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1. Proof. Let N ⊴ H be a proper, non-trivial normal subgroup of H. Then N ∩ Gi ⊴ Gi for all
i, so N ∩ Gi = Gi or N ∩ Gi = 1, since Gi is simple. If N ∩ Gi = Gi for all i, then Gi ≤ N ,
so N = H; a contradiction. Similarily, if N ∩ Gi = 1 for all i, then H = 1; a contradiction.
So suppose let j, k such that N ∩ Gj = Gj ̸= 1 and N ∩ Gk = 1. If j < k, then Gj ≤ Gk,
so N ∩ Gj ≤ N ∩ Gk = 1, contradicting that Gj ̸= 1. If instead k < j, then Gk ≤ Gj , but
N ∩Gk = 1 so we can’t have N ∩Gj = Gj , since that would imply Gj ≤ N . Thus N can’t exist,
so H is simple.

2. (a) Consider ⟨(i, 1)⟩ = {(i, 1), (−1, 2), (−i, 3), (−1, 0)} ≤ Q8 × Z4. Then (j, 0)(i, 1)(j, 0)−1 =
(−i, 0) /∈ ⟨(i, 1)⟩, so it is not normal.

(b) Proof. Let N ≤ G, (x, y) ∈ N, (a, b) ∈ G. Then (a, b)(x, y)(a, b)−1 = (axa−1, byb−1).
Since b ∈ E2n , byb

−1 = b. So, it remains to show that (axa−1, b) ∈ N . Since a, x ∈ Q8,
axa−1 = ±x. If axa−1 = x we are done. If axa−1 = −x, note that (−x, y)−1 = (x, y) ∈ N
(since y ∈ E2n), so (−x, y) ∈ N .

3. (a) We have
∐

Gi ⊆
∏

Gi and (1, . . . ) ∈
∐

Gi so
∐

Gi is non-empty. Let x = (x1, . . . ) ∈
∐

Gi

where xk = xk+1 = · · · = 1 for some k and y = (y1, . . . ) ∈
∏

Gi. Then

yxy−1 = (y1x1y
−1
1 , . . . , ykxky

−1
k . . . )

= (y1x1y
−1, . . . , yk1y

−1
k , . . . )

= (y1x1y
−1, . . . , 1, . . . )

so yxy−1 ∈
∐

Gi, and by the subgroup criterion,
∐

Gi ≤
∏

Gi.

(b) Proof. Let x ∈ T (
∏

G). Then |x| = n < ∞. If x = (x1, x2, . . . ) had infinitely many
non-identity components, then its order would be infinite, since one could always choose
a prime p > n such that xi ∈ Zp such that xni ̸= 1. So all but finitely many components
of x are the identity, so x ∈

∐
G. Conversely, if x ∈

∐
G, then there are finitely many

non-identity components each in some cyclic group Zp1 , . . . , Zpn . Then |x| ≤ p1 . . . pn < ∞,
so x ∈ T (

∏
G).

4. (a) Proof. Let |G| = n = pα1
1 . . . pαn

n . Then by Sylow’s Theorem, G has Sylow pi-subgroups Pi

of order pαi
i . Since npi must divide pα1

1 . . . pαn
n /pαi

i , npi = 1, so each Pi is the unique Sylow
pi-subgroup and thus normal.

We proceed by induction on n. Suppose the statement holds for finite abelian groups
of order less than n.We have that the subgroup H ≤ G generated by P2, . . . , Pn is the
product of its Sylow subgroups P2, . . . , Pn and is normal since G is abelian. By Lagrange’s
H∩P1 = 1 is a direct product, so by the Recognition Theorem G ∼= P1×H ∼= P1×. . . Pn.

(b) Proof. Note that since H,K char G, if ϕ ∈ Aut(G) then ϕ |H∈ Aut(H) and ϕ |K∈ Aut(K).
So define φ : Aut(G) → Aut(H) × Aut(K) by φ(σ) = (σ|H , σ|K). Then φ is a homomor-
phism since φ(στ) = (στ |H , στ |K) = (σ|Hτ |H , σ|Kτ |K) = (σ|H , σ|K)(τ |H , τ |K) = φ(σ)φ(τ).

The kernel of φ is the set of automorphisms that fix H and K, that is σ such that
σ|H = 1 and σ|K = 1. Since G = H ×K, it must be that σ = 1. Thus φ is injective.

To show that φ is surjective, note that given h ∈ Aut(H) and k ∈ Aut(K), we can
define σ ∈ Aut(G) by σ = h ∪ k since H ∩K = 1. Thus φ is surjective, and thus bijective,
so Aut(G) ∼= Aut(H)×Aut(K).

(c) Proof. By induction on the number of Sylow subgroups of G. The base case of n = 1 is
trivial. Suppose G is finite abelian so that it has n > 1 distinct Sylow subgroups P1, . . . , Pn
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and that the statement holds for finite abelian groups of order less than n. Consider G/P1.
By the induction hypothesis, Aut(G/P1) ∼= Aut(P2)×· · ·×Aut(Pn). As in (b), G/Pi∩Pi = 1
and are characteristic, so by (b) Aut(G) ∼= Aut(P1)× · · · ×Aut(Pn).

5. Proof. Let G be non-abelian. Recall that if G/Z(G) is cyclic, then G is abelian, so Z(G) must
have order p. Thus |G/Z(G)| = p2, so G/Z(G) is abelian by Corollary 4.9. Since G′ is the
smallest normal subgroup of G with abelian quotient, G′ ≤ Z(G). Since G is non-abelian,
1 < G′ ≤ Z(G) < G, but |G′| = |Z(G)| = p, so G′ = Z(G).

6. (We use the notation that xg = gxg−1).

(a) Proof. Let g ∈ G and x, y ∈ K. Then x = ag and y = bg for some a, b ∈ K, so
(x−1y−1xy)g = (a−gb−g(a−1)−g(b−1)−g)g = aba−1b−1 ∈ K ′.

(b) Proof. Let φ : G → Aut(K) be the permutation representation of G associated with the
action by conjugation. Then it is a homomorphism, and since Aut(K) is Abelian, by
Proposition 5.7(5), G′ ≤ kerφ = CG(K).

7. (a) Proof. By Theorem 5.10(5),

k ∈ CK(H) ⇐⇒ hk = k, ∀h ∈ H

⇐⇒ φ(k)(h) = h,∀h ∈ H

⇐⇒ φ(k) = 1

⇐⇒ k ∈ kerφ

(b) Proof. Let h ∈ H and k ∈ K. Then

(1, k)(h,1) = (h, k)(h, 1)−1 = (h, k)(h−1, 1) = (hk · h−1, k)

If also h ∈ NH(K), then (1, k)(h,1) = (1, k′) = (hk ·h−1, k). So k′ = k, so (1, k)(h,1) = (1, k),
so h ∈ CH(K). Clearly CH(K) ≤ NH(K), so CH(K) = NH(K).

8. (a) Proof. We need to show that Aut(H) ∼= S3. Note that Z2 × Z2
∼= V4 so Aut(Z2 × Z2) ∼=

Aut(V4), and the automorphisms of V4 are the permutations of the 3 non-identity elements.
Thus Aut(V4) ∼= S3. So |G| = |H||K| = 4 · 6 = 24, so G ∼= S4.

(b) Proof. Let G act on the left cosets of K by left multiplication. The permutation repre-
sentation π afforded by this action is a homomorphism π : G → SG/K

∼= SH
∼= S4. To

show that kerπ = 1, note that from Exercise 7a, CK(H) = ker(φ) = 1 where φ = 1 is the
homomorphism associated with G = H ⋊K. So, it remains to show that kerπ ≤ CK(H).

Let g ∈ kerπ. Then gxK = xK for all x ∈ G. Then xgx−1 ∈ K so xgx−1g−1 ∈ K,
since g ∈ K because g(1)K = (1)K. If x ∈ H then since H ⊴ G (by Theorem 5.10),
xgx−1g−1 ∈ H. But H ∩ K = 1, again by Theorem 5.10, so xgx−1g−1 = 1 so gx = xg.
Thus g ∈ CK(H), so kerπ ≤ CK(H)

Thus, the kernel of the permutation representation is trivial, so G ∼= S4.

2


