- 1. Proof. Let $N \subseteq H$ be a proper, non-trivial normal subgroup of H. Then $N \cap G_i \subseteq G_i$ for all i, so $N \cap G_i = G_i$ or $N \cap G_i = 1$, since G_i is simple. If $N \cap G_i = G_i$ for all i, then $G_i \subseteq N$, so N = H; a contradiction. Similarly, if $N \cap G_i = 1$ for all i, then H = 1; a contradiction. So suppose let j, k such that $N \cap G_j = G_j \neq 1$ and $N \cap G_k = 1$. If j < k, then $G_j \subseteq G_k$, so $N \cap G_j \subseteq N \cap G_k = 1$, contradicting that $G_j \neq 1$. If instead k < j, then $G_k \subseteq G_j$, but $N \cap G_k = 1$ so we can't have $N \cap G_j = G_j$, since that would imply $G_j \subseteq N$. Thus N can't exist, so H is simple.
- 2. (a) Consider $\langle (i,1) \rangle = \{(i,1), (-1,2), (-i,3), (-1,0)\} \leq Q_8 \times Z_4$. Then $(j,0)(i,1)(j,0)^{-1} = (-i,0) \notin \langle (i,1) \rangle$, so it is not normal.
 - (b) *Proof.* Let $N \leq G$, $(x,y) \in N$, $(a,b) \in G$. Then $(a,b)(x,y)(a,b)^{-1} = (axa^{-1},byb^{-1})$. Since $b \in E_{2^n}$, $byb^{-1} = b$. So, it remains to show that $(axa^{-1},b) \in N$. Since $a,x \in Q_8$, $axa^{-1} = \pm x$. If $axa^{-1} = x$ we are done. If $axa^{-1} = -x$, note that $(-x,y)^{-1} = (x,y) \in N$ (since $y \in E_{2^n}$), so $(-x,y) \in N$.
- 3. (a) We have $\coprod G_i \subseteq \prod G_i$ and $(1, \dots) \in \coprod G_i$ so $\coprod G_i$ is non-empty. Let $x = (x_1, \dots) \in \coprod G_i$ where $x_k = x_{k+1} = \dots = 1$ for some k and $y = (y_1, \dots) \in \prod G_i$. Then

$$yxy^{-1} = (y_1x_1y_1^{-1}, \dots, y_kx_ky_k^{-1} \dots)$$
$$= (y_1x_1y^{-1}, \dots, y_k1y_k^{-1}, \dots)$$
$$= (y_1x_1y^{-1}, \dots, 1, \dots)$$

so $yxy^{-1} \in \coprod G_i$, and by the subgroup criterion, $\coprod G_i \leq \coprod G_i$.

- (b) Proof. Let $x \in T(\prod G)$. Then $|x| = n < \infty$. If $x = (x_1, x_2, ...)$ had infinitely many non-identity components, then its order would be infinite, since one could always choose a prime p > n such that $x_i \in Z_p$ such that $x_i^n \neq 1$. So all but finitely many components of x are the identity, so $x \in \coprod G$. Conversely, if $x \in \coprod G$, then there are finitely many non-identity components each in some cyclic group Z_{p_1}, \ldots, Z_{p_n} . Then $|x| \leq p_1 \ldots p_n < \infty$, so $x \in T(\prod G)$.
- 4. (a) Proof. Let $|G| = n = p_1^{\alpha_1} \dots p_n^{\alpha_n}$. Then by Sylow's Theorem, G has Sylow p_i -subgroups P_i of order $p_i^{\alpha_i}$. Since n_{p_i} must divide $p_1^{\alpha_1} \dots p_n^{\alpha_n}/p_i^{\alpha_i}$, $n_{p_i} = 1$, so each P_i is the unique Sylow p_i -subgroup and thus normal.

We proceed by induction on n. Suppose the statement holds for finite abelian groups of order less than n.We have that the subgroup $H \leq G$ generated by P_2, \ldots, P_n is the product of its Sylow subgroups P_2, \ldots, P_n and is normal since G is abelian. By Lagrange's $H \cap P_1 = 1$ is a direct product, so by the Recognition Theorem $G \cong P_1 \times H \cong P_1 \times \ldots P_n$. \square

(b) Proof. Note that since H, K char G, if $\phi \in \operatorname{Aut}(G)$ then $\phi \mid_H \in \operatorname{Aut}(H)$ and $\phi \mid_K \in \operatorname{Aut}(K)$. So define $\varphi : \operatorname{Aut}(G) \to \operatorname{Aut}(H) \times \operatorname{Aut}(K)$ by $\varphi(\sigma) = (\sigma \mid_H, \sigma \mid_K)$. Then φ is a homomorphism since $\varphi(\sigma\tau) = (\sigma\tau \mid_H, \sigma\tau \mid_K) = (\sigma \mid_H \tau \mid_H, \sigma \mid_K \tau \mid_K) = (\sigma \mid_H, \sigma \mid_K)(\tau \mid_H, \tau \mid_K) = \varphi(\sigma)\varphi(\tau)$.

The kernel of φ is the set of automorphisms that fix H and K, that is σ such that $\sigma|_{H}=1$ and $\sigma|_{K}=1$. Since $G=H\times K$, it must be that $\sigma=1$. Thus φ is injective.

To show that φ is surjective, note that given $h \in \operatorname{Aut}(H)$ and $k \in \operatorname{Aut}(K)$, we can define $\sigma \in \operatorname{Aut}(G)$ by $\sigma = h \cup k$ since $H \cap K = 1$. Thus φ is surjective, and thus bijective, so $\operatorname{Aut}(G) \cong \operatorname{Aut}(H) \times \operatorname{Aut}(K)$.

(c) *Proof.* By induction on the number of Sylow subgroups of G. The base case of n=1 is trivial. Suppose G is finite abelian so that it has n>1 distinct Sylow subgroups P_1,\ldots,P_n

and that the statement holds for finite abelian groups of order less than n. Consider G/P_1 . By the induction hypothesis, $\operatorname{Aut}(G/P_1) \cong \operatorname{Aut}(P_2) \times \cdots \times \operatorname{Aut}(P_n)$. As in (b), $G/P_i \cap P_i = 1$ and are characteristic, so by (b) $\operatorname{Aut}(G) \cong \operatorname{Aut}(P_1) \times \cdots \times \operatorname{Aut}(P_n)$.

- 5. Proof. Let G be non-abelian. Recall that if G/Z(G) is cyclic, then G is abelian, so Z(G) must have order p. Thus $|G/Z(G)| = p^2$, so G/Z(G) is abelian by Corollary 4.9. Since G' is the smallest normal subgroup of G with abelian quotient, $G' \leq Z(G)$. Since G is non-abelian, $1 < G' \leq Z(G) < G$, but |G'| = |Z(G)| = p, so G' = Z(G).
- 6. (We use the notation that $x^g = gxg^{-1}$).
 - (a) *Proof.* Let $g \in G$ and $x, y \in K$. Then $x = a^g$ and $y = b^g$ for some $a, b \in K$, so $(x^{-1}y^{-1}xy)^g = (a^{-g}b^{-g}(a^{-1})^{-g}(b^{-1})^{-g})^g = aba^{-1}b^{-1} \in K'$.
 - (b) Proof. Let $\varphi: G \to \operatorname{Aut}(K)$ be the permutation representation of G associated with the action by conjugation. Then it is a homomorphism, and since $\operatorname{Aut}(K)$ is Abelian, by Proposition 5.7(5), $G' \leq \ker \varphi = C_G(K)$.
- 7. (a) Proof. By Theorem 5.10(5),

$$k \in C_K(H) \iff h^k = k, \forall h \in H$$

 $\iff \varphi(k)(h) = h, \forall h \in H$
 $\iff \varphi(k) = 1$
 $\iff k \in \ker \varphi$

(b) *Proof.* Let $h \in H$ and $k \in K$. Then

$$(1,k)^{(h,1)} = (h,k)(h,1)^{-1} = (h,k)(h^{-1},1) = (hk \cdot h^{-1},k)$$

If also $h \in N_H(K)$, then $(1, k)^{(h,1)} = (1, k') = (hk \cdot h^{-1}, k)$. So k' = k, so $(1, k)^{(h,1)} = (1, k)$, so $h \in C_H(K)$. Clearly $C_H(K) \leq N_H(K)$, so $C_H(K) = N_H(K)$.

- 8. (a) Proof. We need to show that $\operatorname{Aut}(H) \cong S_3$. Note that $Z_2 \times Z_2 \cong V_4$ so $\operatorname{Aut}(Z_2 \times Z_2) \cong \operatorname{Aut}(V_4)$, and the automorphisms of V_4 are the permutations of the 3 non-identity elements. Thus $\operatorname{Aut}(V_4) \cong S_3$. So $|G| = |H||K| = 4 \cdot 6 = 24$, so $G \cong S_4$.
 - (b) Proof. Let G act on the left cosets of K by left multiplication. The permutation representation π afforded by this action is a homomorphism $\pi: G \to S_{G/K} \cong S_H \cong S_4$. To show that $\ker \pi = 1$, note that from Exercise 7a, $C_K(H) = \ker(\varphi) = 1$ where $\varphi = 1$ is the homomorphism associated with $G = H \rtimes K$. So, it remains to show that $\ker \pi \leq C_K(H)$.

Let $g \in \ker \pi$. Then gxK = xK for all $x \in G$. Then $xgx^{-1} \in K$ so $xgx^{-1}g^{-1} \in K$, since $g \in K$ because g(1)K = (1)K. If $x \in H$ then since $H \subseteq G$ (by Theorem 5.10), $xgx^{-1}g^{-1} \in H$. But $H \cap K = 1$, again by Theorem 5.10, so $xgx^{-1}g^{-1} = 1$ so gx = xg. Thus $g \in C_K(H)$, so $\ker \pi \subseteq C_K(H)$

Thus, the kernel of the permutation representation is trivial, so $G \cong S_4$.