Please upload your assignment onto Gradescope.ca before 10:00 a.m. on the due date shown above. No late assignments will be accepted. You must do your own work. Write all answers in complete sentences.

1.

- (a) Prove that \mathbb{Q} is not finitely generated.
- (b) Exhibit a proper subgroup of \mathbb{Q} that is not cyclic.
- (c) Prove that \mathbb{Q}^+ is generated by the set $\{1/p \mid p \text{ is prime}\}.$
- **2.** You may use the lattice of subgroups of Q_8 given in the notes (or in the text on p.69) to help you with the following:
 - (a) Find the centralizer and normalizer of each subgroup of Q_8 .
 - (b) Which subgroups of Q_8 are normal? For each normal subgroup N of Q_8 , find the isomorphism type of its quotient.
- **3.** A nontrivial Abelian group A is called *divisible* if for each $a \in A$ and nonzero integer n there is an $x \in A$ such that $x^n = a$.
 - (a) Prove that the quotient of a divisible group A by any proper subgroup B is divisible.
 - (b) Prove or disprove each of the following groups are divisible: a finite Abelian group G, \mathbb{Z} , \mathbb{Q} and \mathbb{Q}/\mathbb{Z} .
- **4.** Let A be a group, and let D be the diagonal subgroup $\{(a,a) \mid a \in A\}$ of $A \times A$.
 - (a) Suppose that A is Abelian. Prove that D is a normal subgroup of $A \times A$.
 - (b) Suppose that A is the non-Abelian group S_3 . Prove that D is not normal in $A \times A$.
- **5.** Let G be a group.
 - (a) Prove that, if G/Z(G) is cyclic, then G is Abelian.
 - (b) Prove that, if |G| = pq for some (possibly equal) primes p and q, then either G is Abelian or Z(G) = 1.
- **6.** Let G be a group, let $H \leq G$, and let $x, y \in G$. Prove that, if xH = Hy, then xH = Hx and $x \in N_G(H)$.
- 7. Let G be a finite group, let $H \leq G$, and let N be a normal subgroup of G. Prove that, if (|H|, |G:N|) = 1, then $H \leq N$.
- **8.** Prove that, if M is a normal subgroup of G such that |G:M|=p is prime, then, for all $H \leq G$, either:
 - (i) $H \leq M$ or
 - (ii) G = MH and $|H: H \cap M| = p$.
- **9.** Let M and N be normal subgroups of G such that G = MN. Prove that

$$G/(M \cap N) \cong (G/M) \times (G/N)$$
.