type (and thus in the same
conjugacy class) as σ by choosing a distinct cycle of the same length for each cycle τ1, . . . , τn.

4. Proof. Since H is normal, NG(H) = G. So by Corollary 15, G/CG(H) is isomorphic to some
subgroup of Aut(H). By Proposition 17, Aut(H) = |H|−1 = 6 since |H| is prime, so |G/CG(H)| |
6. But, 7 is the smallest prime dividing |G| = 203, so |G/CG(H)| = 1, thus G = CG(H). So
H ≤ Z(G). If H < Z(G), then Z(G) = G so G is abelian. If instead H = Z(G), then G/H is
cyclic, so G is abelian.

5. (a) Proof. Suppose H char K and K ⊴ G. Since K ⊴ G, every inner automorphism of G
restricted to K is an automorphism of K by Proposition 4.13. Since H char K, every
automorphism of K maps H to itself. In particular, the inner automorphism of G maps H
to itself, that is, gHg−1 = H for all g ∈ G. So H is normal.

(b) Proof. Let φ ∈ Aut(G). Since K char G, φ(K) = K. So φ ∈ Aut(K), and since H char K,
φ(H) = H. Thus H char K.

6. (a) Since 12 = 22 ·3, the Sylow 2-subgroups are the subgroups of order 4. The elements of order
2 in D12 are {1, r3, s, sr, sr2, sr3, sr4, sr5}. So the Sylow 2-subgroups are ⟨s, r3⟩, ⟨r3, sr⟩,
⟨r3, sr2⟩ (these comprise all non-identity elements of order 2 and are conjugates).

Similarily, the Sylow 3-subgroups are the subgroups of order 3. The only elements of
orders 1 or 3 are {1, r2, r4}, so this is the sole Sylow 3-subgroup of D12.

(b) Since |S4| = 23 · 3, the Sylow 2-subgroups then are the subgroups of order 8. Let G be
a subgroup of S4 isomorphic to D8 (by Cayley’s Theorem). Then the conjugations of
G are the Sylow 2-subgroups: namely the symmetries of a square with vertices labelled
{1, 2, 3, 4}, {1, 2, 4, 3}, and {1, 3, 2, 4}. That is, ⟨(1234), (12)(34)⟩, ⟨(1243), (12)(43)⟩, and
⟨(1324)(13)(24)⟩. By Sylow’s Theorem, n2 ≡ 1 (mod 2) and n2 | 3, so these are all of them.

The Sylow 3-subgroups are the subgroups of order 3, which are generated by the 3-cycles
in S4: ⟨(123)⟩, ⟨(134)⟩, ⟨(234)⟩, ⟨(124)⟩.
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7. (a) 105 = 3 · 7 · 5. By Sylow’s Theorem, n7 ≡ 1 (mod 7) so n7 = 1, 8, 16, . . . and n7 | 15, so
n7 = 1. Thus there is one Sylow 7-subgroup, so it is normal, by Corollary 20.

(b) 351 = 33 · 13. By Sylow’s Theorem, n3 = 1 (mod 3) and n3 | 13. So n3 = 13 or 1. If n3 = 1
we are done so suppose n3 = 13. Since each Sylow 3-subgroup has 33 = 27 elements, there
are 13 · 26 = 338 distinct non-identity elements with orders that divide 27. This leaves
351− 338 = 13 distinct elements. A Sylow 13-subgroup must have order 131 = 13 since the
prime factor decomposition of 351 has only 1 13 term, so the 13 distinct elements form the
unique Sylow 13-subgroup. So it is normal.

8. Proof. Let G be a simple group of order 168 = 7 ∗ 3 ∗ 23. There are n7 ≡ 1 (mod 7) Sylow
7-subgroups with n7 | 168. Since 168/7 = 24, n7 ≤ 24. Since G is simple, the Sylow 7-subgroups
are not normal, so n7 > 1. Thus n7 = 8, so there are 6 ·8 = 48 elements of order 7 (note that the
order of each element except the identity in each Sylow 7-subgroup is 7, since 7 is prime).

9. n5 = 6 since n5 (mod 5) and n5 | 60 and 1 < n5 ≤ 60/5 = 12, since A5 is simple. Similarily,
n3 is 10 or 4. But since there are (5)(4)(3)/3 = 30 3-cycles, and each 3-cycle is in a Sylow
3-subgroup, we must have n3 = 10. We’ve used (3− 1)(10) + (4)(6) = 44 non-identity elements,
leaving 15 non-identity elements left. Finally, n2 = 3, 5, 15 by the same reasoning as above.
Since A5 consists only of 3-cycles, 5-cycles, and the product of 2 2-cycles, the 15 non-identity
elements left are products of 2 2-cycles. We can generate 15/3 = 5 groups of order 22 = 4 with
these non-identity elements, so n2 = 5.

10. First a lemma (Exercise 42 in Chapter 3):

Lemma 1. Let H,K ⊴ G with H ∩K = 1. Then xy = yx for all x ∈ H and y ∈ K.

Proof. Let x ∈ H, y ∈ K. Then x−1y−1xy = x−1h ∈ H where h = y−1xy ∈ H by normality
of H. Similarily, x−1y−1xy = ky ∈ K where k = x−1y−1x ∈ K by normality of K. So
x−1y−1xy ∈ H ∩K = 1, so xy = yx.

Now we prove the theorem.

Proof. Let H be a proper, non-trivial normal subgroup of Sn. Since An ⊴ Sn, we have H∩An ⊴
Sn. Since H ∩An ≤ An, H ∩An ⊴ An. But, An is simple, so either H ∩An = 1 or H ∩An = An.
If H ∩ An = An then, H ≤ An ≤ Sn, and because [Sn : An] = [Sn : H][H : An] = 2, one of the
indices is 1, so either H = An or H = Sn, and we are done. So suppose instead H ∩An = 1. By
Lemma 1, H ⊆ Z(Sn) = 1 by Question 3. So H = 1.
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