Please upload your assignment onto Gradescope.ca before 10:00AM on the due date shown above. No late assignments will be accepted. Write all answers in complete sentences. You must do your own work.

- **1.** Let G be a group, and let $x, g \in G$. Prove that $|x| = |g^{-1}xg|$. Deduce that |ab| = |ba|, for all $a, b \in G$.
- **2.** Label the vertices of a rectangle that is not a square by 1, 2, 3, 4. Represent its symmetry group K as a subgroup of S_4 . What is the order of each element in K?
- **3.** How many elements are there of each possible order in S_6 ?
- **4.** Prove that D_{24} and S_4 are not isomorphic.
- **5.** Let G be a group. Prove that the map $\varphi:G\to G:g\mapsto g^2$ is a homomorphism if and only if G is Abelian.
- **6.** Let G be group. Show that the map $G \times G \to G$ given by $g \cdot a = ag^{-1}$, for all $a, g \in G$ defines a (left) action of G on itself.
- **7.** Let G be a group and suppose that G acts on a set A. Prove that the relation on A given by $a \sim b$ if and only if $a = g \cdot b$, for some $g \in G$, is an equivalence relation.
- **8.** Let $G = S_n$, fix $i \in \{1, 2, ..., n\}$, and let $G_i = \{\sigma \in G \mid \sigma(i) = i\}$. Use group actions to prove that G_i is a subgroup of G. Find $|G_i|$.