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1. Proof. Let N < H be a proper, non-trivial normal subgroup of H. Then N N G; < G; for all
i, 50 NNG; = G; or NNG; =1, since G; is simple. If N NG; = G; for all i, then G; < N,
so N = H; a contradiction. Similarily, if N N G; = 1 for all ¢, then H = 1; a contradiction.
So suppose let j,k such that NNG; = Gj # 1 and NNG, = 1. If j <k, then G; < Gy,
so NNGj < NNGy =1, contradicting that G; # 1. If instead k < j, then G} < Gy, but
NNGy =1sowe can’t have N NG = Gj, since that would imply G; < N. Thus N can’t exist,
so H is simple. O

2.

(a)
(b)

Consider ((i,1)) = {(i,1),(~1,2),(—i,3),(=1,0)} < Qg x Z4. Then (4,0)(i,1)(5,0)"" =

(—1,0) ¢ ((4,1)), so it is not normal.

Proof. Let N < G, (z,y) € N,(a,b) € G. Then (a,b)(z,y)(a,b)"t = (aza=',byb~1).

Since b € Ean, byb~! = b. So, it remains to show that (aza~!,b) € N. Since a,z € Qs,
(_

ara~' = +x. If aza™ = x we are done. If aza™! = —z, note that (—z,y)™' = (z,y) € N
(since y € FEan), so (—z,y) € N. O
We have [[G; C [[G; and (1,...) € [[Gi so [[ G is non-empty. Let x = (z1,...) € [[G;
where xf = 241 = --- = 1 for some k and y = (y1,...) € [[ Gi. Then

yry ' = (yryr - ykakyn )

= (y L ulyy )
= (ylxly_lv"')lv"')
so yzy~! € [[ G;, and by the subgroup criterion, [[G; <[] G;.

Proof. Let € T(][G). Then |z| = n < oco. If x = (z1,22,...) had infinitely many
non-identity components, then its order would be infinite, since one could always choose
a prime p > n such that z; € Z, such that =] # 1. So all but finitely many components
of = are the identity, so z € [[G. Conversely, if z € [[G, then there are finitely many
non-identity components each in some cyclic group Zy,,, ..., Z,,. Then |z| < p;...p, < oo,
sorx e T([[G). O

Proof. Let |G| =n = p{"...p%". Then by Sylow’s Theorem, G has Sylow p;-subgroups P;
of order p;. Since np, must divide p{* ...p%" /pi*, np, =1, so each P; is the unique Sylow
pi-subgroup and thus normal.

We proceed by induction on n. Suppose the statement holds for finite abelian groups
of order less than n.We have that the subgroup H < G generated by Ps,..., P, is the
product of its Sylow subgroups Ps, ..., P, and is normal since G is abelian. By Lagrange’s
HNP; = 1isadirect product, so by the Recognition Theorem G =2 P xH = Py x...P,. [
Proof. Note that since H, K char G, if ¢ € Aut(G) then ¢ |[g€ Aut(H) and ¢ |x€ Aut(K).
So define ¢ : Aut(G) — Aut(H) x Aut(K) by ¢(0) = (o|m,0|x). Then ¢ is a homomor-
phism since p(o7) = (o711, 07]xc) = (7|, olxc|1) = (011, 01) (7)1, |xc) = 9(@) (7).

The kernel of ¢ is the set of automorphisms that fix H and K, that is ¢ such that
olg =1and o|g = 1. Since G = H x K, it must be that o = 1. Thus ¢ is injective.

To show that ¢ is surjective, note that given h € Aut(H) and k € Aut(K), we can
define o € Aut(G) by 0 = hU k since H N K = 1. Thus ¢ is surjective, and thus bijective,
so Aut(G) = Aut(H) x Aut(K). O
Proof. By induction on the number of Sylow subgroups of G. The base case of n = 1 is
trivial. Suppose G is finite abelian so that it has n > 1 distinct Sylow subgroups Py, ..., P,



and that the statement holds for finite abelian groups of order less than n. Consider G/P;.
By the induction hypothesis, Aut(G/P;) = Aut(P) x---xAut(P,). Asin (b), G/P,NP; =1
and are characteristic, so by (b) Aut(G) = Aut(Py) x --- x Aut(F,). O
5. Proof. Let G be non-abelian. Recall that if G/Z(G) is cyclic, then G is abelian, so Z(G) must
have order p. Thus |G/Z(G)| = p?, so G/Z(G) is abelian by Corollary 4.9. Since G’ is the
smallest normal subgroup of G with abelian quotient, G’ < Z(G). Since G is non-abelian,
1< G <Z(G) <G, but |G'=1Z(G)|=p, so G'=Z(G). O

6. (We use the notation that 29 = grg—1).
(a) Proof. Let ¢ € G and z,y € K. Then z = a9 and y = b9 for some a,b € K, so
(xy toy)d = (a9 9(a" 1) I(b~1)79)9 = aba b~ € K'. O
(b) Proof. Let ¢ : G — Aut(K) be the permutation representation of G associated with the

action by conjugation. Then it is a homomorphism, and since Aut(K) is Abelian, by
Proposition 5.7(5), G’ < ker ¢ = C(K). O

7. (a) Proof. By Theorem 5.10(5),

keCkg(H) < hF=kVheH
— o(k)(h) =h,Yhe H
— pk)=1
< kekeryp

(b) Proof. Let h € H and k € K. Then
(1, k)" = (b, k) (h, 1)1 = (B, k) (™1 1) = (hk - B k)

If also h € Ny (K), then (1,k)D = (1K) = (hk-h~ 1, k). So k' = k, so (1,k)PV) = (1, k),
so h € CH(K) Clearly CH(K) < NH(K), SO CH(K) = NH(K> ]

8. (a) Proof. We need to show that Aut(H) = S3. Note that Zs x Zy = Vj so Aut(Zy x Zs) =
Aut(Vy), and the automorphisms of Vj are the permutations of the 3 non-identity elements.
Thus Aut(Vy) =2 S3. So |G| = |H||K|=4-6 =24, so G = 5,. O

(b) Proof. Let G act on the left cosets of K by left multiplication. The permutation repre-
sentation 7 afforded by this action is a homomorphism 7 : G — Sg/ = Sy = S4. To
show that ker m = 1, note that from Exercise 7a, Cx(H) = ker(¢) = 1 where ¢ =1 is the
homomorphism associated with G = H x K. So, it remains to show that kerm < Ck (H).

Let g € kerm. Then gxK = 2K for all z € G. Then zgz~' € K so zgr ¢! € K,
since g € K because g(1)K = (1)K. If z € H then since H 4 G (by Theorem 5.10),
zgr g~ € H. But HN K = 1, again by Theorem 5.10, so zgz~'¢g~! = 1 so gz = zg.
Thus g € Cx(H), so kerm < Cx(H)

Thus, the kernel of the permutation representation is trivial, so G = Sy. O



