NUMERICAL
ANALYSIS s

SECOND EDITION w=

TIMOTHY SAUER ™~

Numerical Analysis

This page intentionally left blank

Numerical Analysis

SECOND EDITION

Timothy Sauer

George Mason University

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town
Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City Sao Paulo
Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editor in Chief: Deirdre Lynch

Senior Acquisitions Editor: William Hoffman
Sponsoring Editor: Caroline Celano

Editorial Assistant: Brandon Rawnsley

Senior Managing Editor: Karen Wernholm

Senior Production Project Manager: Beth Houston
Executive Marketing Manager: Jeff Weidenaar
Marketing Assistant: Caitlin Crane

Senior Author Support/Technology Specialist: Joe Vetere
Rights and Permissions Advisor: Michael Joyce
Manufacturing Buyer: Debbie Rossi

Design Manager: Andrea Nix

Senior Designer: Barbara Atkinson

Production Coordination and Composition: Integra Software Services Pvt. Ltd
Cover Designer: Karen Salzbach

Cover Image: Tim Tadder/Corbis

Photo credits: Page I Image Source; page 24 National Advanced Driving Simulator (NADS-1 Simulator) located
at the University of lowa and owned by the National Highway Safety Administration (NHTSA); page 39 Yale
Babylonian Collection; page 71 Travellinglight/iStockphoto; page 138 Rosenfeld Images Ltd./Photo Researchers,
Inc; page 188 Pincasso/Shutterstock; page 243 Orhan81/Fotolia; page 281 UPPA/Photoshot; page 348 Paul
Springett 04/Alamy; page 374 Bill Noll/iStockphoto; page 431 Don Emmert/AFP/Getty Images/Newscom;

page 467 Picture Alliance/Photoshot; page 495 Chris Rout/Alamy; page 505 Toni Angermayer/Photo
Researchers, Inc; page 531 Jinx Photography Brands/Alamy; page 565 Phil Degginger/Alamy.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Pearson Education was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Sauer, Tim.

Numerical analysis / Timothy Sauer. — 2nd ed.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-321-78367-7

ISBN-10: 0-321-78367-0

1. Numerical analysis. 1. Title.

QA297.5348 2012

518-dc23

2011014232

Copyright ©2012, 2006 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the United States of America. For information on obtaining
permission for use of material in this work, please submit a written request to Pearson Education, Inc., Rights
and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 02116, fax your request to
617-671-3447, or e-mail at http://www.pearsoned.com/legal/permissions.htm.

123456789 10—EB—15 14 13 12 11

PEARSON ISBN 10: 0-321-78367-0
ISBN 13: 978-0-321-78367-7

http://www.pearsoned.com/legal/permissions.htm

PREFACE
CHAPTERO Fundamentals

0.1 Evaluating a Polynomial
0.2 Binary Numbers
0.2.1 Decimal to binary
0.2.2 Binary to decimal
0.3 Floating Point Representation of Real Numbers
0.3.1 Floating point formats
0.3.2 Machine representation
0.3.3 Addition of floating point numbers
0.4 Loss of Significance
0.5 Review of Calculus
Software and Further Reading

CHAPTER1 Solving Equations

1.1 The Bisection Method
1.1.1 Bracketing a root
1.1.2 How accurate and how fast?
1.2 Fixed-Point Iteration
1.2.1 Fixed points of a function
1.2.2 Geometry of Fixed-Point Iteration

1.2.3 Linear convergence of Fixed-Point Iteration

1.2.4 Stopping criteria
1.3 Limits of Accuracy
1.3.1 Forward and backward error
1.3.2 The Wilkinson polynomial
1.3.3 Sensitivity of root-finding
1.4 Newton's Method

1.4.1 Quadratic convergence of Newton’s Method

1.4.2 Linear convergence of Newton'’s Method

1.5 Root-Finding without Derivatives
1.5.1 Secant Method and variants
1.5.2 Brent's Method

Reality Check 1: Kinematics of the Stewart platform
Software and Further Reading

CHAPTER 2 Systems of Equations
2.1 Gaussian Elimination
2.1.1 Naive Gaussian elimination
2.1.2 Operation counts

E.

0o NOUT =

11

16
19
23

24

25
25
28

30
31
33
34
40
43
44
47
48

51
53
55
61
61
64
67
69

71
71
72
74

vi | Contents

2.2 The LU Factorization
2.2.1 Matrix form of Gaussian elimination
2.2.2 Back substitution with the LU factorization
2.2.3 Complexity of the LU factorization

2.3 Sources of Error
2.3.1 Error magnification and condition number
2.3.2 Swamping

2.4 The PA = LU Factorization
2.4.1 Partial pivoting
2.4.2 Permutation matrices
2.4.3 PA = LU factorization

Reality Check 2:The Euler-Bernoulli Beam

2.5 Iterative Methods
2.5.1 Jacobi Method
2.5.2 Gauss-Seidel Method and SOR
2.5.3 Convergence of iterative methods
2.5.4 Sparse matrix computations
2.6 Methods for symmetric positive-definite matrices
2.6.1 Symmetric positive-definite matrices
2.6.2 Cholesky factorization
2.6.3 Conjugate Gradient Method
2.6.4 Preconditioning
2.7 Nonlinear Systems of Equations
2.7.1 Multivariate Newton’s Method
2.7.2 Broyden’s Method

Software and Further Reading

CHAPTER 3 Interpolation

3.1 Data and Interpolating Functions
3.1.1 Lagrange interpolation
3.1.2 Newton’s divided differences

3.1.3 How many degree d polynomials pass through n

points?
3.1.4 Code for interpolation

3.1.5 Representing functions by approximating polynomials

3.2 Interpolation Error
3.2.1 Interpolation error formula
3.2.2 Proof of Newton form and error formula
3.2.3 Runge phenomenon

3.3 Chebyshev Interpolation
3.3.1 Chebyshev’s theorem
3.3.2 Chebyshev polynomials
3.3.3 Change of interval

3.4 Cubic Splines
3.4.1 Properties of splines
3.4.2 Endpoint conditions

3.5 Bézier Curves

Reality Check 3: Fonts from Bézier curves

Software and Further Reading

79
79
81
83
85
86
91

95
95
97
98

102

106
106
108
111
113

117
117
119
121
126

130
131
133

137

138

139
140
141

144
145
147

151
151
153
155

158
158
160
162
166
167
173
179
183
187

CHAPTER 4 Least Squares

4.1 Least Squares and the Normal Equations
4.1.1 Inconsistent systems of equations
4.1.2 Fitting models to data
4.1.3 Conditioning of least squares
4.2 A Survey of Models
4.2.1 Periodic data
4.2.2 Data linearization
4.3 QR Factorization
4.3.1 Gram-Schmidt orthogonalization and least squares
4.3.2 Modified Gram-Schmidt orthogonalization
4.3.3 Householder reflectors
4.4 Generalized Minimum Residual (GMRES) Method
4.4.1 Krylov methods
4.4.2 Preconditioned GMRES
4.5 Nonlinear Least Squares
4.5.1 Gauss-Newton Method
4.5.2 Models with nonlinear parameters
4.5.3 The Levenberg—Marquardt Method.
Reality Check 4: GPS, Conditioning, and Nonlinear Least Squares

Software and Further Reading

CHAPTER5 Numerical Differentiation and
Integration
5.1 Numerical Differentiation
5.1.1 Finite difference formulas
5.1.2 Rounding error
5.1.3 Extrapolation
5.1.4 Symbolic differentiation and integration
5.2 Newton-Cotes Formulas for Numerical Integration
5.2.1 Trapezoid Rule
5.2.2 Simpson’s Rule
5.2.3 Composite Newton—Cotes formulas
5.2.4 Open Newton-Cotes Methods
5.3 Romberg Integration
5.4 Adaptive Quadrature
5.5 Gaussian Quadrature
Reality Check 5: Motion Control in Computer-Aided Modeling
Software and Further Reading

CHAPTER 6 Ordinary Differential Equations
6.1 |Initial Value Problems
6.1.1 Euler’s Method
6.1.2 Existence, uniqueness, and continuity for solutions
6.1.3 First-order linear equations
6.2 Analysis of IVP Solvers
6.2.1 Local and global truncation error

188

188
189
193
197
201
201
203
212
212
218
220

225
226
228
230
230
233
235
238
242

243

244
244
247
249
250

254
255
257
259
262

265
269
273
278
280

281
282
283
287
290
293
293

Contents | vii

viii | Contents

6.2.2 The explicit Trapezoid Method
6.2.3 Taylor Methods

6.3 Systems of Ordinary Differential Equations
6.3.1 Higher order equations
6.3.2 Computer simulation: the pendulum
6.3.3 Computer simulation: orbital mechanics
6.4 Runge-Kutta Methods and Applications
6.4.1 The Runge-Kutta family

6.4.2 Computer simulation: the Hodgkin—-Huxley neuron

6.4.3 Computer simulation: the Lorenz equations
Reality Check 6:The Tacoma Narrows Bridge
6.5 Variable Step-Size Methods

6.5.1 Embedded Runge-Kutta pairs

6.5.2 Order 4/5 methods
6.6 Implicit Methods and Stiff Equations
6.7 Multistep Methods

6.7.1 Generating multistep methods

6.7.2 Explicit multistep methods

6.7.3 Implicit multistep methods

Software and Further Reading

CHAPTER7 Boundary Value Problems

7.1 Shooting Method
7.1.1 Solutions of boundary value problems
7.1.2 Shooting Method implementation
Reality Check 7: Buckling of a Circular Ring
7.2 Finite Difference Methods
7.2.1 Linear boundary value problems
7.2.2 Nonlinear boundary value problems
7.3 Collocation and the Finite Element Method
7.3.1 Collocation
7.3.2 Finite elements and the Galerkin Method
Software and Further Reading

CHAPTER 8 Partial Differential Equations

8.1 Parabolic Equations
8.1.1 Forward Difference Method
8.1.2 Stability analysis of Forward Difference Method
8.1.3 Backward Difference Method
8.1.4 Crank-Nicolson Method
8.2 Hyperbolic Equations
8.2.1 The wave equation
8.2.2 The CFL condition
8.3 Elliptic Equations
8.3.1 Finite Difference Method for elliptic equations
Reality Check 8: Heat distribution on a cooling fin
8.3.2 Finite Element Method for elliptic equations

297
300

303
304
305
309

314
314
317
319

322

325
325
328

332

336
336
339
342

347

348

349
349
352

355

357
357
359

365
365
367

373

374

375
375
379
380
385
393
393
395
398
399
403
406

8.4 Nonlinear partial differential equations
8.4.1 Implicit Newton solver
8.4.2 Nonlinear equations in two space dimensions

Software and Further Reading

CHAPTER9 Random Numbers and Applications

9.1 Random Numbers
9.1.1 Pseudo-random numbers
9.1.2 Exponential and normal random numbers
9.2 Monte Carlo Simulation
9.2.1 Power laws for Monte Carlo estimation
9.2.2 Quasi-random numbers
9.3 Discrete and Continuous Brownian Motion
9.3.1 Random walks
9.3.2 Continuous Brownian motion
9.4 Stochastic Differential Equations
9.4.1 Adding noise to differential equations
9.4.2 Numerical methods for SDEs
Reality Check 9:The Black-Scholes Formula
Software and Further Reading

CHAPTER 10 Trigonometric Interpolation and
the FFT

10.1 The Fourier Transform
10.1.1 Complex arithmetic
10.1.2 Discrete Fourier Transform
10.1.3 The Fast Fourier Transform
10.2 Trigonometric Interpolation
10.2.1 The DFT Interpolation Theorem
10.2.2 Efficient evaluation of trigonometric functions
10.3 The FFT and Signal Processing
10.3.1 Orthogonality and interpolation
10.3.2 Least squares fitting with trigonometric functions
10.3.3 Sound, noise, and filtering

Reality Check 10:The Wiener Filter
Software and Further Reading

CHAPTER 11 Compression
11.1 The Discrete Cosine Transform
11.1.1 One-dimensional DCT
11.1.2 The DCT and least squares approximation
11.2 Two-Dimensional DCT and Image Compression
11.2.1 Two-dimensional DCT
11.2.2 Image compression
11.2.3 Quantization
11.3 Huffman Coding
11.3.1 Information theory and coding
11.3.2 Huffman coding for the JPEG format

417
417
423

430

431
432
432
437
440
440
442

446
447
449

452
452
456
464
465

467

468
468
470
473

476
476
479
483
483
485
489

492
494

495

496
496
498

501
501
505
508
514
514
517

Contents | ix

x | Contents

1.4

Modified DCT and Audio Compression
11.4.1 Modified Discrete Cosine Transform
11.4.2 Bit quantization

Reality Check 11: A Simple Audio Codec

CHAPTER 12 Eigenvalues and Singular Values

12.1

12.2

Software and Further Reading

Power Iteration Methods

12.1.1 Power Iteration

12.1.2 Convergence of Power Iteration
12.1.3 Inverse Power Iteration

12.1.4 Rayleigh Quotient Iteration

QR Algorithm

12.2.1 Simultaneous iteration

12.2.2 Real Schur form and the QR algorithm
12.2.3 Upper Hessenberg form

Reality Check 12: How Search Engines Rate Page Quality

123

12.4

Singular Value Decomposition

12.3.1 Finding the SVD in general
12.3.2 Special case: symmetric matrices
Applications of the SVD

12.4.1 Properties of the SVD

12.4.2 Dimension reduction

12.4.3 Compression

12.4.4 Calculating the SVD

Software and Further Reading

CHAPTER 13 Optimization

13.1

13.2

Unconstrained Optimization without Derivatives
13.1.1 Golden Section Search

13.1.2 Successive parabolic interpolation

13.1.3 Nelder-Mead search

Unconstrained Optimization with Derivatives
13.2.1 Newton’s Method

13.2.2 Steepest Descent

13.2.3 Conjugate Gradient Search

Reality Check 13: Molecular Conformation and Numerical

Optimization
Software and Further Reading

Appendix A

A1
A.2
A3
A4

Matrix Fundamentals

Block Multiplication
Eigenvalues and Eigenvectors
Symmetric Matrices

A.5 Vector Calculus

519
520
525
527
530

531

531
532
534
535
537

539
539
542
544

549

552
554
555

557
557
559
560
561

563

565

566
566
569
571

575
576
577
578

580
582

583
583
585
586
587
588

Appendix B
B.1 Starting MarLAB
B.2 Graphics
B.3 Programming in MarLAB
B.4 Flow Control
B.5 Functions
B.6 Matrix Operations
B.7 Animation and Movies

ANSWERS TO SELECTED EXERCISES
BIBLIOGRAPHY
INDEX

590
590
591
593
594
595
597
597

599
626
637

Contents | xi

This page intentionally left blank

Preface

Numerical Analysis is a text for students of engineering, science, mathematics, and com-
puter science who have completed elementary calculus and matrix algebra. The primary
goal is to construct and explore algorithms for solving science and engineering problems.
The not-so-secret secondary mission is to help the reader locate these algorithms in a land-
scape of some potent and far-reaching principles. These unifying principles, taken together,
constitute a dynamic field of current research and development in modern numerical and
computational science.

The discipline of numerical analysis is jam-packed with useful ideas. Textbooks run the
risk of presenting the subject as a bag of neat but unrelated tricks. For a deep understanding,
readers need to learn much more than how to code Newton’s Method, Runge—Kutta, and
the Fast Fourier Transform. They must absorb the big principles, the ones that permeate
numerical analysis and integrate its competing concerns of accuracy and efficiency.

The notions of convergence, complexity, conditioning, compression, and orthogonality
are among the most important of the big ideas. Any approximation method worth its salt
must converge to the correct answer as more computational resources are devoted to it, and
the complexity of a method is a measure of its use of these resources. The conditioning
of a problem, or susceptibility to error magnification, is fundamental to knowing how it
can be attacked. Many of the newest applications of numerical analysis strive to realize
data in a shorter or compressed way. Finally, orthogonality is crucial for efficiency in many
algorithms, and is irreplaceable where conditioning is an issue or compression is a goal.

In this book, the roles of the five concepts in modern numerical analysis are emphasized
in short thematic elements called Spotlights. They comment on the topic at hand and make
informal connections to other expressions of the same concept elsewhere in the book. We
hope that highlighting the five concepts in such an explicit way functions as a Greek chorus,
accentuating what is really crucial about the theory on the page.

Although it is common knowledge that the ideas of numerical analysis are vital to the
practice of modern science and engineering, it never hurts to be obvious. The Reality Checks
provide concrete examples of the way numerical methods lead to solutions of important
scientific and technological problems. These extended applications were chosen to be timely
and close to everyday experience. Although it is impossible (and probably undesirable) to
present the full details of the problems, the Reality Checks attempt to go deeply enough to
show how a technique or algorithm can leverage a small amount of mathematics into a great
payoff in technological design and function. The Reality Checks proved to be extremely
popular as a source of student projects in the first edition, and have been extended and
amplified in the second edition.

NEW TO THIS EDITION. The second edition features a major expansion of methods
for solving systems of equations. The Cholesky factorization has been added to Chapter 2 for
the solution of symmetric positive-definite matrix equations. For large linear systems, dis-
cussion of the Krylov approach, including the GMRES method, has been added to Chapter
4, along with new material on the use of preconditioners for symmetric and nonsymmet-
ric problems. Modified Gram—Schmidt orthogonalization and the Levenberg—Marquardt
Method are new to this edition. The treatment of PDEs in Chapter 8 has been extended to
nonlinear PDEs, including reaction-diffusion equations and pattern formation. Expository
material has been revised for greater readability based on feedback from students, and new
exercises and computer problems have been added throughout.

TECHNOLOGY. The software package MATLAB is used both for exposition of
algorithms and as a suggested platform for student assignments and projects. The amount
of MATLAB code provided in the text is carefully modulated, due to the fact that too much

Xiv |

Preface

tends to be counterproductive. More MATLAB code is found in the early chapters, allowing
the reader to gain proficiency in a gradual manner. Where more elaborate code is provided
(in the study of interpolation, and ordinary and partial differential equations, for example),
the expectation is for the reader to use what is given as a jumping-off point to exploit and
extend.

It is not essential that any particular computational platform be used with this textbook,
but the growing presence of MATLAB in engineering and science departments shows that
a common language can smooth over many potholes. With MATLAB, all of the inter-
face problems—data input/output, plotting, and so on—are solved in one fell swoop. Data
structure issues (for example those that arise when studying sparse matrix methods) are
standardized by relying on appropriate commands. MATLAB has facilities for audio and
image file input and output. Differential equations simulations are simple to realize due
to the animation commands built into MATLAB. These goals can all be achieved in other
ways. But it is helpful to have one package that will run on almost all operating systems and
simplify the details so that students can focus on the real mathematical issues. Appendix B
is a MATLAB tutorial that can be used as a first introduction to students, or as a reference
for those already familiar.

The text has a companion website, www .pearsonhighered.com/sauer, that
contains the MATLAB programs taken directly from the text. In addition, new material and
updates will be posted for users to download.

SUPPLEMENTS. To provide help for students, the Student’s Solutions Manual
(SSM: 0-321-78392) is available, with worked-out solutions to selected exercises. The
Instructor’s Solutions Manual (ISM: 0-321-783689) contains detailed solutions to the
odd-numbered exercises, and answers to the even-numbered exercises. The manuals also
show how to use MATLAB software as an aid to solving the types of problems that are
presented in the Exercises and Computer Problems.

DESIGNING THE COURSE. Numerical Analysis is structured to move from founda-
tional, elementary ideas at the outset to more sophisticated concepts later in the presentation.
Chapter 0 provides fundamental building blocks for later use. Some instructors like to start
at the beginning; others (including the author) prefer to start at Chapter 1 and fold in top-
ics from Chapter O when required. Chapters 1 and 2 cover equation-solving in its various
forms. Chapters 3 and 4 primarily treat the fitting of data, interpolation and least squares
methods. In chapters 5-8, we return to the classical numerical analysis areas of continuous
mathematics: numerical differentiation and integration, and the solution of ordinary and
partial differential equations with initial and boundary conditions.

Chapter 9 develops random numbers in order to provide complementary methods to
Chapters 5-8: the Monte-Carlo alternative to the standard numerical integration schemes
and the counterpoint of stochastic differential equations are necessary when uncertainty is
present in the model.

Compression is a core topic of numerical analysis, even though it often hides in plain
sight in interpolation, least squares, and Fourier analysis. Modern compression techniques
are featured in Chapters 10 and 11. In the former, the Fast Fourier Transform is treated
as a device to carry out trigonometric interpolation, both in the exact and least squares
sense. Links to audio compression are emphasized, and fully carried out in Chapter 11
on the Discrete Cosine Transform, the standard workhorse for modern audio and image
compression. Chapter 12 on eigenvalues and singular values is also written to emphasize
its connections to data compression, which are growing in importance in contemporary
applications. Chapter 13 provides a short introduction to optimization techniques.

Numerical Analysis can also be used for a one-semester course with judicious choice
of topics. Chapters 0-3 are fundamental for any course in the area. Separate one-semester
tracks can be designed as follows:

www.pearsonhighered.com/sauer

Preface | xv

()
Chapters
0-3
J
|
| | |
()
Chapters Chapters Chapters
5,6,7,8 L 4,10, 11, 12) 4,6,8,9,13

discrete mathematics
emphasis on orthogonality
and compression

traditional calculus/
differential equations
concentration

financial engineering
concentration

ACKNOWLEDGMENTS

The second edition owes a debt to many people, including the students of many classes
who have read and commented on earlier versions. In addition, Paul Lorczak, Maurino
Bautista, and Tom Wegleitner were essential in helping me avoid embarrassing blunders.
Suggestions from Nicholas Allgaier, Regan Beckham, Paul Calamai, Mark Friedman, David
Hiebeler, Ashwani Kapila, Andrew Knyazev, Bo Li, Yijang Li, Jeff Parker, Robert Sachs,
Evelyn Sander, Gantumur Tsogtgerel, and Thomas Wanner were greatly appreciated. The
resourceful staff at Pearson, including William Hoffman, Caroline Celano, Beth Houston,
Jeff Weidenaar, and Brandon Rawnsley, as well as Shiny Rajesh at Integra-PDY, made the
production of the second edition almost enjoyable. Finally, thanks are due to the helpful
readers from other universities for their encouragement of this project and indispensable
advice for improvement of earlier versions:

Eugene Allgower Colorado State University
Constantin Bacuta University of Delaware
Michele Benzi Emory University

Jerry Bona University of Illinois at Chicago
George Davis Georgia State University

Chris Danforth University of Vermont

Alberto Delgado Bradley University

Robert Dillon Washington State University
Qiang Du Pennsylvania State University
Ahmet Duran University of Michigan, Ann Arbor
Gregory Goeckel Presbyterian College

Herman Gollwitzer =~ Drexel University

Don Hardcastle Baylor University

David R. Hill
Hideaki Kaneko
Daniel Kaplan
Fritz Keinert
Akhtar A. Khan
Lucia M. Kimball
Colleen M. Kirk
Seppo Korpela
William Layton
Brenton LeMesurier
Melvin Leok

Temple University

Old Dominion University
Macalester College

Towa State University

Rochester Institute of Technology
Bentley College

California Polytechnic State University
Ohio State University

University of Pittsburgh

College of Charleston

University of California, San Diego

xvi | Preface

Doron Levy
Shankar Mahalingam
Amnon Meir

Peter Monk

Joseph E. Pasciak
Jeff Parker

Steven Pav

Jacek Polewczak
Jorge Rebaza
Jeffrey Scroggs
Sergei Suslov
Daniel Szyld
Ahlam Tannouri
Jin Wang

Bruno Welfert
Nathaniel Whitaker

Stanford University

University of California, Riverside
Auburn University

University of Delaware

Texas A&M University

Harvard University

University of California, San Diego
California State University
Southwest Missouri State University
North Carolina State University
Arizona State University

Temple University

Morgan State University

Old Dominion University

Arizona State University
University of Massachusetts

Numerical Analysis

This page intentionally left blank

Fundamentals

This introductory chapter provides basic building
blocks necessary for the construction and understand-
ing of the algorithms of the book. They include fun-
damental ideas of introductory calculus and function
evaluation, the details of machine arithmetic as it is car-
ried out on modern computers, and discussion of the
loss of significant digits resulting from poorly-designed
calculations.

After discussing efficient methods for evaluating
polynomials, we study the binary number system, the
representation of floating point numbers and the com-
mon protocols used for rounding. The effects of the
small rounding errors on computations are magnified
in ill-conditioned problems. The battle to limit these
pernicious effects is a recurring theme throughout the
rest of the chapters.

he goal of this book is to present and discuss methods of solving mathematical prob-

lems with computers. The most fundamental operations of arithmetic are addition and
multiplication. These are also the operations needed to evaluate a polynomial P(x) at a
particular value x. It is no coincidence that polynomials are the basic building blocks for
many computational techniques we will construct.

Because of this, it is important to know how to evaluate a polynomial. The reader
probably already knows how and may consider spending time on such an easy problem
slightly ridiculous! But the more basic an operation is, the more we stand to gain by doing it
right. Therefore we will think about how to implement polynomial evaluation as efficiently

as possible.

0.1 EVALUATING A POLYNOMIAL

What is the best way to evaluate

P(x) = 2x* +3x3 —3x% +5x — 1,

say, at x = 1/2?7 Assume that the coefficients of the polynomial and the number 1/2 are
stored in memory, and try to minimize the number of additions and multiplications required

2 | CHAPTER O Fundamentals

METHOD 1

METHOD 2

METHOD 3

to get P(1/2). To simplify matters, we will not count time spent storing and fetching
numbers to and from memory.

The first and most straightforward approach is

(1) 1 1 1 1 I 1 1 1 1 1 5
Pl-)=2%x—-%x—-%—-%-4+3%—-%x—-x—-——3x—x—-+5%x——1=-. (0.1)
2 2 2 2 2 2 2 2 2 2 2 4
The number of multiplications required is 10, together with 4 additions. Two of the additions
are actually subtractions, but because subtraction can be viewed as adding a negative stored
number, we will not worry about the difference.

There surely is a better way than (0.1). Effort is being duplicated—operations can
be saved by eliminating the repeated multiplication by the input 1/2. A better strategy is
to first compute (1/2)*, storing partial products as we go. That leads to the following method:

Find the powers of the input number x = 1/2 first, and store them for future use:

*

N
| =
S~
o
*
N = N = N =
Il
N
N =
SN——"
(%)

N =

Il
7N
N =
SN———

N

Now we can add up the terms:

P ! 2 : 4+3 1y’ 3 ! 2—i—5 ! 1 >
—)=2x|= =) —3%(= * - —1=-.
2 2 2 2 2 4

There are now 3 multiplications of 1/2, along with 4 other multiplications. Counting up,
we have reduced to 7 multiplications, with the same 4 additions. Is the reduction from 14
to 11 operations a significant improvement? If there is only one evaluation to be done, then
probably not. Whether Method 1 or Method 2 is used, the answer will be available before
you can lift your fingers from the computer keyboard. However, suppose the polynomial
needs to be evaluated at different inputs x several times per second. Then the difference
may be crucial to getting the information when it is needed.

Is this the best we can do for a degree 4 polynomial? It may be hard to imagine that
we can eliminate three more operations, but we can. The best elementary method is the
following one:

(Nested Multiplication) Rewrite the polynomial so that it can be evaluated from the inside
out:

P(x) = —1 4+ x(5 — 3x + 3x2 + 2x7)
= —1+x(5+ x(=3 + 3x + 2x?))
=—14+ x5+ x(=3+x3+2x)))
=—14+xxG+xx(-3+x%x3+xx2))). 0.2)
Here the polynomial is written backwards, and powers of x are factored out of the rest of

the polynomial. Once you can see to write it this way—no computation is required to do
the rewriting—the coefficients are unchanged. Now evaluate from the inside out:

0.1 Evaluating a Polynomial | 3
1
multiply > %2, add +3—4

1
multiply 3 x4, add —3— —1

1
multiply 5 *—1, add +5—

0.3)

Al O

1 9
multiply 3 * o add — 1 —

This method, called nested multiplication or Horner’s method, evaluates the polynomial
in 4 multiplications and 4 additions. A general degree d polynomial can be evaluated in
d multiplications and 4 additions. Nested multiplication is closely related to synthetic
division of polynomial arithmetic.

The example of polynomial evaluation is characteristic of the entire topic of computa-
tional methods for scientific computing. First, computers are very fast at doing very simple
things. Second, it is important to do even simple tasks as efficiently as possible, since they
may be executed many times. Third, the best way may not be the obvious way. Over the
last half-century, the fields of numerical analysis and scientific computing, hand in hand
with computer hardware technology, have developed efficient solution techniques to attack
common problems.

While the standard form for a polynomial ¢; + cax + c3x? 4 ¢4x3 + esx* can be
written in nested form as

c1 + x(c2 + x(c3 4+ x(cq + x(c5)))), 0.4)

some applications require a more general form. In particular, interpolation calculations in
Chapter 3 will require the form

c1+ (x —rpe + (x —r)(es + (x —r3)(ca + (x —r4)(c5)))), (0.5)

where we call 71, 72, 73, and 74 the base points. Note that setting 1 =7, =r3 =74 =0 in
(0.5) recovers the original nested form (0.4).

The following MATLAB code implements the general form of nested multiplication
(compare with (0.3)):

$Program 0.1 Nested multiplication
$Evaluates polynomial from nested form using Horner’s Method
$Input: degree d of polynomial,

% array of d+1 coefficients ¢ (constant term first),
% x-coordinate x at which to evaluate, and
% array of d base points b, if needed

$Output: value y of polynomial at x
function y=nest (d,c,x,b)
if nargin<4, b=zeros(d,1l); end
y=c (d+1) ;
for i=d:-1:1
y = y.*(x-b(i))+c(i);
end

Running this MATLAB function is a matter of substituting the input data, which consist
of the degree, coefficients, evaluation points, and base points. For example, polynomial
(0.2) can be evaluated at x = 1/2 by the MATLAB command

4 | CHAPTERO Fundamentals

» EXAMPLE 0.1

>> nest(4,[-1 5 -3 3 2],1/2,[0 0 0 0])
ans =

1.2500

as we found earlier by hand. The file nest . m, as the rest of the MATLAB code shown in
this book, must be accessible from the MATLAB path (or in the current directory) when
executing the command.

If the nest command is to be used with all base points 0 as in (0.2), the abbreviated
form

>> nest(4,[-1 5 -3 3 2],1/2)

may be used with the same result. This is due to the nargin statement in nest .m.
If the number of input arguments is less than 4, the base points are automatically set to
Zero.

Because of MATLAB’s seamless treatment of vector notation, the nest command can
evaluate an array of x values at once. The following code is illustrative:

>> nest(4,[-1 5 -3 3 2],[-2 -1 0 1 2])
ans =

-15 -10 -1 6 53

Finally, the degree 3 interpolating polynomial

1 1 1
P<x>=1+x<§+(x—2><§+<x_3)<—5>>>

from Chapter 3 has base points 71 = 0,7, = 2,73 = 3. It can be evaluated at x = 1 by

>> nest(3,[1 1/2 1/2 -1/21,1,[0 2 31])
ans =

0

Find an efficient method for evaluating the polynomial P(x) = 4x> + 7x8 — 3x!1 4 2x14.

Some rewriting of the polynomial may help reduce the computational effort
required for evaluation. The idea is to factor x> from each term and write as a polyno-
mial in the quantity x>

P(x) =x>(4 + 7x> = 3x% + 2x9)
=x0 % @G+ x> % (T4 x5 (=3+x>%(2))).
For each input x, we need to calculate x * x = x2, x % x2 =x3, and x2 % x3 = x° first.
These three multiplications, combined with the multiplication of x>, and the three multipli-
cations and three additions from the degree 3 polynomial in the quantity x* give the total
operation count of 7 multiplies and 3 adds per evaluation. <

0.1 Exercises

0.2 Binary Numbers | 5

Rewrite the following polynomials in nested form. Evaluate with and without nested form at
x=1/3.

@ P =6x*+x3 +5x2 +x+1

(b) P(x)=-3x%+4x3 +5x2 —5x + 1

() Px)=2x*4+x3—x2+1

Rewrite the following polynomials in nested form and evaluate at x = —1/2:

(@ Px)=6x3—2x2 —3x+7
(b) P(x)=8x —x* —3x3 +x2 —3x+1
() P(x)=4x0—2x* —2x +4

Evaluate P(x) = x® — 4x* + 2x2 4 1 at x = 1/2 by considering P(x) as a polynomial in x>
and using nested multiplication.

Evaluate the nested polynomial with base points P(x) =1 + x(1/2 + (x —2)(1/2 + (x — 3)
(=1/2))) at(a) x =5and (b) x = —1.

Evaluate the nested polynomial with base points P(x) =4 + x4 + (x — 1)(1 + (x — 2)
B4+ x—=3@2)))at(a)x =1/2and (b) x = —1/2.

Explain how to evaluate the polynomial for a given input x, using as few operations as
possible. How many multiplications and how many additions are required?

(@) P(x) = ag + asx® + ajox'® + a15x1°

) P(x) = a7x” + a1px'? + a17x'7 + anx® + axpx?’.

How many additions and multiplications are required to evaluate a degree n polynomial with
base points, using the general nested multiplication algorithm?

0.1 Computer Problems

1.

Use the function nest to evaluate P(x) = 1 + x + --- + x°% at x = 1.00001. (Use the
MATLAB ones command to save typing.) Find the error of the computation by comparing with
the equivalent expression Q(x) = = D/(x = 1.

Use nest.mtoevaluate P(x) =1 —x +x2 — x> + -+ + x%8 — x% atx = 1.00001. Find a
simpler, equivalent expression, and use it to estimate the error of the nested multiplication.

0.2 BINARY NUMBERS

In preparation for the detailed study of computer arithmetic in the next section, we need
to understand the binary number system. Decimal numbers are converted from base 10 to
base 2 in order to store numbers on a computer and to simplify computer operations like
addition and multiplication. To give output in decimal notation, the process is reversed. In
this section, we discuss ways to convert between decimal and binary numbers.

Binary numbers are expressed as

...babibo.b_1b_5. ..,

6 | CHAPTERO Fundamentals

where each binary digit, or bit, is 0 or 1. The base 10 equivalent to the number is
b2+ 512N+ b2 b 27 b 27

For example, the decimal number 4 is expressed as (100.)2 in base 2, and 3 /4 is represented
as (0.11),.

0.2.1 Decimal to binary

The decimal number 53 will be represented as (53)1¢ to emphasize that it is to be interpreted
as base 10. To convert to binary, it is simplest to break the number into integer and fractional
parts and convert each part separately. For the number (53.7)10 = (53)10 + (0.7)10, we
will convert each part to binary and combine the results.

Integer part. Convert decimal integers to binary by dividing by 2 successively and
recording the remainders. The remainders, O or 1, are recorded by starting at the decimal
point (or more accurately, radix) and moving away (to the left). For (53)9, we would have

53 +-2=26R1
26+-2=13R0
13=+-2=6R1
6+-2=3R0
3+-2=1R1
1+-2=0R1.

Therefore, the base 10 number 53 can be written in bits as 110101, denoted as
(53)10 = (110101.),. Checking the result, we have 110101 =2 4 2% 422 420 =
32+ 16 +4 + 1 =53.

Fractional part. Convert (0.7)¢ to binary by reversing the preceding steps. Multiply
by 2 successively and record the integer parts, moving away from the decimal point to the

right.
TIx2=4+4+1
A4x2=.8+0
Bx2=.6+1
OH6x2=2+1
2x2=4+40
4x2=.84+0

Notice that the process repeats after four steps and will repeat indefinitely exactly the same
way. Therefore,

(0.7)10 = (.1011001100110...), = (.10110),,

where overbar notation is used to denote infinitely repeated bits. Putting the two parts
together, we conclude that

(53.7)10 = (110101.10110)5.

0.2 Exercises

0.2 Binary Numbers | 7

0.2.2 Binary to decimal

To convert a binary number to decimal, it is again best to separate into integer and fractional
parts.

Integer part. Simply add up powers of 2 as we did before. The binary number
(10101)is simply 1 -2* 4+ 0-23 +1-2240-2! +1-2%= 21)0.

Fractional part. If the fractional part is finite (a terminating base 2 expansion), proceed
the same way. For example,

(.1011) —1+1+ LU

R T ST T
The only complication arises when the fractional part is not a finite base 2 expansion.
Converting an infinitely repeating binary expansion to a decimal fraction can be done in
several ways. Perhaps the simplest way is to use the shift property of multiplication by 2.

For example, suppose x = (0.1011)5 is to be converted to decimal. Multiply x by 24,
which shifts 4 places to the left in binary. Then subtract the original x:

24x = 1011.1011

x = 0000.1011.
Subtracting yields
2% — Dx = (1011)3 = (11)1.

Then solve for x to find x = (.1011), = 11/15 in base 10.

As another example, assume that the fractional part does not immediately repeat, as in
x = .10101. Multiplying by 27 shifts to y = 2%x = 10.101. The fractional part of y, call it
z =101, is calculated as before:

232 =101.101
z = 000.101.

Therefore, 7z= 15, and y =2 4 5/7, x =272y = 19/28 in base 10. It is a good exercise
to check this result by converting 19/28 to binary and comparing to the original x.

Binary numbers are the building blocks of machine computations, but they turn
out to be long and unwieldy for humans to interpret. It is useful to use base 16
at times just to present numbers more easily. Hexadecimal numbers are represented
by the 16 numerals 0,1,2,...,9,4,B,C, D, E, F. Each hex number can be repre-
sented by 4 bits. Thus (1)16=(0001)2, (8)16=(1000)2, and (F)je=(1111)2=(15)10.
In the next section, MATLAB’s format hex for representing machine numbers will be
described.

Find the binary representation of the base 10 integers. (a) 64 (b) 17 (c) 79 (d) 227
Find the binary representation of the base 10 numbers. (a) 1/8 (b) 7/8 (c) 35/16 (d) 31/64

Convert the following base 10 numbers to binary. Use overbar notation for nonterminating
binary numbers. (a) 10.5 (b) 1/3 (c) 5/7 (d) 12.8 (e) 55.4 (f) 0.1

Convert the following base 10 numbers to binary. (a) 11.25 (b) 2/3 (c) 3/5 (d) 3.2 (e) 30.6
(1) 99.9

8 | CHAPTER O Fundamentals

5.

6.

7.

Find the first 15 bits in the binary representation of 7.
Find the first 15 bits in the binary representation of e.

Convert the following binary numbers to base 10: (a) 1010101 (b) 1011.101 (c) 10111.01
(d) 110.10 (e) 10.110 (f) 110.1101 (g) 10.0101101 (h) 111.1

Convert the following binary numbers to base 10: (a) 11011 (b) 110111.001 (c) 111.001
(d) 1010.01 (e) 10111.10101 (f) 1111.010001

0.3 FLOATING POINT REPRESENTATION OF REAL NUMBERS

In this section, we present a model for computer arithmetic of floating point numbers.
There are several models, but to simplify matters we will choose one particular model and
describe it in detail. The model we choose is the so-called IEEE 754 Floating Point Standard.
The Institute of Electrical and Electronics Engineers (IEEE) takes an active interest in
establishing standards for the industry. Their floating point arithmetic format has become
the common standard for single-precision and double precision arithmetic throughout the
computer industry.

Rounding errors are inevitable when finite-precision computer memory locations are
used to represent real, infinite precision numbers. Although we would hope that small errors
made during a long calculation have only a minor effect on the answer, this turns out to
be wishful thinking in many cases. Simple algorithms, such as Gaussian elimination or
methods for solving differential equations, can magnify microscopic errors to macro-
scopic size. In fact, a main theme of this book is to help the reader to recognize when a
calculation is at risk of being unreliable due to magnification of the small errors made by
digital computers and to know how to avoid or minimize the risk.

0.3.1 Floating point formats

The IEEE standard consists of a set of binary representations of real numbers. A floating
point number consists of three parts: the sign (4+ or —), a mantissa, which contains the
string of significant bits, and an exponent. The three parts are stored together in a single
computer word.

There are three commonly used levels of precision for floating point numbers: single
precision, double precision, and extended precision, also known as long-double precision.
The number of bits allocated for each floating point number in the three formats is 32, 64,
and 80, respectively. The bits are divided among the parts as follows:

precision | sign [exponent | mantissa
single 1 8 23
double 1 11 52
long double 1 15 64

All three types of precision work essentially the same way. The form of a normalized
IEEE floating point number is

+1.bbb...b x 27, (0.6)

where each of the N b’sisOor 1, and pisan M-bit binary number representing the exponent.
Normalization means that, as shown in (0.6), the leading (leftmost) bit must be 1.

When a binary number is stored as a normalized floating point number, it is “left-
justified,” meaning that the leftmost 1 is shifted just to the left of the radix point. The shift

DEFINITION 0.1

0.3 Floating Point Representation of Real Numbers | 9

is compensated by a change in the exponent. For example, the decimal number 9, which is
1001 in binary, would be stored as

+1.001 x 23,

because a shift of 3 bits, or multiplication by 23, is necessary to move the leftmost one to
the correct position.

For concreteness, we will specialize to the double precision format for most of the
discussion. Single and long-double precision are handled in the same way, with the exception
of different exponent and mantissa lengths A and N. In double precision, used by many
C compilers and by MATLAB, M = 11 and N = 52.

The double precision number 1 is

+1.’ 00000000000000000000000O000O000000000000000000000000‘ x 20,

where we have boxed the 52 bits of the mantissa. The next floating point number greater
than 1 is

—}—l.’ 0001 ‘ x 20,

orl 4272,

The number machine epsilon, denoted €pach, is the distance between 1 and the smallest
floating point number greater than 1. For the IEEE double precision floating point standard,

=27, o

The decimal number 9.4 = (1001.0110), is left-justified as

+1.0010110011001100110011001100110011001100110011001100 [110... x 23,

where we have boxed the first 52 bits of the mantissa. A new question arises: How do we
fit the infinite binary number representing 9.4 in a finite number of bits?

We must truncate the number in some way, and in so doing we necessarily make a
small error. One method, called chopping, is to simply throw away the bits that fall off the
end—that is, those beyond the 52nd bit to the right of the decimal point. This protocol is
simple, but it is biased in that it always moves the result toward zero.

The alternative method is rounding. In base 10, numbers are customarily rounded up
if the next digit is 5 or higher, and rounded down otherwise. In binary, this corresponds to
rounding up if the bit is 1. Specifically, the important bit in the double precision format is
the 53rd bit to the right of the radix point, the first one lying outside of the box. The default
rounding technique, implemented by the IEEE standard, is to add 1 to bit 52 (round up) if
bit 53 is 1, and to do nothing (round down) to bit 52 if bit 53 is 0, with one exception: If
the bits following bit 52 are 10000. . ., exactly halfway between up and down, we round up
or round down according to which choice makes the final bit 52 equal to 0. (Here we are
dealing with the mantissa only, since the sign does not play a role.)

Why is there the strange exceptional case? Except for this case, the rule means rounding
to the normalized floating point number closest to the original number—hence its name,
the Rounding to Nearest Rule. The error made in rounding will be equally likely to be
up or down. Therefore, the exceptional case, the case where there are two equally distant
floating point numbers to round to, should be decided in a way that doesn’t prefer up or
down systematically. This is to try to avoid the possibility of an unwanted slow drift in long
calculations due simply to a biased rounding. The choice to make the final bit 52 equal to
0 in the case of a tie is somewhat arbitrary, but at least it does not display a preference up
or down. Problem 8 sheds some light on why the arbitrary choice of 0 is made in case of
ate.

10 | CHAPTERO Fundamentals

DEFINITION 0.2

DEFINITION 0.3

IEEE Rounding to Nearest Rule

For double precision, if the 53rd bit to the right of the binary point is 0, then round down
(truncate after the 52nd bit). If the 53rd bit is 1, then round up (add 1 to the 52 bit), unless
all known bits to the right of the 1 are 0’s, in which case 1 is added to bit 52 if and only if
bit 52 is 1.

For the number 9.4 discussed previously, the 53rd bit to the right of the binary point is
a 1 and is followed by other nonzero bits. The Rounding to Nearest Rule says to round up,
or add 1 to bit 52. Therefore, the floating point number that represents 9.4 is

+1,0010110011001100110011001100110011001100110011001101 | x 23. 0.7)

Denote the IEEE double precision floating point number associated to x, using the Rounding
to Nearest Rule, by fl(x). O

In computer arithmetic, the real number x is replaced with the string of bits fl(x).
According to this definition, f1(9.4) is the number in the binary representation (0.7). We
arrived at the floating point representation by discarding the infinite tail .1100 x 2752 x
23 = 0110 x 273! x 23 = 4 x 2=*3 from the right end of the number and then adding
2732 x 23 = 274 in the rounding step. Therefore,

194)=94+27% —04 x 278
=94+ (1-0.827%
=94402x27%. (0.8)
In other words, a computer using double precision representation and the Rounding to Near-
est Rule makes an error of 0.2 x 2=%° when storing 9.4. We call 0.2 x 2% the rounding
error.
The important message is that the floating point number representing 9.4 is not equal

to 9.4, although it is very close. To quantify that closeness, we use the standard definition
of error.

Let x. be a computed version of the exact quantity x. Then
absolute error = |x. — x|,
and

. |xe — x|
relative error =

|x|

if the latter quantity exists.)

Relative rounding error

In the IEEE machine arithmetic model, the relative rounding error of fl(x) is no more than
one-half machine epsilon:

fi(x) —x| 1
= Z€mach- 0.9
x| 2

In the case of the number x = 9.4, we worked out the rounding error in (0.8), which
must satisfy (0.9):
1(9.4) —9.4] 02x27% 8 552 1

9.4 04 a7 o T pfmeh

» EXAMPLE 0.2

0.3 Floating Point Representation of Real Numbers | 11

Find the double precision representation fl(x) and rounding error for x = 0.4.
Since (0.4)10 = (.0110),, left-justifying the binary number results in

0.4 =1.100110 x 272
= +1/1001100110011001100110011001100110011001100110011001

100110... x 272.

Therefore, according to the rounding rule, f1(0.4) is

+1.1001100110011001100110011001100110011001100110011010 | x 272

Here, 1 has been added to bit 52, which caused bit 51 also to change, due to carrying in the
binary addition.

Analyzing carefully, we discarded 273 x 272 4+ .0110 x 273* x 272 in the trun-
cation and added 272 x 272 by rounding up. Therefore,

f1(04) = 0.4 — 275 — 0.4 x 270 427
=04 +27*(=1/2-0141)
=04+27%4
=0.4+0.1 x 272,

Notice that the relative error in rounding for 0.4 is 0.1/0.4 X €mnach = 1/4 X €machs
obeying (0.9). <

0.3.2 Machine representation

So far, we have described a floating point representation in the abstract. Here are a few more
details about how this representation is implemented on a computer. Again, in this section
we will discuss the double precision format; the other formats are very similar.

Each double precision floating point number is assigned an 8-byte word, or 64 bits, to
store its three parts. Each such word has the form

sejer...ejib1by...bsy |, (0.10)

where the sign is stored, followed by 11 bits representing the exponent and the 52 bits
following the decimal point, representing the mantissa. The sign bit s is O for a positive
number and 1 for a negative number. The 11 bits representing the exponent come from the
positive binary integer resulting from adding 2! — 1 = 1023 to the exponent, at least for
exponents between —1022 and 1023. This covers values of e ... e from 1 to 2046, leaving
0 and 2047 for special purposes, which we will return to later.

The number 1023 is called the exponent bias of the double precision format. It is used
to convert both positive and negative exponents to positive binary numbers for storage in
the exponent bits. For single and long-double precision, the exponent bias values are 127
and 16383, respectively.

MATLAB’s format hex consists simply of expressing the 64 bits of the machine
number (0.10) as 16 successive hexadecimal, or base 16, numbers. Thus, the first 3 hex
numerals represent the sign and exponent combined, while the last 13 contain the mantissa.

For example, the number 1, or

1= +1.] 00 | x 2°,

12 | CHAPTER O Fundamentals

» EXAMPLE 0.3

has double precision machine number form

’ 0 | 01111111111 | 00

once the usual 1023 is added to the exponent. The first three hex digits correspond to
001111111111 =3FF,

so the format hex representation of the floating point number 1 will be
3 F F0000000000000. You can check this by typing format hex into MATLAB and enter-
ing the number 1.

Find the hex machine number representation of the real number 9.4.

From (0.7), we find that the sign is s = 0, the exponent is 3, and the 52 bits of the
mantissa after the decimal point are

looto] 1100] 1100] 1100 1100] 1100] 1100] 1100] 1100] 1100] 1100] 1100 1101]
— (2CCCCCCCCCCC D).

Adding 1023 to the exponent gives 1026 =2!9 42, or (10000000010),. The sign
and exponent combination is (010000000010), = (402)1¢, making the hex format
4022cccccecceccecececceceb. |

Now we return to the special exponent values 0 and 2047. The latter, 2047, is used to
represent oo if the mantissa bit string is all zeros and NaN, which stands for Not a Num-
ber, otherwise. Since 2047 is represented by eleven 1 bits, orejes...e;; = (111 1111 1111),,
the first twelve bits of Inf and -Inf are [O111 [1111 [1111]and [11111111] 1111}
respectively, and the remaining 52 bits (the mantissa) are zero. The machine number NaN
also begins | 1111 [1111 | 1111 | but has a nonzero mantissa. In summary,

’ machine number \ example \ hex format ‘
+Inf 1/0 | 7FF0000000000000
-Inf —1/0 | FFFO000000000000
NaN 0/0 | FFEXXXXXXXXXXXXX

where the x’s denote bits that are not all zero.

The special exponent 0, meaning eje; ...e1; = (000 0000 0000),, also denotes a depar-
ture from the standard floating point form. In this case the machine number is interpreted
as the non-normalized floating point number

:l:O. x 271022, (0.11)

Thatis, in this case only, the left-most bit is no longer assumed to be 1. These non-normalized
numbers are called subnormal floating point numbers. They extend the range of very small
numbers by a few more orders of magnitude. Therefore, 2792 x 271022 = 2=1074 5 the
smallest nonzero representable number in double precision. Its machine word is

’ 0 | 00000000000 | 0001 |.

Be sure to understand the difference between the smallest representable number 2974 and
€mach = 2752, Many numbers below epach are machine representable, even though adding
them to 1 may have no effect. On the other hand, double precision numbers below 271974
cannot be represented at all.

0.3 Floating Point Representation of Real Numbers | 13

The subnormal numbers include the most important number 0. In fact, the subnormal
representation includes two different floating point numbers, +0 and —O0, that are treated
in computations as the same real number. The machine representation of +0 has sign bit
s = 0, exponent bits ej ...e;; = 00000000000, and mantissa 52 zeros; in short, all 64 bits
are zero. The hex format for 4-0 is 0000000000000000. For the number —O0, all is exactly
the same, except for the sign bit s = 1. The hex format for —0 is 8000000000000000.

0.3.3 Addition of floating point numbers

Machine addition consists of lining up the decimal points of the two numbers to be added,
adding them, and then storing the result again as a floating point number. The addition itself
can be done in higher precision (with more than 52 bits) since it takes place in a register
dedicated just to that purpose. Following the addition, the result must be rounded back to
52 bits beyond the binary point for storage as a machine number.

For example, adding 1 to 2733 would appear as follows:

= 1.’ 0000OO0000000O0000000OO00OO0000000000000000000000000‘ x 20
+ 0.’ 00 ‘1 x 20

= 1.’ OOOOOOO0OOO0OOO0OOO0OO00OOO00OOOOOOOOOOOOOOOOOOOOOOO‘1 x 20

This is saved as 1. x 2° = 1, according to the rounding rule. Therefore, 1 4+ 273 is equal
to 1 in double precision IEEE arithmetic. Note that 273 is the largest floating point number
with this property; anything larger added to 1 would result in a sum greater than 1 under
computer arithmetic.

The fact that €maen = 272 does not mean that numbers smaller than €pyen are negli-
gible in the IEEE model. As long as they are representable in the model, computations with
numbers of this size are just as accurate, assuming that they are not added or subtracted to
numbers of unit size.

It is important to realize that computer arithmetic, because of the truncation and round-
ing that it carries out, can sometimes give surprising results. For example, if a double
precision computer with IEEE rounding to nearest is asked to store 9.4, then subtract 9,
and then subtract 0.4, the result will be something other than zero! What happens is the
following: First, 9.4 is stored as 9.4 4 0.2 x 274, as shown previously. When 9 is sub-
tracted (note that 9 can be represented with no error), the result is 0.4 + 0.2 x 249, Now,
asking the computer to subtract 0.4 results in subtracting (as we found in Example 0.2) the
machine number f1(0.4) = 0.4 + 0.1 x 2752 which will leave

02x2%_01x2P2=1x222*-1)=3x2">
instead of zero. This is a small number, on the order of €p,ch, but it is not zero. Since

MATLAB’s basic data type is the IEEE double precision number, we can illustrate this
finding in a MATLAB session:

>> format long
>> x=9.4

9.40000000000000

>> y=x-9

14 | CHAPTERO Fundamentals

» EXAMPLE 0.4

0.3 Exercises

0.40000000000000
>> z=y-0.4
7z =
3.330669073875470e-16
>> 3*27 (-53)
ans =
3.330669073875470e-16

Find the double precision floating point sum (1 4+ 3 x 273) — 1.

Of course, in real arithmetic the answer is 3 x 27>3. However, floating point
arithmetic may differ. Note that 3 x 2753 = 2752 4 2733 The first addition is

1]00...0] x 2° + 1]10...0] x 2752

= 1.] 0OO00OOO0OOO0OOO00OO00O0OOOOOOOOOOOOOOOOOOOOOOOOOOOO‘ x 20
+ O.’ 0001 ‘1 x 20

= 1.’ 0001 ‘1 x 20,

This is again the exceptional case for the rounding rule. Since bit 52 in the sum is 1, we
must round up, which means adding 1 to bit 52. After carrying, we get

+ 1./0010 | x 2°,

which is the representation of 1 + 2751 Therefore, after subtracting 1, the result will be
2751 which is equal to 2€mach = 4 X 2733, Once again, note the difference between com-
puter arithmetic and exact arithmetic. Check this result by using MATLAB. |

Calculations in MATLAB, or in any compiler performing floating point calculation under
the IEEE standard, follow the precise rules described in this section. Although floating
point calculation can give surprising results because it differs from exact arithmetic, it is
always predictable. The Rounding to Nearest Rule is the typical default rounding, although,
if desired, it is possible to change to other rounding rules by using compiler flags. The
comparison of results from different rounding protocols is sometimes useful as an informal
way to assess the stability of a calculation.

It may be surprising that small rounding errors alone, of relative size €py,ch, are capable
of derailing meaningful calculations. One mechanism for this is introduced in the next
section. More generally, the study of error magnification and conditioning is a recurring
theme in Chapters 1, 2, and beyond.

Convert the following base 10 numbers to binary and express each as a floating point number
fl(x) by using the Rounding to Nearest Rule: (a) 1/4 (b) 1/3 (c) 2/3 (d) 0.9

10.

11.
12.

13.

14.

15.

0.3 Floating Point Representation of Real Numbers | 15

Convert the following base 10 numbers to binary and express each as a floating point number
fl(x) by using the Rounding to Nearest Rule: (a) 9.5 (b) 9.6 (c) 100.2 (d) 44/7

For which positive integers k can the number 5 + 2~ be represented exactly (with no
rounding error) in double precision floating point arithmetic?

Find the largest integer & for which f1(19 + 27%) > fi(19) in double precision floating point
arithmetic.

Do the following sums by hand in IEEE double precision computer arithmetic, using the
Rounding to Nearest Rule. (Check your answers, using MATLAB.)

(@ 1+ 42738y -1
(b)) (14 @1 427524273y

Do the following sums by hand in IEEE double precision computer arithmetic, using the
Rounding to Nearest Rule:

@ (4@ +2724279%) -1
(b) (14 @731 +2752 4 2760))

Write each of the given numbers in MATLAB’s format hex. Show your work. Then check
your answers with MATLAB. (a) 8 (b) 21 (c) 1/8 (d) fl (1/3) (e) 1 (2/3) () fl (0.1) (g) 1 (—0.1)
(h) 1 (—0.2)

Is 1/3 + 2/3 exactly equal to 1 in double precision floating point arithmetic, using the IEEE
Rounding to Nearest Rule? You will need to use fl (1/3) and fl (2/3) from Exercise 1. Does
this help explain why the rule is expressed as it is? Would the sum be the same if chopping
after bit 52 were used instead of IEEE rounding?

(a) Explain why you can determine machine epsilon on a computer using IEEE double
precision and the IEEE Rounding to Nearest Rule by calculating (7/3 — 4/3) — 1. (b) Does
(4/3 — 1/3) — 1 also give €mach ? Explain by converting to floating point numbers and
carrying out the machine arithmetic.

Decide whether 1 4+ x > 1 in double precision floating point arithmetic, with Rounding to
Nearest. (a) x =273 (b)x =273 42760

Does the associative law hold for IEEE computer addition?

Find the IEEE double precision representation fl(x), and find the exact difference fl(x) — x for
the given real numbers. Check that the relative rounding error is no more than €m,cp /2.
(@x=1/3b)x=33(@)x=9/7

There are 64 double precision floating point numbers whose 64-bit machine representations
have exactly one nonzero bit. Find the (a) largest (b) second-largest (c) smallest of these
numbers.

Do the following operations by hand in IEEE double precision computer arithmetic, using the
Rounding to Nearest Rule. (Check your answers, using MATLAB.)
(a)(43—-33)—1(b)44—-34) —1()49-39 —1

Do the following operations by hand in IEEE double precision computer arithmetic, using the
Rounding to Nearest Rule.
()83 —-73)—1(Mb)B4—-74) —1()(8.8—-7.8)—1

16 | CHAPTERO Fundamentals

16.

Find the IEEE double precision representation fl(x), and find the exact difference fl(x) — x for
the given real numbers. Check that the relative rounding error is no more than €py,cp /2.
(@x=275M0)x=2.7()x =10/3

0.4 LOSS OF SIGNIFICANCE

» EXAMPLE 0.5

An advantage of knowing the details of computer arithmetic is that we are therefore in a
better position to understand potential pitfalls in computer calculations. One major problem
that arises in many forms is the loss of significant digits that results from subtracting nearly
equal numbers. In its simplest form, this is an obvious statement. Assume that through
considerable effort, as part of a long calculation, we have determined two numbers correct
to seven significant digits, and now need to subtract them:

123.4567
— 123.4566

000.0001

The subtraction problem began with two input numbers that we knew to seven-digit accu-
racy, and ended with a result that has only one-digit accuracy. Although this example is
quite straightforward, there are other examples of loss of significance that are more subtle,
and in many cases this can be avoided by restructuring the calculation.

Calculate +/9.01 — 3 on a three-decimal-digit computer.

This example is still fairly simple and is presented only for illustrative purposes.
Instead of using a computer with a 52-bit mantissa, as in double precision IEEE standard
format, we assume that we are using a three-decimal-digit computer. Using a three-digit
computer means that storing each intermediate calculation along the way implies storing
into a floating point number with a three-digit mantissa. The problem data (the 9.01 and
3.00) are given to three-digit accuracy. Since we are going to use a three-digit computer,
being optimistic, we might hope to get an answer that is good to three digits. (Of course, we
can’t expect more than this because we only carry along three digits during the calculation.)
Checking on a hand calculator, we see that the correct answer is approximately 0.0016662 =
1.6662 x 1073, How many correct digits do we get with the three-digit computer?

None, as it turns out. Since +/9.01 ~ 3.0016662, when we store this intermediate
result to three significant digits we get 3.00. Subtracting 3.00, we get a final answer of 0.00.
No significant digits in our answer are correct.

Surprisingly, there is a way to save this computation, even on a three-digit com-
puter. What is causing the loss of significance is the fact that we are explicitly subtracting
nearly equal numbers, +/9.01 and 3. We can avoid this problem by using algebra to rewrite
the expression:

(+/9.01 — 3)(+/9.01 + 3)
V9.0l — 3=
V9.0 +3

_9.01 —3?
/90143
0.01 01
= =" =0.00167~1.67 x 1073,
30043 6 *

Here, we have rounded the last digit of the mantissa up to 7 since the next digit is 6. Notice
that we got all three digits correct this way, at least the three digits that the correct answer

» EXAMPLE 0.6

0.4 Loss of Significance | 17

rounds to. The lesson is that it is important to find ways to avoid subtracting nearly equal
numbers in calculations, if possible. <

The method that worked in the preceding example was essentially a trick. Multiplying
by the “conjugate expression’ is one trick that can help restructure the calculation. Often,
specific identities can be used, as with trigonometric expressions. For example, calculation
of 1 — cosx when x is close to zero is subject to loss of significance. Let’s compare the
calculation of the expressions

1 — cosx 1
=——>— and E)=———
1 + cosx
for a range of input numbers x. We arrived at £, by multiplying the numerator and denomi-
natorof E1 by 1 + cosx, and using the trig identity sin?x + cos?x = 1.Ininfinite precision,
the two expressions are equal. Using the double precision of MATLAB computations, we get
the following table:

X E 1 FE 2
1.00000000000000 | 0.64922320520476 | 0.64922320520476
0.10000000000000 | 0.50125208628858 | 0.50125208628857
0.01000000000000 | 0.50001250020848 | 0.50001250020834
0.00100000000000 | 0.50000012499219 | 0.50000012500002
0.00010000000000 | 0.49999999862793 | 0.50000000125000
0.00001000000000 | 0.50000004138685 | 0.50000000001250
0.00000100000000 | 0.50004445029134 | 0.50000000000013
0.00000010000000 | 0.49960036108132 | 0.50000000000000
0.00000001000000 | 0.00000000000000 | 0.50000000000000
0.00000000100000 | 0.00000000000000 | 0.50000000000000
0.00000000010000 | 0.00000000000000 | 0.50000000000000
0.00000000001000 | 0.00000000000000 | 0.50000000000000
0.00000000000100 | 0.00000000000000 | 0.50000000000000

The right column E; is correct up to the digits shown. The E; computation, due to the
subtraction of nearly equal numbers, is having major problems below x = 107> and has no
correct significant digits for inputs x = 10~% and below.

The expression £ already has several incorrect digits for x = 10~* and gets worse as
x decreases. The equivalent expression £, does not subtract nearly equal numbers and has
no such problems.

The quadratic formula is often subject to loss of significance. Again, it is easy to avoid
as long as you know it is there and how to restructure the expression.

Find both roots of the quadratic equation x> + 9'2x = 3.

Try this one in double precision arithmetic, for example, using MATLAB. Neither
one will give the right answer unless you are aware of loss of significance and know how
to counteract it. The problem is to find both roots, let’s say, with four-digit accuracy. So far
it looks like an easy problem. The roots of a quadratic equation of form ax? + bx + ¢ =0
are given by the quadratic formula

b+ 2 _ 4
v= b VZ” ac (0.12)
a

For our problem, this translates to

_ 9124 /92 4 4(3)
B 2

18 | CHAPTER O Fundamentals
Using the minus sign gives the root
x; = —2.824 x 10",
correct to four significant digits. For the plus sign root

—912 4+ /924 1 4(3)
X2 = 3 s

MATLAB calculates 0. Although the correct answer is close to 0, the answer has no correct
significant digits—even though the numbers defining the problem were specified exactly
(essentially with infinitely many correct digits) and despite the fact that MATLAB computes
with approximately 16 significant digits (an interpretation of the fact that the machine
epsilon of MATLAB is 2772 & 2.2 x 107!6). How do we explain the total failure to get
accurate digits for x,?

The answer is loss of significance. It is clear that 9'> and /924 + 4(3) are nearly
equal, relatively speaking. More precisely, as stored floating point numbers, their mantissas
not only start off similarly, but also are actually identical. When they are subtracted, as
directed by the quadratic formula, of course the result is zero.

Can this calculation be saved? We must fix the loss of significance problem. The
correct way to compute x; is by restructuring the quadratic formula:

_ —b+~b? —4ac
B 2a

_(=b+ Vb2 — dac)(b + v/b? — 4ac)
- 2a(b + /b — 4ac)

. —4ac

~ 2a(b + Vb — 4ac)

. —2c

(b + VB2 —dac)

x2

Substituting a, b, ¢ for our example yields, according to MATLAB, x, = 1.062 x 107!,
which is correct to four significant digits of accuracy, as required. <

This example shows us that the quadratic formula (0.12) must be used with care in
cases where a and/or ¢ are small compared with 5. More precisely, if 4|ac| < b2, then b
and +/b? — 4ac are nearly equal in magnitude, and one of the roots is subject to loss of
significance. If b is positive in this situation, then the two roots should be calculated as

b+ Vb? — dac 2¢
X = 2T VOT TR xy = — . 0.13)
2a (b + Vb?* — 4ac)

Note that neither formula suffers from subtracting nearly equal numbers. On the other hand,
if b is negative and 4|ac| < b2, then the two roots are best calculated as

_ —b+b? —4ac 2¢

and xp =

2a (=b + v/bZ — 4ac)’

X1 (0.14)

0.4 Exercises

0.5 Review of Calculus | 19

Identify for which values of x there is subtraction of nearly equal numbers, and find an
alternate form that avoids the problem.

_ (1 —)3
1 — secx ®) I —(1—x) © 1 1

tan2 x x I+x 1-—x

(a)

Find the roots of the equation x? + 3x — 8~ !4 = 0 with three-digit accuracy.

Explain how to most accurately compute the two roots of the equation x> + bx — 10712 =0,
where b is a number greater than 100.

Prove formula 0.14.

0.4 Computer Problems

1.

Calculate the expressions that follow in double precision arithmetic (using MATLAB, for
example) for x = 1071,..., 10714, Then, using an alternative form of the expression that
doesn’t suffer from subtracting nearly equal numbers, repeat the calculation and make a table
of results. Report the number of correct digits in the original expression for each x.

_ (1 —)3
1 —secx) 1—({—x)

tan? x X

(a)

Find the smallest value of p for which the expression calculated in double precision arithmetic
at x = 1077 has no correct significant digits. (Hint: First find the limit of the expression as
x—0.)

tanx — x e 4+ cosx —sinx — 2

x3 ® x3

(a)

Evaluate the quantity a + v/ a2 + b? to four correct significant digits,
where a = —12345678987654321 and b = 123.

Evaluate the quantity v/c2 + d — ¢ to four correct significant digits,
where ¢ = 246886422468 and d = 13579.

Consider a right triangle whose legs are of length 3344556600 and 1.2222222. How much
longer is the hypotenuse than the longer leg? Give your answer with at least four correct
digits.

0.5 REVIEW OF CALCULUS

Some important basic facts from calculus will be necessary later. The Intermediate Value
Theorem and the Mean Value Theorem are important for solving equations in Chapter 1.
Taylor’s Theorem is important for understanding interpolation in Chapter 3 and becomes
of paramount importance for solving differential equations in Chapters 6, 7, and 8.

The graph of a continuous function has no gaps. For example, if the function is positive
for one x-value and negative for another, it must pass through zero somewhere. This fact is
basic for getting equation solvers to work in the next chapter. The first theorem, illustrated
in Figure 0.1(a), generalizes this notion.

20 | CHAPTER O Fundamentals

fo) 7 flo) b-- A

S

THEOREM 0.4

» EXAMPLE 0.7

THEOREM 0.5

THEOREM 0.6

» EXAMPLE 0.8

THEOREM 0.7

a c b a c b

(b) ©

Figure 0.1 Three important theorems from calculus. There exist numbers ¢ between
a and b such that: (a) f(c) =y, for any given y between f(a) and f(b), by Theorem
0.4, the Intermediate Value Theorem (b) the instantaneous slope of f at ¢ equals

(f(b)y — f(a))/(b — a) by Theorem 0.6, the Mean Value Theorem (c) the vertically shaded
region is equal in area to the horizontally shaded region, by Theorem 0.9, the Mean
Value Theorem for Integrals, shown in the special case g(x) =1.

(Intermediate Value Theorem) Let f be a continuous function on the interval [a, b]. Then
f realizes every value between f(a) and f(b). More precisely, if y is a number between
f(a) and f(b), then there exists a number ¢ with a < ¢ < b such that f(c) = y. |

Show that f(x) = x2 — 3 on the interval [1, 3] must take on the values 0 and 1.

Because f(1) = —2 and f(3) = 6, all values between —2 and 6, including 0 and
1, must be taken on by f. For example, setting ¢ = +/3, note that f(c¢) = f(~/3) =0, and
secondly, f(2) = 1. <

(Continuous Limits) Let f be a continuous function in a neighborhood of x(, and assume
lim;,— o0 X, = x¢. Then

1m1ﬂw)=f(mnh)=f@@. m
n—oQ n— o0
In other words, limits may be brought inside continuous functions.

(Mean Value Theorem) Let f be a continuously differentiable function on the interval
[a, b]. Then there exists a number ¢ between a and b such that f(c) = (f(b) — f(a))/
(b — a). |

Apply the Mean Value Theorem to f(x) = x% — 3 on the interval [1, 3].

The content of the theorem is that because f(1) = —2 and f(3) = 6, there must
exist a number c in the interval (1, 3) satisfying /"(c) = (6 — (=2))/(3 — 1) = 4. Itis easy
to find such a c. Since f”(x) = 2x, the correct ¢ = 2. <

The next statement is a special case of the Mean Value Theorem.
(Rolle’s Theorem) Let f be a continuously differentiable function on the interval [a, b],

and assume that f(a) = f(b). Then there exists a number ¢ between a and b such that
/(@) =0. |

THEOREM 0.8

» EXAMPLE 0.9

0.5 Review of Calculus | 21

Figure 0.2 Taylor's Theorem with Remainder. The function f(x), denoted by the solid
curve, is approximated successively better near xo by the degree 0 Taylor polynomial
(horizontal dashed line), the degree 1 Taylor polynomial (slanted dashed line), and the
degree 2 Taylor polynomial (dashed parabola). The difference between f(x) and its
approximation at x is the Taylor remainder.

Taylor approximation underlies many simple computational techniques that we will
study. If a function f is known well at a point x¢, then a lot of information about f at nearby
points can be learned. If the function is continuous, then for points x near xg, the function
value f(x) will be approximated reasonably well by f'(xp). However, if f"(xp) > 0, then
has greater values for nearby points to the right, and lesser values for points to the left, since
the slope near x is approximately given by the derivative. The line through (xo, f(x¢)) with
slope f”(x0), shown in Figure 0.2, is the Taylor approximation of degree 1. Further small
corrections can be extracted from higher derivatives, and give the higher degree Taylor
approximations. Taylor’s Theorem uses the entire set of derivatives at xo to give a full
accounting of the function values in a small neighborhood of x.

(Taylor’s Theorem with Remainder) Let x and x(be real numbers, and let f be k 4 1 times
continuously differentiable on the interval between x and x. Then there exists a number ¢
between x and xq such that

J" (x0) S (x0)

S0 = f(x0) + [G0 = x0) + 5= = x0)? + T = x0)
% (x0) AR K
)+ e = o) .

The polynomial part of the result, the terms up to degree k in x — xo, is called the
degree k Taylor polynomial for f centered at xo. The final term is called the Taylor
remainder. To the extent that the Taylor remainder term is small, Taylor’s Theorem gives a
way to approximate a general, smooth function with a polynomial. This is very convenient
in solving problems with a computer, which, as mentioned earlier, can evaluate polynomials
very efficiently.

Find the degree 4 Taylor polynomial P;(x) for f(x) =sinx centered at the point
xo = 0. Estimate the maximum possible error when using P;(x) to estimate sinx for
[x] < 0.0001.

22 | CHAPTER O Fundamentals

THEOREM 0.9

0.5 Exercises

The polynomial is easily calculated to be P4(x) = x — x3/6. Note that the degree
4 term is absent, since its coefficient is zero. The remainder term is
%5
——cosc,

120

which in absolute value cannot be larger than Ix|?/120. For |x| < 0.0001, the remainder
is at most 10720 /120 and will be invisible when, for example, x — x3 /6 is used in double
precision to approximate sin0.0001. Check this by computing both in MATLAB. |

Finally, the integral version of the Mean Value Theorem is illustrated in Figure 0.1(c).

(Mean Value Theorem for Integrals) Let f be a continuous function on the interval [a, b],
and let g be an integrable function that does not change sign on [a, b]. Then there exists a
number ¢ between a and b such that

b b
/ Sx)g(x) dx = f(c)/ g(x) dx.

Use the Intermediate Value Theorem to prove that f(¢) = 0 for some 0 < ¢ < 1.
(@ f(x)=x3—4x +1(0) f(x) =5cosmx —4(c) f(x) =8x* —8x2+ 1

Find ¢ satisfying the Mean Value Theorem for f(x) on the interval [0, 1]. (a) f(x) = ¢*
(b) f(x) =x?(c) f(x)=1/(x + 1)

Find ¢ satisfying the Mean Value Theorem for Integrals with f(x), g(x) in the interval [0, 1].
(@) f(x) =x,g(x) =x (b) f(x) =x*gx)=x(c) [(x) =x,g(x) =¢"

Find the Taylor polynomial of degree 2 about the point x = 0 for the following functions:

@ f(x) =€ (b) f(x) = cos5x (¢) f(x)=1/(x + 1)

Find the Taylor polynomial of degree 5 about the point x = 0 for the following functions:
@ f(x) =€ (b) f(x) =cos2x (¢) f(x) =In(l +x) (d) f(x) = sin’x

(a) Find the Taylor polynomial of degree 4 for f(x) = x~2 about the point x = 1.

(b) Use the result of (a) to approximate f(0.9) and f(1.1).

(c) Use the Taylor remainder to find an error formula for the Taylor polynomial. Give error
bounds for each of the two approximations made in part (b). Which of the two approximations
in part (b) do you expect to be closer to the correct value?

(d) Use a calculator to compare the actual error in each case with your error bound from part (c).
Carry out Exercise 6 (a)—(d) for f(x) =1Inx.

(a) Find the degree 5 Taylor polynomial P(x) centered at x = 0 for f(x) = cosx. (b) Find an
upper bound for the error in approximating f(x) = cosx for x in [—x /4,7 /4] by P(x).

A common approximation for /T + x is 1 + 3x, when x is small. Use the degree 1 Taylor
polynomial of f(x) = /T + x with remainder to determine a formula of form /T + x =

1+ %x + E. Evaluate E for the case of approximating /1.02. Use a calculator to compare the
actual error to your error bound E.

Software and Further Reading | 23

Software and Further Reading

The IEEE standard for floating point computation is published as IEEE Standard 754 [1985].
Goldberg [1991] and Stallings [2003] discuss floating point arithmetic in great detail, and
Overton [2001] emphasizes the IEEE 754 standard. The texts Wilkinson [1994] and Knuth
[1981] had great influence on the development of both hardware and software.

There are several software packages that specialize in general-purpose scientific com-
puting, the bulk of it done in floating point arithmetic. Netlib (http://www.netlib.org) is
a collection of free software maintained by AT&T Bell Laboratories, the University of
Tennessee, and Oak Ridge National Laboratory. The collection consists of high-quality
programs available in Fortran, C, and Java, but it comes with little support. The comments
in the code are meant to be sufficiently instructive for the user to operate the program.

The Numerical Algorithms Group (NAG) (http://www.nag.co.uk) markets a library
containing over 1400 user-callable subroutines for solving general applied math problems.
The programs are available in Fortran and C and are callable from Java programs. NAG
includes libraries for shared memory and distributed memory computing.

The International Mathematics and Statistics Library (IMSL) is a product of Rogue
Wave Software (www.roguewave.com), and covers areas similar to those covered by the
NAG library. Fortran, C, and Java programs are available. It also provides PV-WAVE,
a powerful programming language with data analysis and visualization capabilities.

The computing environments Mathematica, Maple, and MATLAB have grown to encom-
pass many of the same computational methods previously described and have built-in edit-
ing and graphical interfaces. Mathematica (http://www.wolframresearch.com) and Maple
(www.maplesoft.com) came to prominence due to novel symbolic computing engines.
MATLAB has grown to serve many science and engineering applications through “tool-
boxes,”” which leverage the basic high-quality software into divers directions.

In this text, we frequently illustrate basic algorithms with MATLAB implementations.
The MATLAB code given is meant to be instructional only. Quite often, speed and reliability
are sacrificed for clarity and readability. Readers who are new to MATLAB should begin
with the tutorial in Appendix B; they will soon be doing their own implementations.

http://www.netlib.org
http://www.nag.co.uk
www.roguewave.com
http://www.wolframresearch.com
www.maplesoft.com

Solving Equations

A recently excavated cuneiform tablet shows that the
Babylonians calculated the square root of 2 correctly to
within five decimal places. Their technique is unknown,
but in this chapter we introduce iterative methods that
they may have used and that are still used by modern
calculators to find square roots.

The Stewart platform, a six-degree-of-freedom
robot that can be located with extreme precision, was
originally developed by Eric Gough of Dunlop Tire Cor-
poration in the 1950s to test airplane tires. Today its

applications range from flight simulators, which are
often of considerable mass, to medical and surgical
applications, where precision is very important. Solving
the forward kinematics problem requires determining
the position and orientation of the platform, given the
strut lengths.
Reality

Check Reality Check 1 on page 67 uses the
methods developed in this chapter to solve the forward
kinematics of a planar version of the Stewart platform.

Equation solving is one of the most basic problems in scientific computing. This chapter
introduces a number of iterative methods for locating solutions x of the equation
f(x) =0. These methods are of great practical importance. In addition, they illustrate
the central roles of convergence and complexity in scientific computing.

Why is it necessary to know more than one method for solving equations? Often,
the choice of method will depend on the cost of evaluating the function f and perhaps its
derivative. If f(x) = ¢* — sinx, it may take less than one-millionth of a second to determine
f(x), and its derivative is available if needed. If f'(x) denotes the freezing temperature of
an ethylene glycol solution under x atmospheres of pressure, each function evaluation may
require considerable time in a well-equipped laboratory, and determining the derivative

may be infeasible.

In addition to introducing methods such as the Bisection Method, Fixed-Point Iteration,
and Newton’s Method, we will analyze their rates of convergence and discuss their com-
putational complexity. Later, more sophisticated equation solvers are presented, including
Brent’s Method, that combines the best properties of several solvers.

1.1 The Bisection Method | 25

1.1 THEBISECTION METHOD

DEFINITION 1.1

THEOREM 1.2

How do you look up a name in an unfamiliar phone book? To look up “Smith,” you might
begin by opening the book at your best guess, say, the letter Q. Next you may turn a
sheaf of pages and end up at the letter U. Now you have “bracketed” the name Smith and
need to hone in on it by using smaller and smaller brackets that eventually converge to
the name. The Bisection Method represents this type of reasoning, done as efficiently as
possible.

1.1.1 Bracketing a root
The function f(x) has arootatx =rif f(r) =0. d

The first step to solving an equation is to verify that a root exists. One way to ensure
this is to bracket the root: to find an interval [a, b] on the real line for which one of the pair
{ f(a), f(b)} is positive and the other is negative. This can be expressed as f(a) f(b) < 0.
If f is a continuous function, then there will be a root: an r between « and b for which
f(r) =0. This fact is summarized in the following corollary of the Intermediate Value
Theorem 0.4:

Let f be a continuous function on [a,b], satisfying f(a) f(b) < 0. Then f has a
root between a and b, that is, there exists a number r satisfying a <r < b and

f(r)=0.]

In Figure 1.1, £(0) f(1) = (—1)(1) < 0. There is a root just to the left of 0.7. How can
we refine our first guess of the root’s location to more decimal places?

Y

A

Figure 1.1 A plot of f(x) =x3 + x — 1. The function has a root between 0.6 and 0.7.

We’ll take a cue from the way our eye finds a solution when given a plot of a function.
It is unlikely that we start at the left end of the interval and move to the right, stopping at the
root. Perhaps a better model of what happens is that the eye first decides the general location,
such as whether the root is toward the left or the right of the interval. It then follows that up
by deciding more precisely just how far right or left the root lies and gradually improves
its accuracy, just like looking up a name in the phone book. This general approach is made
quite specific in the Bisection Method, shown in Figure 1.2.

26 | CHAPTER 1 Solving Equations

» EXAMPLE 1.1

) €o by
a ¢ b,
ay ¢ by

Figure 1.2 The Bisection Method. On the first step, the sign of f(cg) is checked.
Since f(cg)f(bg) <0, set a; = cg, b1 = by, and the interval is replaced by the right half
[ay,b1]. On the second step, the subinterval is replaced by its left half [ay, by].

Bisection Method

Given initial interval [a, b] such that f(a) f(b) <0
while (b — a)/2 > TOL
c=(a+b)/2
if f(c) =0, stop, end
if f(a) f(c) <0
b=c
else
a=c

end
The final interval [a, b] contains a root.
The approximate root is (a + b)/2.

Check the value of the function at the midpoint ¢ = (@ + b)/2 of the interval. Since
f(a) and f(b) have opposite signs, either f(c) = 0 (in which case we have found a root and
are done), or the sign of f(c) is opposite the sign of either f(a) or f(b).If f(c) f(a) <O,
for example, we are assured a solution in the interval [a, c], whose length is half that of
the original interval [a, b]. If instead f(c) f(b) < 0, we can say the same of the interval
[c,b]. In either case, one step reduces the problem to finding a root on an interval of
one-half the original size. This step can be repeated to locate the function more and more
accurately.

A solution is bracketed by the new interval at each step, reducing the uncertainty in
the location of the solution as the interval becomes smaller. An entire plot of the func-
tion f is not needed. We have reduced the work of function evaluation to only what is
necessary.

Find a root of the function f(x) = x3 4+ x — 1 by using the Bisection Method on the interval
[0, 1].

As noted, f(ag) f(bg) = (—1)(1) < 0, so aroot exists in the interval. The interval
midpointis co = 1/2. The first step consists of evaluating f(1/2) = —3/8 < 0 and choosing
the new interval [ay,b] = [1/2, 1], since f(1/2)f(1) < 0. The second step consists of

1.1 The Bisection Method | 27

evaluating f(c;) = f(3/4) = 11/64 > 0, leading to the new interval [as, by] = [1/2,3/4].
Continuing in this way yields the following intervals:

i a; S(ai) Ci f(ci) b; f(bi)
0 | 0.0000 — 0.5000 — 1.0000 +
1 | 0.5000 — 0.7500 + 1.0000 +
2 | 0.5000 — 0.6250 — 0.7500 +
3 1 0.6250 — 0.6875 + 0.7500 +
4 1 0.6250 — 0.6562 — 0.6875 +
5 | 0.6562 — 0.6719 — 0.6875 +
6 | 0.6719 — 0.6797 — 0.6875 +
7 | 0.6797 — 0.6836 + 0.6875 +
8 | 0.6797 — 0.6816 — 0.6836 +
9 | 0.6816 — 0.6826 + 0.6836 +

We conclude from the table that the solution is bracketed between ag ~ 0.6816
and c9 &~ 0.6826. The midpoint of that interval cjo ~ 0.6821 is our best guess for the
root.

Although the problem was to find a root, what we have actually found is an inter-
val [0.6816,0.6826] that contains a root; in other words, the root is » = 0.6821 +
0.0005. We will have to be satisfied with an approximation. Of course, the approx-
imation can be improved, if needed, by completing more steps of the Bisection
Method. <

At each step of the Bisection Method, we compute the midpoint ¢; = (a; + b;)/2 of
the current interval [a;, b;], calculate f(c;), and compare signs. If f(c;) f(a;) <0, we
set aj+1 = a; and b;j1 = ¢;. If, instead, f(¢;) f(a;) > 0, we set a;+1 = ¢; and bj+1 = b;.
Each step requires one new evaluation of the function f and bisects the interval contain-
ing a root, reducing its length by a factor of 2. After n steps of calculating ¢ and f(c),
we have done n + 2 function evaluations, and our best estimate of the solution is the
midpoint of the latest interval. The algorithm can be written in the following MATLAB
code:

$Program 1.1 Bisection Method
$Computes approximate solution of f (x)=0
$Input: function handle f; a,b such that f(a)*f(b)<0,
and tolerance tol
$Output: Approximate solution xc
function xc=bisect (f,a,b,tol)
if sign(f(a))*sign(f(b)) >= 0
error ('f(a)f (b)<0 not satisfied!’) %ceases execution
end
fa=f (a) ;
fb=f (b) ;
while (b-a)/2>tol
c=(a+b)/2;
fe=f (c);
if fc == 0 %$c is a solution, done

o°

28 | CHAPTER 1 Solving Equations

DEFINITION 1.3

» EXAMPLE 1.2

break
end
if sign(fc)*sign(fa)<0 %a and c make the new interval
b=c; fb=fc;
else $c and b make the new interval
a=c;fa=fc;
end
end
xc=(a+b) /2; $new midpoint is best estimate

To use bisect .m, first define a MATLAB function by:

>> f=@(x) x"3+x-1;

This command actually defines a “function handle” £, which can be used as input for other
MATLAB functions. See Appendix B for more details on MATLAB functions and function
handles. Then the command

» xc=bisect (£,0,1,0.00005)

returns a solution correct to a tolerance of 0.00005.

1.1.2 How accurate and how fast?

If [a, b] is the starting interval, then after n bisection steps, the interval [a,, b,] has length
(b — a)/2". Choosing the midpoint x, = (a, + b,)/2 gives a best estimate of the solution r,
which is within half the interval length of the true solution. Summarizing, after n steps of
the Bisection Method, we find that

. b—a
Solution error = |x, — 7| < T (1.1)
and
Function evaluations = n + 2. (1.2)

A good way to assess the efficiency of the Bisection Method is to ask how much
accuracy can be bought per function evaluation. Each step, or each function evaluation,
cuts the uncertainty in the root by a factor of two.

A solution is correct within p decimal places if the error is less than 0.5 x 1077, O

Use the Bisection Method to find a root of f(x) = cosx — x in the interval [0, 1] to within
six correct places.

First we decide how many steps of bisection are required. According to (1.1), the
error after n steps is (b — a)/2"+! = 1/2"*!. From the definition of p decimal places, we
require that

1 —6

6 6
—— =19.9.

n>———x
log;p2 0.301

Therefore, n = 20 steps will be needed. Proceeding with the Bisection Method, the follow-
ing table is produced:

1.1 Exercises

1.1 The Bisection Method | 29

k ay S (ak) Cck S (k) by, S (br)
0 | 0.000000 + 0.500000 + 1.000000 —
1 | 0.500000 + 0.750000 — 1.000000 —
2 | 0.500000 + 0.625000 + 0.750000 —
3 1 0.625000 + 0.687500 + 0.750000 —
4 | 0.687500 + 0.718750 + 0.750000 —
51 0.718750 + 0.734375 + 0.750000 —
6 | 0.734375 + 0.742188 — 0.750000 —
7 | 0.734375 + 0.738281 + 0.742188 —
8 | 0.738281 + 0.740234 — 0.742188 —
9 | 0.738281 + 0.739258 — 0.740234 —
10 | 0.738281 + 0.738770 + 0.739258 —
11 | 0.738769 + 0.739014 + 0.739258 —
12 | 0.739013 + 0.739136 — 0.739258 —
13 | 0.739013 + 0.739075 + 0.739136 —
14 | 0.739074 + 0.739105 — 0.739136 —
15 | 0.739074 + 0.739090 — 0.739105 —
16 | 0.739074 + 0.739082 + 0.739090 —
17 | 0.739082 + 0.739086 — 0.739090 —
18 | 0.739082 + 0.739084 + 0.739086 —
19 | 0.739084 + 0.739085 — 0.739086 —
20 | 0.739084 + 0.739085 — 0.739085 —

The approximate root to six correct places is 0.739085.

<

For the Bisection Method, the question of how many steps to run is a simple one—just
choose the desired precision and find the number of necessary steps, as in (1.1). We will
see that more high-powered algorithms are often less predictable and have no analogue to
(1.1). In those cases, we will need to establish definite “stopping criteria’ that govern the
circumstances under which the algorithm terminates. Even for the Bisection Method, the
finite precision of computer arithmetic will put a limit on the number of possible correct
digits. We will look into this issue further in Section 1.3.

Use the Intermediate Value Theorem to find an interval of length one that contains a root of the

equation. (a) X =9Mm)3x3 +x2=x+5()cos?x +6=x

Use the Intermediate Value Theorem to find an interval of length one that contains a root of the

equation. (a) x4+ x=1(b)sinx =6x+5()Inx +x>=3

Consider the equations in Exercise 1. Apply two steps of the Bisection Method to find an

approximate root within 1/8 of the true root.

Consider the equations in Exercise 2. Apply two steps of the Bisection Method to find an

approximate root within 1/8 of the true root.

Consider the equation x* = x> + 10.

(a) Find an interval [a, b] of length one inside which the equation has a solution.

(b) Starting with [a, b], how many steps of the Bisection Method are required to calculate the

solution within 107197 Answer with an integer.

Suppose that the Bisection Method with starting interval [—2, 1] is used to find a root of the

function f(x) = 1/x. Does the method converge to a real number? Is it the root?

30 | CHAPTER 1 Solving Equations

1.1 Computer Problems

1.

Use the Bisection Method to find the root to six correct decimal places. (a) x=9
®)3x3 +x2=x+5()cos’x +6=x

Use the Bisection Method to find the root to eight correct decimal places. (a) x> + x = 1
(b) sinx = 6x + 5 (c) Inx + x? =3

Use the Bisection Method to locate all solutions of the following equations. Sketch the
function by using MATLAB’s plot command and identify three intervals of length one that
contain a root. Then find the roots to six correct decimal places. (a) 2x3—6x—1=0
e 2+x3—x=0()1+5x —6x>—e*=0

Calculate the square roots of the following numbers to eight correct decimal places by using
the Bisection Method to solve x2 — 4 = 0, where 4 is (a) 2 (b) 3 (c) 5. State your starting
interval and the number of steps needed.

Calculate the cube roots of the following numbers to eight correct decimal places by using the
Bisection Method to solve x3 — 4 = 0, where 4 is (a) 2 (b) 3 (c) 5. State your starting interval
and the number of steps needed.

Use the Bisection Method to calculate the solution of cosx = sinx in the interval [0, 1] within
six correct decimal places.

Use the Bisection Method to find the two real numbers x, within six correct decimal places,
that make the determinant of the matrix

1 2 3 «x
4= 45 x 6
7 x 8 9
x 10 11 12

equal to 1000. For each solution you find, test it by computing the corresponding determinant
and reporting how many correct decimal places (after the decimal point) the determinant has
when your solution x is used. (In Section 1.2, we will call this the “backward error’” associated
with the approximate solution.) You may use the MATLAB command det to compute the
determinants.

The Hilbert matrix is the » x n matrix whose ijth entry is 1/(i + j — 1). Let 4 denote the

5 x 5 Hilbert matrix. Its largest eigenvalue is about 1.567. Use the Bisection Method to decide
how to change the upper left entry 4 to make the largest eigenvalue of 4 equal to 7.
Determine 41; within six correct decimal places. You may use the MATLAB commands hilb,
pi, eig, and max to simplify your task.

Find the height reached by 1 cubic meter of water stored in a spherical tank of radius 1 meter.
Give your answer =1 mm. (Hint: First note that the sphere will be less than half full. The
volume of the bottom H meters of a hemisphere of radius R is w H 2Z(R-1 /3H).)

1.2 FIXED-POINT ITERATION

Use a calculator or computer to apply the cos function repeatedly to an arbitrary starting
number. That is, apply the cos function to the starting number, then apply cos to the
result, then to the new result, and so forth. (If you use a calculator, be sure it is in radian

DEFINITION 1.4

1.2 Fixed-Point Iteration | 31

mode.) Continue until the digits no longer change. The resulting sequence of numbers
converges to 0.7390851332, at least to the first 10 decimal places. In this section, our goal
is to explain why this calculation, an instance of Fixed-Point Iteration (FPI), converges.
While we do this, most of the major issues of algorithm convergence will come under
discussion.

1.2.1 Fixed points of a function

The sequence of numbers produced by iterating the cosine function appears to converge to
a number . Subsequent applications of cosine do not change the number. For this input,
the output of the cosine function is equal to the input, or cosr = r.

The real number r is a fixed point of the function g if g(r) = r. O

The number r =0.7390851332 is an approximate fixed point for the function
g(x) = cosx. The function g(x) = x3 has three fixed points, » = —1,0, and 1.

We used the Bisection Method in Example 1.2 to solve the equation cosx — x = 0. The
fixed-point equation cos x = x is the same problem from a different point of view. When the
output equals the input, that number is a fixed point of cos x, and simultaneously a solution
of the equation cosx — x = 0.

Once the equation is written as g(x) = x, Fixed-Point Iteration proceeds by starting
with an initial guess xo and iterating the function g.

Fixed-Point Iteration

X0 = initial guess

Xi+1 =g(x;) fori =0,1,2,...

Therefore,
x1 = g(x0)
X2 = g(x1)
x3 = g(x2)

and so forth. The sequence x; may or may not converge as the number of steps goes to
infinity. However, if g is continuous and the x; converge, say, to a number r, then 7 is a
fixed point. In fact, Theorem 0.5 implies that

gr) = g(Alim xi) = lim g(x;) = lim x;41 =r. (1.3)
1—>00 11— 00 1—> 00

The Fixed-Point Iteration algorithm applied to a function g is easily written in
MATLAB code:

$Program 1.2 Fixed-Point Iteration

$Computes approximate solution of g(x)=x
$Input: function handle g, starting guess xO0,
number of iteration steps k

$Output: Approximate solution xc

function xc=fpi (g, x0, k)

x (1) =x0;

o°

32 | CHAPTER 1 Solving Equations

for i=1:k
x(i+1)=g(x(1)) ;

end

xc=x (k+1) ;

After defining a MATLAB function by

>> g=@(x) cos(x)

the code of Program 1.2 can be called as
>> xc=fpi(g,0,10)

to run 10 steps of Fixed-Point Iteration with initial guess 0.

Fixed-Point Iteration solves the fixed-point problem g(x) = x, but we are primarily
interested in solving equations. Can every equation f(x) = 0 be turned into a fixed-point
problem g(x) = x? Yes, and in many different ways. For example, the root-finding equation
of Example 1.1,

X +x—1=0, (1.4)
can be rewritten as
x=1-x3, (1.5)
and we may define g(x) =1 — x3. Alternatively, the x3 term in (1.4) can be isolated to
yield
x=+1-x, (1.6)
where g(x) = +/T — x. As a third and not very obvious approach, we might add 2x3 to both
sides of (1.4) to get
34 x=1424°
Gx>2+ Dx=1+2x
1+ 2x3
X=—-7
14 3x2
and define g(x) = (1 4+ 2x3)/(1 + 3x?).
Next, we demonstrate Fixed-Point Iteration for the preceding three choices of g(x).
The underlying equation to be solved is x> + x — 1 = 0. First we consider the form

x = g(x) = 1 — x3. The starting point xo = 0.5 is chosen somewhat arbitrarily. Applying
FPI gives the following result:

(1.7)

I Xi
0 | 0.50000000
1 | 0.87500000
2 | 0.33007813
3 1 0.96403747
4 1 0.10405419
5 | 0.99887338
6 | 0.00337606
7 | 0.99999996
8 | 0.00000012
9 | 1.00000000
10 | 0.00000000
11 | 1.00000000
12 | 0.00000000

1.2 Fixed-Point Iteration | 33

Instead of converging, the iteration tends to alternate between the numbers O and 1. Neither
is a fixed point, since g(0) =1 and g(1) = 0. The Fixed-Point Iteration fails. With the
Bisection Method, we know that if f is continuous and f(a) f(b) < O on the original
interval, we must see convergence to the root. This is not so for FPIL.

The second choice is g(x) = /1 — x. We will keep the same initial guess, xo = 0.5.

i Xi i Xi
0 | 0.50000000 13 | 0.68454401
1] 0.79370053 14 | 0.68073737
2 | 0.59088011 15 | 0.68346460
3 | 0.74236393 16 | 0.68151292
4 | 0.63631020 17 | 0.68291073
5 | 0.71380081 18 | 0.68191019
6 | 0.65900615 19 | 0.68262667
7 | 0.69863261 20 | 0.68211376
8 | 0.67044850 21 | 0.68248102
9 | 0.69072912 22 | 0.68221809
10 | 0.67625892 23 | 0.68240635
11 | 0.68664554 24 | 0.68227157
12 | 0.67922234 25 | 0.68236807

This time FPI is successful. The iterates are apparently converging to a number near 0.6823.
Finally, let’s use the rearrangement x = g(x) = (1 + 2x3)/(1 4+ 3x2). As in the
previous case, there is convergence, but in a much more striking way.

Xi
0.50000000
0.71428571
0.68317972
0.68232842
0.68232780
0.68232780
0.68232780
0.68232780

~N NN R W= O~

Here we have four correct digits after four iterations of Fixed-Point Iteration, and many
more correct digits soon after. Compared with the previous attempts, this is an astonishing
result. Our next goal is to try to explain the differences between the three outcomes.

1.2.2 Geometry of Fixed-Point Iteration

In the previous section, we found three different ways to rewrite the equation x> 4+ x — 1
= O as afixed-point problem, with varying results. To find out why the FPI method converges
in some situations and not in others, it is helpful to look at the geometry of the method.
Figure 1.3 shows the three different g(x) discussed before, along with an illustration
of the first few steps of FPI in each case. The fixed point » is the same for each g(x).
It is represented by the point where the graphs y = g(x) and y = x intersect. Each step
of FPI can be sketched by drawing line segments (1) vertically to the function and then
(2) horizontally to the diagonal line y = x. The vertical and horizontal arrows in Figure 1.3
follow the steps made by FPI. The vertical arrow moving from the x-value to the function
g represents x; — g(x;). The horizontal arrow represents turning the output g(x;) on the
y-axis and transforming it into the same number x;4 on the x-axis, ready to be input into
g in the next step. This is done by drawing the horizontal line segment from the output

34 | CHAPTER 1 Solving Equations

height g(x;) across to the diagonal line y = x. This geometric illustration of a Fixed-Point
Iteration is called a cobweb diagram.

7 7
s s

I 1
e Xy Xog T xll\ L xg rx; 1

(a) (b) (c)

Figure 1.3 Geometric view of FPI. The fixed point is the intersection of g(x) and the
diagonal line. Three examples of g(x) are shown together with the first few steps of
FPL (a) g(x) =1-x3 (b) gi) =(1-13 () glx)=(1+23)/(1+3x%)

In Figure 1.3(a), the path starts at xo = 0.5, and moves up to the function and horizontal
to the point (0.875, 0.875) on the diagonal, which is (x1, x1). Next, x| should be substituted
into g(x). This is done the same way it was done for x(, by moving vertically to the function.
This yields x> = 0.3300, and after moving horizontally to move the y-value to an x-value,
we continue the same way to get x3, x4, As we saw earlier, the result of FPI for this g(x)
is not successful—the iterates eventually tend toward alternating between 0 and 1, neither
of which are fixed points.

Fixed-Point Iteration is more successful in Figure 1.3(b). Although the g(x) here looks
roughly similar to the g(x) in part (a), there is a significant difference, which we will clarify
in the next section. You may want to speculate on what the difference is. What makes FPI
spiral in toward the fixed point in (b), and spiral out away from the fixed point in (a)?
Figure 1.3(c) shows an example of very fast convergence. Does this picture help with your
speculation? If you guessed that it has something to do with the slope of g(x) near the fixed
point, you are correct.

1.2.3 Linear convergence of Fixed-Point Iteration

The convergence properties of FPI can be easily explained by a careful look at the algorithm
in the simplest possible situation. Figure 1.4 shows Fixed-Point Iteration for two linear
functions gy (x) = —%x + % and g (x) = —%x + % In each case, the fixed pointis x = 1,
but [g (1| = | —%| > 1 while [g;(1)| = | —%| < 1. Following the vertical and horizontal
arrows that describe FPI, we see the reason for the difference. Because the slope of g; at
the fixed point is greater than one, the vertical segments, the ones that represent the change
from x;, to x, 41, are increasing in length as FPI proceeds. As a result, the iteration “spirals
out” from the fixed point x = 1, even if the initial guess xo was quite near. For g, the
situation is reversed: The slope of g, is less than one, the vertical segments decrease in
length, and FPI “spirals in”” toward the solution. Thus, |g’(r)| makes the crucial difference
between divergence and convergence.

That’s the geometric view. In terms of equations, it helps to write g;(x) and g>(x) in
terms of x — r, where = 1 is the fixed point:

g =-3(x -1 +1
gix) —1=-3(x -1
Xip1 — 1 =—=30 —). (1.8)

DEFINITION 1.5

THEOREM 1.6

1.2 Fixed-Point Iteration | 35

y y
2+ el 2+ e
s il
7
~ e
s \ P
FR]
£ e
~ e
7 7
P T . d L1 Ly
s xol x N2 s xo 1 x 2
(a) (b)

Figure 1.4 Cobweb diagram for linear functions. (a) If the linear function has slope
greater than one in absolute value, nearby guesses move farther from the fixed point
as FPI progresses, leading to failure of the method. (b) For slope less than one in
absolute value, the reverse happens, and the fixed point is found.

If we view e; = |r — x;| as the error at step i (meaning the distance from the best guess at
step 7 to the fixed point), we see from (1.8) that e; | = 3¢; /2, implying that errors increase
at each step by a factor of approximately 3/2. This is divergence.
Repeating the preceding algebra for g», we have
g() =30~ 1 +1
@) —1=—3(-1
Xig1 = 1= =30 = 1.
Theresultise; 1 = e; /2, implying that the error, the distance to the fixed point, is multiplied

by 1/2 on each step. The error decreases to zero as the number of steps increases. This is
convergence of a particular type.

Let e; denote the error at step 7 of an iterative method. If

e
lim = =5 <1,
i—00 €

the method is said to obey linear convergence with rate S. O

Fixed-Point Iteration for g» is linearly convergent to the root » = 1 with rate § = 1/2.
Although the previous discussion was simplified because g; and g» are linear, the same
reasoning applies to a general continuously differentiable function g(x) with fixed point
g(r) = r, as shown in the next theorem.

Assume that g is continuously differentiable, that g(r) = r, and that S = |g’(r)| < 1. Then
Fixed-Point Iteration converges linearly with rate S to the fixed point » for initial guesses
sufficiently close to r. |

Proof. Let x; denote the iterate at step i. According to the Mean Value Theorem, there
exists a number ¢; between x; and r such that

Xip1 — 1 =g ()i — 1), (1.9)

where we have substituted x; 11 = g(x;) and » = g(r). Defining e; = |x; — 7|, (1.9) can be
written as

eiv1 =g C)le;. (1.10)

36 | CHAPTER 1 Solving Equations

DEFINITION 1.7

» EXAMPLE 1.3

If S = |g/(r)| is less than one, then by the continuity of ¢/, there is a small neighborhood
around 7 for which |g’(x)| < (S + 1)/2, slightly larger than S, but still less than one. If x;
happens to lie in this neighborhood, then ¢; does, too (it is trapped between x; and r),
and so

S+1
2

€i+1 = €.

Thus, the error decreases by a factor of (S 4 1)/2 or better on this and every future step.
That means lim;_, o, x; = , and taking the limit of (1.10) yields

e:
lim == = lim [g'(c)| = 1g/(")| = S.
i—00 € i—00 O
According to Theorem 1.6, the approximate error relationship
ei+1 ~ Se; (1.11)

holds in the limit as convergence is approached, where S = |g’()|. See Exercise 25 for a
variant of this theorem.

An iterative method is called locally convergent to 7 if the method converges to 7 for initial
guesses sufficiently close to 7. O

In other words, the method is locally convergent to the root r if there exists a neigh-
borhood (r — €,7 + €), where € > 0, such that convergence to r follows from all initial
guesses from the neighborhood. The conclusion of Theorem 1.6 is that Fixed-Point Iteration
is locally convergent if |’ ()| < 1.

Theorem 1.6 explains what happened in the previous Fixed-Point Iteration runs for
f(x) =x>4+x — 1 =0. We know the root » ~ 0.6823. For g(x) =1 — x>, the deriva-
tive is g (x) = —3x2. Near the root r, FPI behaves as eiy1 ~ Se;, where S = |g'(r)| =
| — 3(0.6823)%| &~ 1.3966 > 1, so errors increase, and there can be no convergence. This
error relationship between e; 1 and e; is only guaranteed to hold near 7, but it does mean
that no convergence to can occur.

For the second choice, g(x) = /1 — x, the derivativeis g’ (x) = 1/3(1 — x)~2/3(—1),
and S = |(1 — 0.6823)7%/3/3| 2 0.716 < 1. Theorem 1.6 implies convergence, agreeing
with our previous calculation.

For the third choice, g(x) = (1 + 2x3)/(1 + 3x?2),

_6x7(1 +3x%) — (1 + 2x7)6x
B (1 4 3x2)2

_ 6x(x34+x—1

(1 +3x2)2

g (x)

and S = |g/(r)| = 0. This is as small as S can get, leading to the very fast convergence seen
in Figure 1.3(c).

Explain why the Fixed-Point Iteration g(x) = cosx converges.

This is the explanation promised early in the chapter. Applying the cosine button
repeatedly corresponds to FPI with g(x) = cosx. According to Theorem 1.6, the solution
r ~ (.74 attracts nearby guesses because g’(r) = —sinr ~ —sin0.74 ~ —0.67 is less than
1 in absolute value. <

» EXAMPLE 1.4

1.2 Fixed-Point Iteration | 37

Use Fixed-Point Iteration to find a root of cosx = sinx.

The simplest way to convert the equation to a fixed-point problem is to add x to
each side of the equation. We can rewrite the problem as

X + cosx — sinx = x
and define
g(x) =x + cosx — sinx. (1.12)

The result of applying the Fixed-Point Iteration method to this g(x) is shown in the
table.

J Xj g(xi) e =lx; —r|l| e/e
0 | 0.0000000 | 1.0000000 0.7853982

1 | 1.0000000 | 0.6988313 0.2146018 0.273
2 | 0.6988313 | 0.8211025 0.0865669 0.403
3] 0.8211025 | 0.7706197 0.0357043 0.412
4 | 0.7706197 | 0.7915189 0.0147785 0.414
51 0.7915189 | 0.7828629 0.0061207 0.414
6 | 0.7828629 | 0.7864483 0.0025353 0.414
7 | 0.7864483 | 0.7849632 0.0010501 0.414
8 | 0.7849632 | 0.7855783 0.0004350 0.414
9 | 0.7855783 | 0.7853235 0.0001801 0.414

10 | 0.7853235 | 0.7854291 0.0000747 0.415
11 | 0.7854291 | 0.7853854 0.0000309 0.414
12 | 0.7853854 | 0.7854035 0.0000128 0.414
13 | 0.7854035 | 0.7853960 0.0000053 0.414
14 | 0.7853960 | 0.7853991 0.0000022 0.415
15 | 0.7853991 | 0.7853978 0.0000009 0.409
16 | 0.7853978 | 0.7853983 0.0000004 0.444
17 | 0.7853983 | 0.7853981 0.0000001 0.250
18 | 0.7853981 | 0.7853982 0.0000001 1.000
19 | 0.7853982 | 0.7853982 0.0000000

There are several interesting things to notice in the table. First, the iteration appears
to converge to 0.7853982. Since cosw /4 = «/5/ 2 = sin /4, the true solution to the equa-
tion cosx — sinx = 0 is » = /4 ~ 0.7853982. The fourth column is the “error column.”
It shows the absolute value of the difference between the best guess x; at step i and the
actual fixed point 7. This difference becomes small near the bottom of the table, indicating
convergence toward a fixed point.

Notice the pattern in the error column. The errors seem to decrease by a constant
factor, each error being somewhat less than half the previous error. To be more precise, the
ratio between successive errors is shown in the final column. In most of the table, we are
seeing the ratio e /e, of successive errors to approach a constant number, about 0.414.
In other words, we are seeing the linear convergence relation

e ~0.414e;_;. (1.13)
This is exactly what is expected, since Theorem 1.6 implies that
2 2
S=1g)| =]|1 —sinr — cosr| = |1 — “/7_ - % =1 —+2|~0414. =

The careful reader will notice a discrepancy toward the end of the table. We have used
only seven correct digits for the correct fixed point » in computing the errors e;. As a result,

38 | CHAPTER 1 Solving Equations

» EXAMPLE 1.5

» EXAMPLE 1.6

the relative accuracy of the e; is poor as the ¢; near 1078, and the ratios e; /ei—1 become
inaccurate. This problem would disappear if we used a much more accurate value for 7.

Find the fixed points of g(x) = 2.8x — x2.

The function g(x) = 2.8x — x> has two fixed points 0 and 1.8, which can be
determined by solving g(x) = x by hand, or alternatively, by noting where the graphs of
y = g(x) and y = x intersect. Figure 1.5 shows a cobweb diagram for FPI with initial guess
x = 0.1. For this example, the iterates

xo = 0.1000
x1 = 0.2700
X2 = 0.6831
x3 = 1.4461
x4 = 1.9579,

and so on, can be read as the intersections along the diagonal.

y
//
2 .
’
7
7z \
7
7
7
1 e
7z
7
7
e
e
7
7
I I I I [X
7| xo X1 X, 1 X3 ro2

Figure 1.5 Cobweb diagram for Fixed-Point Iteration. Example 1.5 has two fixed
points, 0 and 1.8. An iteration with starting guess 0.1 is shown. Only 1.8 will be con-

verged to by FPI.

Even though the initial point xo = 0.1 is near the fixed point O, FPI moves toward
the other fixed point x = 1.8 and converges there. The difference between the two fixed
points is that the slope of g at x = 1.8, given by g’(1.8) = —0.8, is smaller than one in
absolute value. On the other hand, the slope of g at the other fixed point x = 0, the one that
repels points, is g’(0) = 2.8, which is larger than one in absolute value. <

Theorem 1.6 is useful a posteriori—at the end of the FPI calculation, we know the
root and can calculate the step-by-step errors. The theorem helps explain why the rate of
convergence S turned out as it did. It would be much more useful to have that information
before the calculation starts. In some cases, we are able to do this, as the next example shows.

Calculate +/2 by using FPI.

An ancient method for determining square roots can be expressed as an FPI. Sup-
pose we want to find the first 10 digits of +/2. Start with the initial guess xo = 1. This guess
is obviously too low; therefore, 2/1 = 2 is too high. In fact, any initial guess 0 < x¢ < 2,
together with 2/x¢, form a bracket for /2. Because of that, it is reasonable to average the
two to get a better guess:

SPOTLIGHT ON

1.2 Fixed-Point Iteration | 39

P i g
1 2 3

(a) (b)

Figure 1.6 Ancient calculation of /2. (a) Tablet YBC7289 (b) Schematic of tablet. The
Babylonians calculated in base 60, but used some base 10 notation. The < denotes 10,
and the V denotes 1. In the upper left is 30, the length of the side. Along the middle
are 1, 24, 51, and 10, which represents the square root of 2 to five correct decimal
places (see Spotlight on page 39). Below, the numbers 42, 25, and 35 represent 30ﬁ
in base 60.

Now repeat. Although 3/2 is closer, it is too large to be V2,and 2/(3/2) = 4/3 is too small.
As before, average to get
17 —
X = = — = 1416,
2 12
which is even closer to /2. Once again, x, and 2/x, bracket /2.
The next step yields

[\S][O8)
+
SN

IS
[\

4
+ 17 577
1 17
==L = — x1.414215686.
SR I
Check with a calculator to see that this guess agrees with /2 within 3 x 10~°. The FPI we

are executing is

NS

X + %
Xirt = = (1.14)

Note that +/2 is a fixed point of the iteration.

Convergence The ingenious method of Example 1.6 converges to +/2 within five
decimal places after only three steps. This simple method is one of the oldest in the
history of mathematics. The cuneiform tablet YBC7289 shown in Figure 1.6(a) was dis-
covered near Baghdad in 1962, dating from around 1750 B.C. It contains the base 60
approximation (1)(24)(51)(10) for the side length of a square of area 2. In base 10, this is

1+ 2 + o + 10 = 1.41421296

60 602 603 '
The Babylonians’'method of calculation is not known, but some speculate it is the computation
of Example 1.6, in their customary base 60. In any case, this method appears in Book 1 of

Metrica, written by Heron of Alexandria in the first century A.D., to calculate +/720.

40 | CHAPTER 1 Solving Equations

1.2 Exercises

Before finishing the calculation, let’s decide whether it will converge. Accord-
ing to Theorem 1.6, we need S < 1. For this iteration, g(x) = 1/2(x + 2/x) and g'(x) =
1/2(1 — 2/x?). Evaluating at the fixed point yields

1 2
'W2)==|1—-———) =0, 1.15
Z(W2) 2((ﬁ)z> (1.15)

so S = 0. We conclude that the FPI will converge, and very fast.
Exercise 18 asks whether this method will be successful in finding the square root
of an arbitrary positive number. <

1.2.4 Stopping criteria

Unlike the case of bisection, the number of steps required for FPI to converge within a given
tolerance is rarely predictable beforehand. In the absence of an error formula like (1.1) for
the Bisection Method, a decision must be made about terminating the algorithm, called a
stopping criterion.

For a set tolerance, TOL, we may ask for an absolute error stopping criterion

|xi+1 — x;| < TOL (1.16)
or, in case the solution is not too near zero, the relative error stopping criterion

|xit1 — x;i

< TOL. (1.17)
[xi41]

A hybrid absolute/relative stopping criterion such as

[xi+1 — x;]

A A oL (1.18)
max(|x;y1/,0)

for some 6 > 0 is often useful in cases where the solution is near 0. In addition, good FPI
code sets a limit on the maximum number of steps in case convergence fails. The issue of
stopping criteria is important, and will be revisited in a more sophisticated way when we
study forward and backward error in Section 1.3.

The Bisection Method is guaranteed to converge linearly. Fixed-Point Iteration is only
locally convergent, and when it converges it is linearly convergent. Both methods require one
function evaluation per step. The bisection cuts uncertainty by 1/2 for each step, compared
with approximately S = |g’(r)| for FPL Therefore, Fixed-Point Iteration may be faster or
slower than bisection, depending on whether § is smaller or larger than 1/2. In Section 1.4,
we study Newton’s Method, a particularly refined version of FPI, where § is designed to
be zero.

Find all fixed points of the following g(x).
3

@@= Mmx2—=2x+2 (@©x2—4x+2
X

Find all fixed points of the following g(x).

x+6 8+ 2x
b 5
@35 s ©x
Show that 1,2, and 3 are fixed points of the following g(x).
3 2 3
x’+x—06 64 6x° —x
@——m— b)) —

6x — 10 11

10.

11.

12.

13.

14.

15.

16.

17.

18.

1.2 Fixed-Point Iteration | 41

Show that —1, 0, and 1 are fixed points of the following g(x).
4x) x? — 5x
x2+3 x2+x—6

(a)

For which of the following g(x) is r = V3 a fixed point?
2x

1) 2
+- ©gx)=x"—-x Dgx)=1+——
3 X

X
(a) g(x) = Wi (b) g(x) = x+1

For which of the following g(x) is r = V5 a fixed point?

T g =+t ©e =5 @en =1+ ——
x+7 3x 3 x +1
Use Theorem 1.6 to determine whether Fixed-Point Iteration of g(x) is locally convergent to
the given fixed point 7. (a) g(x) = 2x — D3 r =1() glx) = (x> + 1)/2,r =1
(c) gx) =sinx +x,r =0

(a) g(x) =

Use Theorem 1.6 to determine whether Fixed-Point Iteration of g(x) is locally convergent to
the given fixed point r. (a) g(x) = 2x — 1)/x2, r=1(0b)gkx)=cosx+nm+ 1, r=m
() gx)=e* —1,r=0

Find each fixed point and decide whether Fixed-Point Iteration is locally convergent to it.
(a) g(x) = %XQ + %x (b) g(x) = x> — %x + %

Find each fixed point and decide whether Fixed-Point Iteration is locally convergent to it.
@g)=x>-3x+3®g)=x+Ix—1

Express each equation as a fixed-point problem x = g(x) in three different ways.
(@x3 —x+e" = 0(b)3x2+ 9% =x?

Consider the Fixed-Point Iteration x — g(x) = x> — 0.24. (a) Do you expect Fixed-Point
Iteration to calculate the root —0.2, say, to 10 or to correct decimal places, faster or slower than
the Bisection Method? (b) Find the other fixed point. Will FPI converge to it?

(a) Find all fixed points of g(x) = 0.39 — x2. (b) To which of the fixed-points is Fixed-Point
Iteration locally convergent? (c) Does FPI converge to this fixed point faster or slower than the
Bisection Method?

Which of the following three Fixed-Point Iterations converge to V/2? Rank the ones that
converge from fastest to slowest.
(A x—tr+ B x—rt— (O r— x4+
X — —x+ — X — -Xx+ — X — —x+ —
2 X 3 3x 4 2x
Which of the following three Fixed-Point Iterations converge to +/5? Rank the ones that

converge from fastest to slowest.
A) 4 +l ®) x+5 ©) x+5
xX— =x+ — X— =+ — X — ——
5 x 2 2x x+1
Which of the following three Fixed-Point Iterations converge to the cube root of 4? Rank the

ones that converge from fastest to slowest.
(A) ()—2 (B) ()—3x+l © ()—2 +4
gx—ﬁ =T S =3T3

Check that 1/2 and —1 are roots of f(x) = 2x2 + x — 1 = 0. Isolate the x> term and solve for
x to find two candidates for g(x). Which of the roots will be found by the two Fixed-Point
Iterations?

Prove that the method of Example 1.6 will calculate the square root of any positive number.

42 | CHAPTER 1 Solving Equations

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Explore the idea of Example 1.6 for cube roots. If x is a guess that is smaller than 4'/3, then
A/x? will be larger than 4'/3, so that the average of the two will be a better approximation
than x. Suggest a Fixed-Point Iteration on the basis of this fact, and use Theorem 1.6 to decide
whether it will converge to the cube root of A4.

Improve the cube root algorithm of Exercise 19 by reweighting the average. Setting g(x) =
wx + (1 — u))A/x2 for some fixed number 0 < w < 1, what is the best choice for w?

Consider Fixed-Point Iteration applied to g(x) =1 — 5x + %xz — %x3. (a) Show that
1 —4/3/5,1,and 1 + /3/5 are fixed points. (b) Show that none of the three fixed points is
locally convergent. (Computer Problem 7 investigates this example further.)

Show that the initial guesses 0, 1, and 2 lead to a fixed point in Exercise 21. What happens to
other initial guesses close to those numbers?

Assume that g(x) is continuously differentiable and that the Fixed-Point Iteration g(x) has
exactly three fixed points, 7] < r, < r3. Assume also that |g’(r1)| = 0.5 and |g’(r3)| = 0.5.
List all values of |g’(r2)| that are possible under these conditions.

Assume that g is a continuously differentiable function and that the Fixed-Point Iteration g(x)
has exactly three fixed points, —3, 1, and 2. Assume that ¢’(—3) = 2.4 and that FPI started
sufficiently near the fixed point 2 converges to 2. Find g/(1).

Prove the variant of Theorem 1.6: If g is continuously differentiable and |¢’(x)| < B < 1 on an
interval [a, b] containing the fixed point r, then FPI converges to from any initial guess in
[a, b].

Prove that a continuously differentiable function g(x) satisfying |g’(x)| < 1 on a closed
interval cannot have two fixed points on that interval.

Consider Fixed-Point Iteration with g(x) =x — x3. (a) Show that x = 0 is the only fixed
point. (b) Show that if 0 < xg < 1, then xg > x; > x2... > 0. (c) Show that FPI converges to
r = 0, while g’(0) = 1. (Hint: Use the fact that every bounded monotonic sequence converges
to a limit.)

Consider Fixed-Point Iteration with g(x) = x + x3. (a) Show that x = 0 is the only fixed
point. (b) Show that if 0 < xo < 1, then xg < x1 < x3 <.... (c) Show that FPI fails to
converge to a fixed point, while g’(0) = 1. Together with Exercise 27, this shows that FPI may
converge to a fixed point r or diverge from r when |g' ()| = 1.

Consider the equation x3 4+ x — 2 =0, with root » = 1. Add the term cx to both sides and
divide by c to obtain g(x). (a) For what ¢ is FPI locally convergent to » = 1?(b) For what ¢
will FPI converge fastest?

Assume that Fixed-Point Iteration is applied to a twice continuously differentiable function
g(x) and that ¢’(r) = 0 for a fixed point . Show that if FPI converges to r, then the error
obeys lim;_, oo (ej+1)/e;2 = M, where M = |g" (r)]/2.

Define Fixed-Point Iteration on the equation x> 4+ x = 5/16 by isolating the x term. Find both
fixed points, and determine which initial guesses lead to each fixed point under iteration.
(Hint: Plot g(x), and draw cobweb diagrams.)

Find the set of all initial guesses for which the Fixed-Point Iteration x — 4/9 — x? converges
to a fixed point.

33.

1.3 Limits of Accuracy | 43

Let g(x) =a + bx + ¢x? for constants @, b, and c. (a) Specify one set of constants a, b, and ¢
for which x = 0 is a fixed-point of x = g(x) and Fixed-Point Iteration is locally convergent to
0. (b) Specify one set of constants a, b, and ¢ for which x = 0 is a fixed-point of x = g(x) but
Fixed-Point Iteration is not locally convergent to 0.

1.2 Computer Problems

1.

Apply Fixed-Point Iteration to find the solution of each equation to eight correct decimal
places. (a) X3=2x+2M) e +x=7(c) e +sinx =4.

Apply Fixed-Point Iteration to find the solution of each equation to eight correct decimal
places. (a) X 4+x=10)sinx=6x+5C)Inx +x2=3

Calculate the square roots of the following numbers to eight correct decimal places by using
Fixed-Point Iteration as in Example 1.6: (a) 3 (b) 5. State your initial guess and the number of
steps needed.

Calculate the cube roots of the following numbers to eight correct decimal places, by using
Fixed-Point Iteration with g(x) = (2x + 4 /xz)/ 3, where A4 is (a) 2 (b) 3 (c) 5. State your
initial guess and the number of steps needed.

2x?

Example 1.3 showed that g(x) = cosx is a convergent FPI. Is the same true for g(x) = cos
Find the fixed point to six correct decimal places, and report the number of FPI steps needed.

Discuss local convergence, using Theorem 1.6.

Derive three different g(x) for finding roots to six correct decimal places of the following
f(x) = 0 by Fixed-Point Iteration. Run FPI for each g(x) and report results, convergence or
divergence. Each equation f(x) = 0 has three roots. Derive more g(x) if necessary until all
roots are found by FPI. For each convergent run, determine the value of S from the errors
ei+1/ei, and compare with S determined from calculus as in (1.11). (a) f(x) = 2x3 —

6x —1(b) f(x)=e"2+x>—x() f(x) =14 5x — 6x3 — &**

Exercise 21 considered Fixed-Point Iteration applied to g(x) =1 — 5x + %xz — %x3 =x.

Find initial guesses for which FPI (a) cycles endlessly through numbers in the interval (0, 1)
(b) the same as (a), but the interval is (1, 2) (c) diverges to infinity. Cases (a) and (b) are
examples of chaotic dynamics. In all three cases, FPI is unsuccessful.

1.3 LIMITS OF ACCURACY

One of the goals of numerical analysis is to compute answers within a specified level of
accuracy. Working in double precision means that we store and operate on numbers that are
kept to 52-bit accuracy, about 16 decimal digits.

Can answers always be computed to 16 correct significant digits? In Chapter 0, it
was shown that, with a naive algorithm for computing roots of a quadratic equation, it
was possible to lose some or all significant digits. An improved algorithm eliminated
the problem. In this section, we will see something new—a calculation that a double-
precision computer cannot make to anywhere near 16 correct digits, even with the best
algorithm.

44 | CHAPTER 1 Solving Equations

» EXAMPLE 1.7

1.3.1 Forward and backward error

The first example shows that, in some cases, pencil and paper can still outperform a
computer.

Use the Bisection Method to find the root of f(x) = x3—2x2 4 ‘—3‘x — % to within six
correct significant digits.

Note that f(0) (1) = (—8/27)(1/27) < 0, so the Intermediate Value Theorem
guarantees a solution in [0, 1]. According to Example 1.2, 20 bisection steps should be
sufficient for six correct places.

In fact, it is easy to check without a computer that » = 2/3 = 0.666666666... is

s 8 (% 4\ (2 8 _\
rem=5-2(5)+(5)(5) - -

How many of these digits can the Bisection Method obtain?

a root:

i a; f(a;) Ci f(ci) bi S (i)
0 | 0.0000000 — 0.5000000 — 1.0000000 +
1 | 0.5000000 — 0.7500000 + 1.0000000 +
2 | 0.5000000 — 0.6250000 — 0.7500000 +
3 | 0.6250000 — 0.6875000 + 0.7500000 +
4 1 0.6250000 — 0.6562500 — 0.6875000 +
5 | 0.6562500 — 0.6718750 + 0.6875000 +
6 | 0.6562500 — 0.6640625 — 0.6718750 +
7 | 0.6640625 — 0.6679688 + 0.6718750 +
8 | 0.6640625 — 0.6660156 — 0.6679688 +
9 | 0.6660156 — 0.6669922 + 0.6679688 +
10 | 0.6660156 — 0.6665039 — 0.6669922 +
11 | 0.6665039 — 0.6667480 + 0.6669922 +
12 | 0.6665039 — 0.6666260 — 0.6667480 +
13 | 0.6666260 — 0.6666870 + 0.6667480 +
14 | 0.6666260 — 0.6666565 — 0.666687 +
15 | 0.6666565 — 0.6666718 + 0.6666870 +
16 | 0.6666565 — 0.6666641 0 0.6666718 +

Surprisingly, the Bisection Method stops after 16 steps, when it computes f'(0.6666641) =0.
This is a serious failure if we care about six or more digits of precision. Figure 1.7 shows
the difficulty. As far as IEEE double precision is concerned, there are many floating point
numbers within 10> of the correct root 7 = 2 /3 that are evaluated to machine zero, and
therefore have an equal right to be called the root! To make matters worse, although the
function f is monotonically increasing, part (b) of the figure shows that even the sign of
the double precision value of ' is often wrong.

Figure 1.7 shows that the problem lies not with the Bisection Method, but with
the inability of double precision arithmetic to compute the function f accurately enough
near the root. Any other solution method that relies on this computer arithmetic is bound to
fail. For this example, 16-digit precision cannot even check whether a candidate solution is
correct to six places. <

To convince you that it’s not the fault of the Bisection Method, we apply MATLAB’s
most high-powered multipurpose rootfinder, £ zero.m. We will discuss its details later in

DEFINITION 1.8

1.3 Limits of Accuracy | 45

Y 10-

— Wl

1 Ve 2 Zl0-16

370.666660 0.666670
_ 10715F

(a) (b)

Figure 1.7 The shape of a function near a multiple root. (a) Plot of f(x) =

x3 —2x? + 4/3x — 8/27. (b) Magnification of (a), near the root r=2/3. There are

many floating point numbers within 107 of 2/3 that are roots as far as the computer
is concerned. We know from calculus that 2/3 is the only root.

this chapter; for now, we just need to feed it the function and a starting guess. It has no
better luck:

>> fzero(’x.”3-2*x.72+4*x/3-8/27",1)
ans =

0.66666250845989

The reason that all methods fail to get more than five correct digits for this example is
clear from Figure 1.7. The only information any method has is the function, computed in
double precision. If the computer arithmetic is showing the function to be zero at a nonroot,
there is no way the method can recover. Another way to state the difficulty is to say that
an approximate solution can be as close as possible to a solution as far as the y-axis is
concerned, but not so close on the x-axis.

These observations motivate some key definitions.

Assume that f is a function and that 7 is a root, meaning that it satisfies /() = 0. Assume
that x, is an approximation to . For the root-finding problem, the backward error of the
approximation x, is | f(x,)| and the forward error is |[r — x,|. 0

The usage of “backward” and “forward” may need some explanation. Our viewpoint
considers the process of finding a solution as central. The problem is the input, and the
solution is the output:

Data that Solution

defines — — Solution
process

problem

In this chapter, the “problem” is an equation in one variable, and the “solution process’’
is an algorithm that solves equations:

Equation

— Solution
solver

Equation —>

Backward error is on the left or input (problem data) side. It is the amount we would
need to change the problem (the function f’) to make the equation balance with the output

46 | CHAPTER 1 Solving Equations

DEFINITION 1.9

» EXAMPLE 1.8

approximation x,. This amount is | f(x,)|. Forward error is the error on the right or output
(problem solution) side. It is the amount we would need to change the approximate solution
to make it correct, which is | — x,|.

The difficulty with Example 1.7 is that, according to Figure 1.7, the backward error
is near emaen & 2.2 x 10716, while forward error is approximately 10~>. Double precision
numbers cannot be computed reliably below a relative error of machine epsilon. Since the
backward error cannot be decreased further with reliability, neither can the forward error.

Example 1.7 is rather special because the function has a triple root at » = 2/3. Note
that

4 8 2*

3 2
—x3_-2 _- — — — I
fx)=x x—|—3x 77 <x 3)

This is an example of a multiple root.

Assume that 7 is a root of the differentiable function f7 that is, assume that f(») = 0. Then

if0=fr)=f"(r)= f'r)=---= D), but £ (r) £ 0, we say that f has a root
of multiplicity m at ». We say that f has a multiple root at r if the multiplicity is greater
than one. The root is called simple if the multiplicity is one. O

For example, f(x) = x2 has a multiplicity two, or double, root at » = 0, because
f(0)=0, f/(0) =2(0) =0, but f”(0) =2 # 0. Likewise, f(x)=x> has a multiplicity
three, or triple, root at » = 0, and f(x) = x” has a multiplicity m root there. Example 1.7
has a multiplicity three, or triple, root at » = 2/3.

Because the graph of the function is relatively flat near a multiple root, a great disparity
exists between backward and forward errors for nearby approximate solutions. The back-
ward error, measured in the vertical direction, is often much smaller than the forward error,
measured in the horizontal direction.

The function f(x) = sinx — x has a triple root at » = 0. Find the forward and backward
error of the approximate root x., = 0.001.

The root at 0 has multiplicity three because

£(0) = $in0 —0=0
f(0)=cos0—1=0
f(0) =—sin0 —0=0
" (0) = —cos0 = —1.

The forward error is FE = | — x,| = 1073, The backward error is the constant that would
need to be added to f(x) to make x, a root, namely BE = | f(x,)| = |sin(0.001) — 0.001]
~ 1.6667 x 10710, <

The subject of backward and forward error is relevant to stopping criteria for equation
solvers. The goal is to find the root r satisfying f(») = 0. Suppose our algorithm produces
an approximate solution x,. How do we decide whether it is good enough?

Two possibilities come to mind: (1) to make |x, — 7| small and (2) to make | f'(x,)|
small. In case x, = r, there is no decision to be made—both ways of looking at it are the
same. However, we are rarely lucky enough to be in this situation. In the more typical case,
approaches (1) and (2) are different and correspond to forward and backward error.

Whether forward or backward error is more appropriate depends on the circumstances
surrounding the problem. If we are using the Bisection Method, both errors are easily
observable. For an approximate root x,, we can find the backward error by evaluating

1.3 Limits of Accuracy | 47

f(x4), and the forward error can be no more than half the length of the current interval.
For FPI, our choices are more limited, since we have no bracketing interval. As before, the
backward error is known as f(x,), but to know the forward error would require knowing
the true root, which we are trying to find.

Stopping criteria for equation-solving methods can be based on either forward or back-
ward error. There are other stopping criteria that may be relevant, such as a limit on com-
putation time. The context of the problem must guide our choice.

Functions are flat in the vicinity of a multiple root, since the derivative f” is zero
there. Because of this, we can expect some trouble in isolating a multiple root, as we have
demonstrated. But multiplicity is only the tip of the iceberg. Similar difficulties can arise
where no multiple roots are in sight, as shown in the next section.

1.3.2 The Wilkinson polynomial

A famous example with simple roots that are hard to determine numerically is discussed in
Wilkinson [1994]. The Wilkinson polynomial is

Wx)=x—1)x —2)---(x — 20), (1.19)
which, when multiplied out, is

W(x) =x20 — 210x" + 20615x'® — 1256850x "7 + 53327946x'0 — 1672280820x 1
+ 40171771630x ' — 756111184500x 3 + 11310276995381x 2
— 135585182899530x ! 4 1307535010540395x 10 — 10142299865511450x°
+ 63030812099294896x® — 311333643161390640x”
+ 1206647803780373360x% — 3599979517947607200x°
+ 8037811822645051776x* — 12870931245150988800x>
+ 13803759753640704000x> — 8752948036761600000x
+ 2432902008176640000. (1.20)

The roots are the integers from 1 to 20. However, when W (x) is defined according to
its unfactored form (1.20), its evaluation suffers from cancellation of nearly equal, large
numbers. To see the effect on root-finding, define the MATLAB m-file wilkpoly.m by
typing in the nonfactored form (1.20), or obtaining it from the textbook website.

Again we will try MATLAB’s fzero. To make it as easy as possible, we feed it an
actual root x = 16 as a starting guess:

>> fzero(ewilkpoly,16)
ans =
16.01468030580458

The surprising result is that MATLAB’s double precision arithmetic could not get the sec-
ond decimal place correct, even for the simple root » = 16. It is not due to a deficiency of the
algorithm—both f zero and Bisection Method have the same problem, as do Fixed-Point
Iteration and any other floating point method. Referring to his work with this polynomial,
Wilkinson wrote in 1984: “Speaking for myself I regard it as the most traumatic experience
in my career as a numerical analyst.” The roots of ¥ (x) are clear: the integersx = 1, ..., 20.
To Wilkinson, the surprise had to do with the huge error magnification in the roots caused
by small relative errors in storing the coefficients, which we have just seen in action.

48 | CHAPTER 1 Solving Equations

» EXAMPLE 1.9

The difficulty of getting accurate roots of the Wilkinson polynomial disappears if fac-
tored form (1.19) is used instead of (1.20). Of course, if the polynomial is factored before
we start, there is no need to compute roots.

1.3.3 Sensitivity of root-finding

The Wilkinson polynomial and Example 1.7 with the triple root cause difficulties for similar
reasons—small floating point errors in the equation translate into large errors in the root. A
problem is called sensitive if small errors in the input, in this case the equation to be solved,
lead to large errors in the output, or solution. In this section, we will quantify sensitivity
and introduce the concepts of error magnification factor and condition number.

To understand what causes this magnification of error, we will establish a formula
predicting how far a root moves when the equation is changed. Assume that the problem is
to find a root 7 of f(x) = 0, but that a small change € g(x) is made to the input, where € is
small. Let Ar be the corresponding change in the root, so that

f(r+ Ar) +eg(r + Ar) =0.
Expanding f and g in degree-one Taylor polynomials implies that
J) + (Ar) [1(r) + €g(r) + (AN (r) + 0((Ar)*) =0,

where we use the “big O’ notation O((Ar)?) to stand for terms involving (Ar)? and higher
powers of Ar. For small Ar, the O((Ar)?) terms can be neglected to get

(AN (f(r) + eg () ~ = [(r) — eg(r) = —eg(r)

or

N8 ()
rR N —€ ,
O +regr) f0)

assuming that ¢ is small compared with f”(r), and in particular, that f’(r) # 0.

Sensitivity Formula for Roots
Assume that r is a root of f(x) and » + Ar is aroot of f(x) + €g(x). Then

eg(r)

Ar~ ———
J'(r)

(1.21)
ife < f(r).

Estimate the largest root of P(x)=(x — D(x —2)(x —3)(x —4)(x —5)(x — 6) —
1076x7.

Set f(x)=x—-—Dx—=-2)x—=3)x —4)(x -5 —6),e = —107°% and
g(x) = x”. Without the € g(x) term, the largest root is » = 6. The question is, how far does

the root move when we add the extra term?
The Sensitivity Formula yields

Ara—E = 22330 8e,

meaning that input errors of relative size € in f(x) are magnified by a factor of over 2000
into the output root. We estimate the largest root of P(x) to be » + Ar =6 — 2332.8¢ =
6.0023328. Using £zero on P(x), we get the correct value 6.0023268. <

» EXAMPLE 1.10

1.3 Limits of Accuracy | 49

The estimate in Example 1.9 is good enough to tell us how errors propagate in the root-
finding problem. An error in the sixth digit of the problem data caused an error in the third
digit of the answer, meaning that three decimal digits were lost due to the factor of 2332.8.
It is useful to have a name for this factor. For a general algorithm that produces an approx-
imation x., we define its

relative forward error

error magnification factor = - .
relative backward error

The forward error is the change in the solution that would make x, correct, which for
root-finding problems is |x, — r|. The backward error is a change in input that makes x. the
correct solution. There is a wider variety of choices, depending on what sensitivity we want
to investigate. Changing the constant term by | f(x,)] is the choice that was used earlier in
this section, corresponding to g(x) = 1 in the Sensitivity Formula (1.21). More generally,
any change in the input data can be used as the backward error, such as the choice g(x) = x’
in Example 1.9. The error magnification factor for root-finding is

Ar/r

error magnification factor =
€g(r)/g(r)

(1.22)

:‘—Gg(r)/(rf’(r)) _ el
€ DAGI

which in Example 1.9 is 67/(5!6) = 388.8.

Use the Sensitivity Formula for Roots to investigate the effect of changes in the x> term
of the Wilkinson polynomial on the root » = 16. Find the error magnification factor for this
problem.

Define the perturbed function Wc(x) =W (x) + €g(x), where g(x)=
—1,672,280,820x". Note that W’'(16) = 154! (see Exercise 7). Using (1.21), the
change in the root can be approximated by

~ 16131, 672,280, 820¢
" 154!

~ 6.1432 x 103, (1.23)

Practically speaking, we know from Chapter 0 that a relative error on the order of machine
epsilon must be assumed for every stored number. A relative change in the x> term of
machine epsilon €p,ch, Will cause the root » = 16 to move by

Ar & (6.1432 x 1013)(£2.22 x 1071%) ~ +£0.0136

tor + Ar 2 16.0136, not far from what was observed on page 47. Of course, many other
powers of x in the Wilkinson polynomial are making their own contributions, so the complete
picture is complicated. However, the Sensitivity Formula allows us to see the mechanism
for the huge magnification of error.

Finally, the error magnification factor is computed from (1.22) as

16151, 672,280, 820
12()| ~3.8 x 102, «

BAGIE 1514116

The significance of the error magnification factor is that it tells us how many of the
16 digits of operating precision are lost from input to output. For a problem with error
magnification factor of 102, we expect to lose 12 of the 16 and have about four correct
significant digits left in the root, which is the case for the Wilkinson approximation x, =
16.014....

50 | CHAPTER 1 Solving Equations

SPOTLIGHT ON

1.3 Exercises

Conditioning This is the first appearance of the concept of condition number, a
measure of error magnification. Numerical analysis is the study of algorithms, which take data
defining the problem as input and deliver an answer as output. Condition number refers to
the part of this magnification that is inherent in the theoretical problem itself, irrespective of
the particular algorithm used to solve it.

It is important to note that the error magnification factor measures only magnification due
to the problem. Along with conditioning, there is a parallel concept, stability, that refers to the
magnification of small input errors due to the algorithm, not the problem itself. An algorithm
is called stable if it always provides an approximate solution with small backward error. If the
problem is well-conditioned and the algorithm is stable, we can expect both small backward

and forward error.

The preceding error magnification examples show the sensitivity of root-finding to a
particular input change. The problem may be more or less sensitive, depending on how
the input change is designed. The condition number of a problem is defined to be the
maximum error magnification over all input changes, or at least all changes of a prescribed
type. A problem with high condition number is called ill-conditioned, and a problem with
a condition number near 1 is called well-conditioned. We will return to this concept when
we discuss matrix problems in Chapter 2.

Find the forward and backward error for the following functions, where the root is 3/4 and the
approximate root is x, = 0.74: (a) f(x) =4x — 3 (b) f(x) = (4x — 3)2

(© f(x) = (4x = 3)* (d) f(x) = (4x — })!/3

Find the forward and backward error for the following functions, where the root is 1/3 and the
approximate root is x, = 0.3333: (a) f(x) =3x — 1 (b) f(x) = Bx — 1)?

© f(x)=@x = D3 () f(x)=CBx — DI/

(a) Find the multiplicity of the root » = 0 of f(x) =1 — cosx. (b) Find the forward and
backward errors of the approximate root x, = 0.0001.

(a) Find the multiplicity of the root » = 0 of f(x) = xZsinx2. (b) Find the forward and
backward errors of the approximate root x, = 0.01.

Find the relation between forward and backward error for finding the root of the linear function
f(x)=ax —b.

Let n be a positive integer. The equation defining the nth root of a positive number A is
x" — 4 = 0. (a) Find the multiplicity of the root. (b) Show that, for an approximate nth root
with small forward error, the backward error is approximately n4"~1/" times the forward

€rror.

Let W (x) be the Wilkinson polynomial. (a) Prove that W’(16) = 15!4! (b) Find an analogous
formula for W’'(j), where j is an integer between 1 and 20.

Let f(x) =x" — ax"~! and set g(x) = x". (a) Use the Sensitivity Formula to give a
prediction for the nonzero root of fe (x) = x" — ax"~! 4+ ex” for small €. (b) Find the nonzero
root and compare with the prediction.

1.4 Newton's Method | 51

1.3 Computer Problems

1.

Let f(x) = sinx — x. (a) Find the multiplicity of the root » = 0. (b) Use MATLAB’s fzero
command with initial guess x = 0.1 to locate a root. What are the forward and backward errors
of £zero’s response?

Carry out Computer Problem 1 for f(x) = sinx® — x3.

(a) Use £zero to find the root of f(x) = 2xcosx — 2x + sinx? on [—0.1,0.2]. Report the
forward and backward errors. (b) Run the Bisection Method with initial interval [—0.1,0.2]
to find as many correct digits as possible, and report your conclusion.

(a) Use (1.21) to approximate the root near 3 of fc(x) = (1 + e)x> —3x2+x —3fora
constant €. (b) Setting € = 1073, find the actual root and compare with part (a).

Use (1.21) to approximate the root of f(x) = (x —)(x —2)(x —3)(x — 4) — 10700
near » = 4. Find the error magnification factor. Use £zero to check your
approximation.

Use the MATLAB command fzero to find the root of the Wilkinson polynomial near x = 15
with a relative change of € =2 x 10~ in the x !5 coefficient, making the coefficient slightly
more negative. Compare with the prediction made by (1.21).

1.4 NEWTON’S METHOD

Newton’s Method, also called the Newton—Raphson Method, usually converges much faster
than the linearly convergent methods we have seen previously. The geometric picture of
Newton’s Method is shown in Figure 1.8. To find a root of f(x) =0, a starting guess
Xo is given, and the tangent line to the function f at xq is drawn. The tangent line will
approximately follow the function down to the x-axis toward the root. The intersection
point of the line with the x-axis is an approximate root, but probably not exact if f curves.
Therefore, this step is iterated.

Figure 1.8 One step of Newton’s Method. Starting with xg, the tangent line to the
curve y=f(x) is drawn. The intersection point with the x-axis is xj, the next approxima-
tion to the root.

From the geometric picture, we can develop an algebraic formula for Newton’s
Method. The tangent line at xo has slope given by the derivative f”(x(p). One point
on the tangent line is (xg, f(xp)). The point-slope formula for the equation of a line is

52 | CHAPTER 1 Solving Equations

y — f(x0) = f'(x0)(x — xp), so that looking for the intersection point of the tangent line
with the x-axis is the same as substituting y = 0 in the line:

f'(x0)(x — x0) =0 — f(x0)

¥ —xp = — S (xo)
' (x0)

=g — L0

' (xo0)

Solving for x gives an approximation for the root, which we call x. Next, the entire process
is repeated, beginning with xi, to produce x», and so on, yielding the following iterative

formula:
Newton’s Method
X0 = initial guess
Xigl = Xi — j’:/((z)) for i =0,1,2,....

» EXAMPLE 1.11 Find the Newton’s Method formula for the equation x> + x — 1 = 0.
Since f'(x) = 3x2 + 1, the formula is given by

xl.3 +x —1
Xing =y — ATt
i+1 i 3xi2 1
2% + 1
SO
Iterating this formula from initial guess xo = —0.7 yields

241 207 +1

x| = = ~0.1271
x2+1 3(=07%+1
2x3 41

X2 = 12 ~ 0.9577.
3x1 +1

These steps are shown geometrically in Figure 1.9. Further steps are given in the
following table:

Xi ei=Ixi —rl | efe’
—0.70000000 1.38232780
0.12712551 0.55520230 | 0.2906
0.95767812 0.27535032 | 0.8933
0.73482779 0.05249999 | 0.6924
0.68459177 0.00226397 | 0.8214
0.68233217 0.00000437 | 0.8527
0.68232780 0.00000000 | 0.8541
0.68232780 0.00000000

NN R W= O~

After only six steps, the root is known to eight correct digits. There is a bit more
we can say about the error and how fast it becomes small. Note in the table that once
convergence starts to take hold, the number of correct places in x; approximately doubles
on each iteration. This is characteristic of “quadratically convergent” methods, as we shall
see next.

DEFINITION 1.10

THEOREM 1.11

1.4 Newton's Method | 53

y
2
1+
X3
[M [
-1 xp X1 1 2
X2
-1
ok
Figure 1.9 Three steps of newton’s method. lllustration of Example 1.11. Starting with

xo = —0.7, the Newton’s Method iterates are plotted along with the tangent lines. The
method appears to be converging to the root.

1.4.1 Quadratic convergence of Newton’s Method

The convergence in Example 1.11 is qualitatively faster than the linear convergence we
have seen for the Bisection Method and Fixed-Point Iteration. A new definition is needed.

Let e; denote the error after step i of an iterative method. The iteration is quadratically

convergent if
. €t
M = lim =L < c0. 0
i—00 e.2
1

Let f be twice continuously differentiable and f(r) =0. If f'(r) # 0, then Newton’s
Method is locally and quadratically convergent to r. The error e; at step i satisfies

€i+1

Iim — =M
lirgo ei2 ’
where
/A
o Lo .
2f7(r)

Proof. To prove local convergence, note that Newton’s Method is a particular form of
Fixed-Point Iteration, where

SO
[

glx)=x

with derivative

@ = f@ @) S0 x)
f@)? S
Since g’ (r) = 0, Newton’s Method is locally convergent according to Theorem 1.6.

To prove quadratic convergence, we derive Newton’s Method a second way, this time
keeping a close eye on the error at each step. By error, we mean the difference between the
correct root and the current best guess.

Taylor’s formula in Theorem 0.8 tells us the difference between the values of a function
at a given point and another nearby point. For the two points, we will use the root r and the
current guess x; after 7 steps, and we will stop and take a remainder after two terms:

gdxy=1-

54 | CHAPTER 1 Solving Equations

(r —x)?

7 /().

f)y =[G+ (= x) /() +

Here, ¢; is between x; and r. Because r is the root, we have

)2
0= f(x) + (r = x) f(x0) + %f’/(c»
S =))
f1(xi) ’ 2 fe)]

assuming that f”(x;) # 0. With some rearranging, we can compare the next Newton iterate
with the root:

oSG —x)? e
) 2 ()
P G2}
' L217(x)
2 f”(Ci)
eyl =e; 7o) . (1.24)

In this equation, we have defined the error at step i to be e; = |x; — r|. Since ¢; lies between
r and x;, it converges to 7 just as x; does, and

li Gt ' S'(r)
lim —= = " ,
I—00 el. 2 f (l")
the definition of quadratic convergence. a

The error formula (1.24) we have developed can be viewed as
ey ~ Me?, (1.25)

where M = | /' (r)/2 f'(r)|, under the assumption that f’(r) # 0. The approximation gets
better as Newton’s Method converges, since the guesses x; move toward r, and because ¢;
is caught between x; and 7. This error formula should be compared with e; 1 & Se; for the
linearly convergent methods, where S = |¢/(r)| for FPI and S = 1/2 for bisection.

Although the value of S is critical for linearly convergent methods, the value of M is
less critical, because the formula involves the square of the previous error. Once the error
gets significantly below 1, squaring will cause a further decrease; and as long as M is not
too large, the error according to (1.25) will decrease as well.

Returning to Example 1.11, we can analyze the output table to demonstrate this error
rate. The right column shows the ratio e; / eizfl, which, according to the Newton’s Method
error formula (1.25), should tend toward M as convergence to the root takes place. For
f(x) = x> 4+ x — 1, the derivatives are f'(x) =3x2+ 1 and f”(x) = 6x; evaluating at
X ~ 0.6823 yields M ~ 0.85, which agrees with the error ratio in the right column of the
table.

With our new understanding of Newton’s Method, we can more fully explain the square
root calculator of Example 1.6. Let a be a positive number, and consider finding roots of
f(x) = x* — a by Newton’s Method. The iteration is

S xi-a
i+1 = Xi f/(xi) = X 2xi
2 La
xf4+a Xi+
== ’2xf, (1.26)
1

» EXAMPLE 1.12

» EXAMPLE 1.13

1.4 Newton's Method | 55

which is the method from Example 1.6, for arbitrary a.
To study its convergence, evaluate the derivatives at the root v/a:

fWa)=2Va
f(Wa) =2. (1.27)
Newton is quadratically convergent, since f(s/a) = 24/a # 0, and the convergence rate is
eiy1 ~ Me?, (1.28)

where M =2/(2 - 2./a) = 1/(2/a).

1.4.2 Linear convergence of Newton’s Method

Theorem 1.11 does not say that Newton’s Method always converges quadratically. Recall
that we needed to divide by f’(r) for the quadratic convergence argument to make sense.
This assumption turns out to be crucial. The following example shows an instance where
Newton’s Method does not converge quadratically:

Use Newton’s Method to find a root of f(x) = x2.

This may seem like a trivial problem, since we know there is one root: » = 0. But
often it is instructive to apply a new method to an example we understand thoroughly. The
Newton’s Method formula is

e S (xi)
T G
2
=y — oL
2)61'
=2

The surprising result is that Newton’s Method simplifies to dividing by two. Since the root
is = 0, we have the following table of Newton iterates for initial guess xo = 1:

i Xi ei=|x; —r| | ei/ei—i
0 | 1.000 1.000

1 | 0.500 0.500 0.500
2 | 0.250 0.250 0.500
31 0.125 0.125 0.500

Newton’s Method does converge to the root » = 0. The error formula is e;+] =
e; /2, so the convergence is linear with convergence proportionality constant S = 1/2. <«

A similar result exists for x” for any positive integer m, as the next example shows.

Use Newton’s Method to find a root of f(x) = x™.

The Newton formula is

56 | CHAPTER 1 Solving Equations

SPOTLIGHT ON

THEOREM 1.12

» EXAMPLE 1.14

Convergence Equations (1.28) and (1.29) express the two different rates of conver-
gence to the root r possible in Newton’s Method. At a simple root, /() # 0,and the conver-
gence is quadratic, or fast convergence, which obeys (1.28). At a multiple root, f'(r) = 0,and
the convergence is linear and obeys (1.29). In the latter case of linear convergence, the slower

rate puts Newton’s Method in the same category as bisection and FPI.

Again, the only root is » = 0, so defining ¢; = |x; — r| = x; yields
€1 = Se,',

where S = (m — 1)/m. <

This is an example of the general behavior of Newton’s Method at multiple roots.
Note that Definition 1.9 of multiple root is equivalent to f(r) = f’(r) = 0, exactly the case
where we could not make our derivation of the Newton’s Method error formula work. There
is a separate error formula for multiple roots. The pattern that we saw for multiple roots of
monomials is representative of the general case, as summarized in Theorem 1.12.

Assume that the (m + 1)-times continuously differentiable function f on [a,] has a mul-
tiplicity m root at ». Then Newton’s Method is locally convergent to 7, and the error e; at
step 7 satisfies

lim S+l = 5 (1.29)
i—00 €

where S = (m — 1)/m. |

Find the multiplicity of the root » = 0 of f(x) = sinx + x2cosx — x> — x, and estimate

the number of steps of Newton’s Method required to converge within six correct places (use
xo = 1).

It is easy to check that

f(x) =sinx + x2cosx — x> —x

7' (x) = cosx + 2xcosx — x>sinx — 2x — 1
2

f"(x) = —sinx + 2cosx — 4xsinx — x“cosx — 2
and that each evaluates to 0 at » = 0. The third derivative,
/" (x) = —cosx — 6sinx — 6xcosx + x>sinx, (1.30)
satisfies f”’(0) = —1, so the root » = 0 is a triple root, meaning that the multiplicity is

m = 3. By Theorem 1.12, Newton should converge linearly with e; | &~ 2¢; /3.

Using starting guess xo = 1, we have ey = 1. Near convergence, the error will
decrease by 2/3 on each step. Therefore, a rough approximation to the number of steps
needed to get the error within six decimal places, or smaller than 0.5 x 107, can be found

by solving
2\" _6
3) < 0.5 x 10

1 S)—6
- 0g10(-5)

~ 35.78. (131)

Approximately 36 steps will be needed. The first 20 steps are shown in the table.

1.4 Newton's Method | 57

i x; e =|x; —rl ei/ei—1
1 | 1.00000000000000 | 1.00000000000000
2 | 0.72159023986075 | 0.72159023986075 | 0.72159023986075
3 1 0.52137095182040 | 0.52137095182040 | 0.72253049309677
4 | 0.37530830859076 | 0.37530830859076 | 0.71984890466250
5 | 0.26836349052713 | 0.26836349052713 | 0.71504809348561
6 | 0.19026161369924 | 0.19026161369924 | 0.70896981301561
7 | 0.13361250532619 | 0.13361250532619 | 0.70225676492686
8 | 0.09292528672517 | 0.09292528672517 | 0.69548345417455
9 | 0.06403926677734 | 0.06403926677734 | 0.68914790617474
10 | 0.04377806216009 | 0.04377806216009 | 0.68361279513559
11 | 0.02972805552423 | 0.02972805552423 | 0.67906284694649
12 | 0.02008168373777 | 0.02008168373777 | 0.67551285759009
13 | 0.01351212730417 | 0.01351212730417 | 0.67285828621786
14 | 0.00906579564330 | 0.00906579564330 | 0.67093770205249
15 | 0.00607029292263 | 0.00607029292263 | 0.66958192766231
16 | 0.00405885109627 | 0.00405885109627 | 0.66864171927113
17 | 0.00271130367793 | 0.00271130367793 | 0.66799781850081
18 | 0.00180995966250 | 0.00180995966250 | 0.66756065624029
19 | 0.00120772384467 | 0.00120772384467 | 0.66726561353325
20 | 0.00080563307149 | 0.00080563307149 | 0.66706728946460

THEOREM 1.13

Note the convergence of the error ratio in the right column to the predicted 2/3. «

If the multiplicity of a root is known in advance, convergence of Newton’s Method can
be improved with a small modification.

If fis (m + 1)-times continuously differentiable on [a, b], which contains a root r of
multiplicity m > 1, then Modified Newton’s Method

~omf(xi)
S (xi)

converges locally and quadratically to 7. |

Xi+1 = X (132)

Returning to Example 1.14, we can apply Modified Newton’s Method to achieve
quadratic convergence. After five steps, convergence to the root » = 0 has taken place
to about eight digits of accuracy:

1 Xi

0 1.00000000000000
1 0.16477071958224
2 0.01620733771144
3 0.00024654143774
4 0.00000006072272
5 | —0.00000000633250

There are several points to note in the table. First, the quadratic convergence to the
approximate root is observable, as the number of correct places in the approximation more
or less doubles at each step, up to Step 4. Steps 6, 7, ... are identical to Step 5. The reason
Newton’s Method lacks convergence to machine precision is familiar to us from Section 1.3.

58 | CHAPTER 1 Solving Equations

» EXAMPLE 1.15

1.4 Exercises

We know that 0 is a multiple root. While the backward error is driven near €y, by Newton’s
Method, the forward error, equal to x;, is several orders of magnitude larger.

Newton’s Method, like FPI, may not converge to a root. The next example shows just
one of its possible nonconvergent behaviors.

Apply Newton’s Method to f(x) = 4x* — 6x% — 11/4 with starting guess xo = 1/2.

This function has roots, since it is continuous, negative at x = 0, and goes to
positive infinity for large positive and large negative x. However, no root will be found for
the starting guess xo = 1/2, as shown in Figure 1.10. The Newton formula is

4 2 11
dx;7 — 6x; -7

Xitl] = Xj — (1.33)
’ ’ 16x7 — 12x;
Substitution gives x; = —1/2, and then x, = 1/2 again. Newton’s Method alternates on
this example between the two nonroots 1/2 and —1/2, and fails to find a root.
| | | |
-3 -2 2 3
Figure 1.10 Failure of Newton’s Method in Example 1.15. The iteration alternates
between 1/2 and —1/2, and does not converge to a root. <

Newton’s Method can fail in other ways. Obviously, if f’(x;) =0 at any iteration
step, the method cannot continue. There are other examples where the iteration diverges to
infinity (see Exercise 6) or mimics a random number generator (see Computer Problem 13).
Although not every initial guess leads to convergence to a root, Theorems 1.11 and 1.12
guarantee a neighborhood of initial guesses surrounding each root for which convergence
to that root is assured.

Apply two steps of Newton’s Method with initial guess xo = 0. (a) x> +x —2=0
Ox*—x24+x—-1=0@)x2=x—-1=0

Apply two steps of Newton’s Method with initial guess xo = 1. (a) x3 + x> — 1 =0
x> +1/(x+1)=3x=0()5x — 10=0

Use Theorem 1.11 or 1.12 to estimate the error e;4 in terms of the previous error e; as
Newton’s Method converges to the given roots. Is the convergence linear or quadratic?

10.

11.

12.

13.

14.

1.4 Newton's Method | 59

@xS—2x*+2x2—x=0:r=—1,r=0,r=10b)2x* = 5x3 +3x2+x - 1=0;
r=-1/2,r=1

Estimate e; | as in Exercise 3. (a) 32x> — 32x2 — 6x +9=0;r=—1/2,r =3/4
b)x?—x*—5x —3=0r=—-1,r=3

Consider the equation 8x* — 12x3 + 6x2 — x = 0. For each of the two solutions x = 0 and
x = 1/2, decide which will converge faster (say, to eight-place accuracy), the Bisection
Method or Newton’s Method, without running the calculation.

Sketch a function f and initial guess for which Newton’s Method diverges.

Let f(x) = x* — 7x> + 18x% — 20x + 8. Does Newton’s Method converge quadratically to
the root » = 2? Find lim e;1/e;, where e; denotes the error at step i.
1—>00

Prove that Newton’s Method applied to f(x) = ax + b converges in one step.

Show that applying Newton’s Method to f(x) = x> — A4 produces the iteration of
Example 1.6.

Find the Fixed-Point Iteration produced by applying Newton’s Method to f(x) = x> — 4. See
Exercise 1.2.10.

Use Newton’s Method to produce a quadratically convergent method for calculating the nth
root of a positive number 4, where n is a positive integer. Prove quadratic convergence.

Suppose Newton’s Method is applied to the function f(x) = 1/x. If the initial guess is xo = 1,
find x 50.

(a) The function f(x) = x3 — 4x has aroot at » = 2. If the error ¢; = x; — r after four steps of
Newton’s Method is e4 = 1070, estimate es. (b) Apply the same question as (a) to the root
7 = 0. (Caution: The usual formula is not useful.)

Let g(x) =x — f(x)/f"(x) denote the Newton’s Method iteration for the function f. Define
h(x) = g(g(x)) to be the result of two successive steps of Newton’s Method. Then

h'(x) = g (g(x)) g (x) according to the Chain Rule of calculus. (a) Assume that ¢ is a fixed
point of %, but not of g, as in Example 1.15. Show that if ¢ is an inflection point of f'(x), that
is, /" (x) = 0, then the fixed point iteration / is locally convergent to c. It follows that for
initial guesses near ¢, Newton’s Method itself does not converge to a root of f, but tends
toward the oscillating sequence {c, g(c)} (b) Verify that the stable oscillation described in

(a) actually occurs in Example 1.15. Computer Problem 14 elaborates on this example.

1.4 Computer Problems

1.

Each equation has one root. Use Newton’s Method to approximate the root to eight correct
decimal places. (a) X=2x4+20B) e +x=7(C)e" +sinx =4

Each equation has one real root. Use Newton’s Method to approximate the root to eight correct
decimal places. (a) x> + x =1 (b) sinx = 6x + 5 (c) Inx + x> =3

Apply Newton’s Method to find the only root to as much accuracy as possible, and find the
root’s multiplicity. Then use Modified Newton’s Method to converge to the root quadratically.
Report the forward and backward errors of the best approximation obtained from each method.
(@) f(x) =27x3 + 54x2 + 36x + 8 (b) f(x) =36x* — 12x3 +37x> — 12x + 1

60 | CHAPTER 1 Solving Equations

4,

10.

11.

12.

13.

14.

Carry out the steps of Computer Problem 3 for (a) f(x) =2¢*~1 —x2 — 1
®) f(x) =In3 —x) +x — 2.

A silo composed of a right circular cylinder of height 10 m surmounted by a hemispherical
dome contains 400 m? of volume. Find the base radius of the silo to four correct decimal
places.

A 10-cm-high cone contains 60 cm? of ice cream, including a hemispherical scoop on top. Find
the radius of the scoop to four correct decimal places.

Consider the function f(x) = esmgx + x% — 2x%* — x3 — 1 on the interval [—2, 2]. Plot the
function on the interval, and find all three roots to six correct decimal places. Determine which
roots converge quadratically, and find the multiplicity of the roots that converge linearly.

Carry out the steps of Computer Problem 7 for the function
fix) = 94cos3x — 24cosx + 177sin’x — 108sin*x — 72cos? x sin”x — 65 on the interval
[0,3].

Apply Newton’s Method to find both roots of the function f(x) = l4xe* =2 — 12¢¥~2 —

7x3 + 20x2 — 26x + 12 on the interval [0, 3]. For each root, print out the sequence of iterates,
the errors e;, and the relevant error ratio e; 1/ ei2 or ej+1/e; that converges to a nonzero limit.
Match the limit with the expected value M from Theorem 1.11 or S from Theorem 1.12.

Set f(x) = 54x% + 45x> — 102x* — 69x3 + 35x% + 16x — 4. Plot the function on the
interval [—2, 2], and use Newton’s Method to find all five roots in the interval. Determine for
which roots Newton converges linearly and for which the convergence is quadratic.

The ideal gas law for a gas at low temperature and pressure is PV =nRT, where P is
pressure (in atm), V' is volume (in L), T is temperature (in K), z is the number of moles of the
gas, and R = 0.0820578 is the molar gas constant. The van der Waals equation

nza
P+ 27 | (V' —nb) =nRT

covers the nonideal case where these assumptions do not hold. Use the ideal gas law to
compute an initial guess, followed by Newton’s Method applied to the van der Waals equation
to find the volume of one mole of oxygen at 320 K and a pressure of 15 atm. For oxygen,

a = 1.36 L>-atm/mole? and b = 0.003183 L/mole. State your initial guess and solution with
three significant digits.

Use the data from Computer Problem 11 to find the volume of 1 mole of benzene vapor at 700
K under a pressure of 20 atm. For benzene, a = 18.0 L?-atm/mole? and b = 0.1154 L/mole.

(a) Find the root of the function f(x) = (1 — 3/ 4x)'3. (b) Apply Newton’s Method using an
initial guess near the root, and plot the first 50 iterates. This is another way Newton’s Method
can fail, by producing a chaotic trajectory. (c) Why are Theorems 1.11 and 1.12 not applicable?

(a) Fix real numbers a, b > 0 and plot the graph of f(x) = a®x* — 6abx? — 115 for your
chosen values. Do not use @ = 2, b = 1/2, since that case already appears in Example 1.15.
(b) Apply Newton’s method to find both the negative root and the positive root of f(x). Then
find intervals of positive initial guesses [d1, d>], where d» > d, for which Newton’s Method:
(c) converges to the positive root, (d) converges to the negative root, (e) is defined, but does
not converge to any root. Your intervals should not contain any initial guess where f”(x) =0,
at which Newton’s Method is not defined.

1.5 Root-Finding without Derivatives | 61

1.5 ROOT-FINDING WITHOUT DERIVATIVES

Apart from multiple roots, Newton’s Method converges at a faster rate than the bisection
and FPI methods. It achieves this faster rate because it uses more information—in partic-
ular, information about the tangent line of the function, which comes from the function’s
derivative. In some circumstances, the derivative may not be available.

The Secant Method is a good substitute for Newton’s Method in this case. It replaces the
tangent line with an approximation called the secant line, and converges almost as quickly.
Variants of the Secant Method replace the line with an approximating parabola, whose
axis is either vertical (Muller’s Method) or horizontal (inverse quadratic interpolation). The
section ends with the description of Brent’s Method, a hybrid method which combines the
best features of iterative and bracketing methods.

1.5.1 Secant Method and variants

The Secant Method is similar to the Newton’s Method, but replaces the derivative by a
difference quotient. Geometrically, the tangent line is replaced with a line through the two
last known guesses. The intersection point of the “secant line” is the new guess.

An approximation for the derivative at the current guess x; is the difference quotient

Sx) — fxiz1)

Xi — Xi—1

A straight replacement of this approximation for f"(x;) in Newton’s Method yields the

Secant Method.
Secant Method
X0, X1 = initial guesses
B A C I e D P
S&xi) — fxi-1)

Unlike Fixed-Point Iteration and Newton’s Method, two starting guesses are needed to
begin the Secant Method.

It can be shown that under the assumption that the Secant Method converges to » and
f'(r) # 0, the approximate error relationship

LS
270)

€i+1 €iei—1

holds and that this implies that

a—1
(4
ei N

S (r)
21"(r)

€41~ ‘

where o = (1 + «/3) /2 =~ 1.62. (See Exercise 6.) The convergence of the Secant Method
to simple roots is called superlinear, meaning that it lies between linearly and quadratically
convergent methods.

62 | CHAPTER 1 Solving Equations

Figure 1.11 Two steps of the Secant Method. lllustration of Example 1.16. Starting

with xo =0 and x; =1, the Secant Method iterates are plotted along with the secant
lines.

» EXAMPLE 1.16 Apply the Secant Method with starting guesses xo = 0, x; = 1 to find the root of f(x) =
3
x> +x— 1.

The formula gives
O +x — D0 — xi1)
x4 x — (7 +xim)

Xipl =X — (1.34)

Starting with xg = 0 and x; = 1, we compute

., ha-0 1
T

1 —3an2-1n 7
X3=———=_

3 K
2 -z-1 11

as shown in Figure 1.11. Further iterates form the following table:

X
0.00000000000000
1.00000000000000
0.50000000000000
0.63636363636364
0.69005235602094
0.68202041964819
0.68232578140989
0.68232780435903
0.68232780382802
0.68232780382802 <

O 0 1N N B~ Wi~ O~

There are three generalizations of the Secant Method that are also important. The
Method of False Position, or Regula Falsi, is similar to the Bisection Method, but where
the midpoint is replaced by a Secant Method-like approximation. Given an interval [a, b]
that brackets a root (assume that f'(a) f(b) < 0), define the next point

__J@@=b) _bf@—af®)
Sfla) — f(b) Sfla) — f(b)

as in the Secant Method, but unlike the Secant Method, the new point is guaranteed to

lie in [a, b], since the points (a, f(a)) and (b, (b)) lie on separate sides of the x-axis.

» EXAMPLE 1.17

1.5 Root-Finding without Derivatives | 63

The new interval, either [a, c] or [c, b], is chosen according to whether f(a) f(c) < O or
f(c) f(b) <0, respectively, and still brackets a root.

Method of False Position
Given interval [a, b] such that f(a) f(b) <O

fori =1,2,3,...
L _bf@ —af®)
fa) — f(b)

if f(c) =0, stop, end
if f(a)f(c) <0
b=c
else
a=c

end

The Method of False Position at first appears to be an improvement on both the Bisection
Method and the Secant Method, taking the best properties of each. However, while the
Bisection Method guarantees cutting the uncertainty by 1/2 on each step, False Position
makes no such promise, and for some examples can converge very slowly.

Apply the Method of False Position on initial interval [—1, 1] to find the root » = 0 of
f(x)=x3 —2x2 + %x.

Given xg = —1,x; = 1 as the initial bracketing interval, we compute the new point

_ x1 f(xo) — x0 f(x1) _ 1(=9/2) = (=D1/2 _ 4
fxo) — f(x1)

—9/2—-1/2 5
Since f(—1) f(4/5) < 0,the new bracketing intervalis [xg, x2] = [—1, 0.8]. This completes
the first step. Note that the uncertainty in the solution has decreased by far less than a factor
of 1/2. As Figure 1.12(b) shows, further steps continue to make slow progress toward the
root at x = 0.

y y
1k L
Xy 1 Xy
| L — —|= — -~ 1~ 1 x | 17]~ 1 x
—)lc X3 L7 //xz}c -1 Sl X]
0 S 1 X0 _1—,//// X3 X
// ////
2k /////4_2
7 ///
-7 iz
o7 3 ///// 3+
7 ///
7 7
- &/&
.7 —4r g —-4r
5+ 5+
(a) (b)

Figure 1.12 Slow convergence in Example 1.17. Both the (a) Secant Method and (b)
Method of False Position converge slowly to the root r=0. <«

Muller’s Method is a generalization of the Secant Method in a different direction.
Instead of intersecting the line through two previous points with the x-axis, we use three pre-
vious points xg, X1, X2, draw the parabola y = p(x) through them, and intersect the parabola

64 | CHAPTER 1 Solving Equations

with the x-axis. The parabola will generally intersect in 0 or 2 points. If there are two inter-
section points, the one nearest to the last point x; is chosen to be x3. It is a simple matter of
the quadratic formula to determine the two possibilities. If the parabola misses the x-axis,
there are complex number solutions. This enables software that can handle complex arith-
metic to locate complex roots. We will not pursue this idea further, although there are several
sources in the literature that follow this direction.

Inverse Quadratic Interpolation (IQI) is a similar generalization of the Secant
Method to parabolas. However, the parabola is of form x = p(y) instead of y = p(x),
as in Muller’s Method. One problem is solved immediately: This parabola will intersect the
x-axis in a single point, so there is no ambiguity in finding x;;3 from the three previous
guesses, X;, Xi+1, and x; 7.

The second-degree polynomial x = P(y) that passes through the three points (a, 4),
(b, B),(c,C)is

O-BG-0 ,OG=-DH@-0) (y—-—4DHy—-B)

P(y)=a c .
(4—B)4-0) (B—A4)(B—-0) (C—A)(C - B)

(1.35)

This is an example of Lagrange interpolation, one of the topics of Chapter 3. For now, it
is enough to notice that P(4) = a, P(B) = b, and P(C) = c. Substituting y = 0 gives a
formula for the intersection point of the parabola with the x-axis. After some rearrangement
and substitution, we have

B r(r —q)(c —>b)+ (1 —r)s(c —a)
@=—D@F =D -1

where g = f(a)/ f(b),r = f(c)/ f(b),and s = f(c)/ f(a).
For IQI, after setting a =x;,b =x;j11,c =xj42, and 4 = f(x;), B = f(xi+1),
C = f(xi42), the next guess x;+3 = P(0) is

P0)=c , (1.36)

r(r —q)(xit2 — xit1) + (I = r)s(xjp2 — x;)
@g—D@r—D@ -1 '

Xi43 = Xj42 — (1.37)

where g = f(x;)/ f(xi+1),7 = f(xi42)/ f(xi+1),and s = f(x;42)/ f(x;). Given three ini-
tial guesses, the IQI method proceeds by iterating (1.37), using the new guess x; 43 to replace
the oldest guess x;. An alternative implementation of IQI uses the new guess to replace one
of the previous three guesses with largest backward error.

Figure 1.13 compares the geometry of Muller’s Method with Inverse Quadratic Inter-
polation. Both methods converge faster than the Secant Method due to the higher-order
interpolation. We will study interpolation in more detail in Chapter 3. The concepts of the
Secant Method and its generalizations, along with the Bisection Method, are key ingredients
of Brent’s Method, the subject of the next section.

1.5.2 Brent's Method

Brent’s Method [Brent, 1973] is a hybrid method—it uses parts of solving techniques
introduced earlier to develop a new approach that retains the most useful properties of each.
It is most desirable to combine the property of guaranteed convergence, from the Bisection
Method, with the property of fast convergence from the more sophisticated methods. It was
originally proposed by Dekker and Van Wijngaarden in the 1960s.

The method is applied to a continuous function f and an interval bounded by @ and b,
where f(a) f(b) < 0. Brent’s Method keeps track of a current point x; that is best in the
sense of backward error, and a bracket [a;, b;] of the root. Roughly speaking, the Inverse

1.5 Root-Finding without Derivatives | 65

Quadratic Interpolation method is attempted, and the result is used to replace one of x;, a;, b;
if (1) the backward error improves and (2) the bracketing interval is cut at least in half. If not,
the Secant Method is attempted with the same goal. If it fails as well, a Bisection Method
step is taken, guaranteeing that the uncertainty is cut at least in half.

X

~

Figure 1.13 Comparison of Muller's Method step with Inverse Quadratic Iteration
step. The former is determined by an interpolating parabola y = p(x); the latter, by an
interpolating parabola x = p(y).

MATLAB’s command fzero implements a version of Brent’s Method, along with a
preprocessing step, to discover a good initial bracketing interval if one is not provided by
the user. The stopping criterion is of a mixed forward/backward error type. The algorithm
terminates when the change from x; to the new point x; 1 is less than 2€,cn max (1, x;), or
when the backward error | f(x;)| achieves machine zero.

The preprocessing step is not triggered if the user provides an initial bracketing
interval. The following use of the command enters the function f(x) = x> 4+ x — I and
the initial bracketing interval [0, 1] and asks MATLAB to display partial results on each
iteration:

>> f=@(x) x"3+x-1;
>> fzero(f, [0 1] ,optimset ('Display’,’iter’))

Func-count x f(x) Procedure
1 0 -1 initial
2 1 1 initial
3 0.5 -0.375 bisection
4 0.636364 -0.105935 interpolation
5 0.684910 0.00620153 interpolation
6 0.682225 -0.000246683 interpolation
7 0.682328 -5.43508e-007 interpolation
8 0.682328 1.50102e-013 interpolation
9 0.682328 0 interpolation

Zero found in the interval:

ans=

0.68232780382802

Alternatively, the command

>> fzero(f,1)

looks for a root of f(x) near x = 1 by first locating a bracketing interval and then applying

Brent’s Method.

[0, 171.

66 | CHAPTER 1 Solving Equations

1.5 Exercises

Apply two steps of the Secant Method to the following equations with initial guesses xop = 1
andx; =2. (x> =2x+20) e +x=7() e +sinx =4

Apply two steps of the Method of False Position with initial bracket [1, 2] to the equations of
Exercise 1.

Apply two steps of Inverse Quadratic Interpolation to the equations of Exercise 1. Use initial
guesses xo = 1,x; = 2, and x, = 0, and update by retaining the three most recent
iterates.

A commercial fisher wants to set the net at a water depth where the temperature is 10 degrees
C. By dropping a line with a thermometer attached, she finds that the temperature is 8 degrees
at a depth of 9 meters, and 15 degrees at a depth of 5 meters. Use the Secant Method to
determine a best estimate for the depth at which the temperature is 10.

Derive equation (1.36) by substituting y = 0 into (1.35).

If the Secant Method converges to , f'(r) # 0, and f”(r) # 0, then the approximate error
relationship e; 1 ~ | f”(r)/(2 /' (r))|eiei—1 can be shown to hold. Prove that if in addition
lim; , oo €;41/€} exists and is nonzero for some o > 0, then o = (1 + \fS)/Z and

et XS ()/2 DI e

Consider the following four methods for calculating 2!/4, the fourth root of 2. (a) Rank
them for speed of convergence, from fastest to slowest. Be sure to give reasons for your
ranking.

(A) Bisection Method applied to f(x) = x* — 2

(B) Secant Method applied to f(x) = x* — 2
1
(C) Fixed Point Iteration applied to g(x) = % + =
x
1
3x3
(b) Are there any methods that will converge faster than all above suggestions?

(D) Fixed Point Iteration applied to g(x) = % +

1.5 Computer Problems

1.

2.

Use the Secant Method to find the (single) solution of each equation in Exercise 1.
Use the Method of False Position to find the solution of each equation in Exercise 1.
Use Inverse Quadratic Interpolation to find the solution of each equation in Exercise 1.

Set f(x) = 54x® 4 45x% — 102x* — 69x3 + 35x% 4 16x — 4. Plot the function on the
interval [—2, 2], and use the Secant Method to find all five roots in the interval. To which of the
roots is the convergence linear, and to which is it superlinear?

In Exercise 1.1.6, you were asked what the outcome of the Bisection Method would be for
f(x) = 1/x on the interval [—2, 1]. Now compare that result with applying £zero to the
problem.

What happens if £zero is asked to find the root of f(x) = x2 near 1 (do not use a
bracketing interval)? Explain the result. (b) Apply the same question to f(x) = 1 + cosx
near —1.

1.5 Root-Finding without Derivatives | 67

Reality
Check K Kinematics of the Stewart platform

A Stewart platform consists of six variable length struts, or prismatic joints, supporting a
payload. Prismatic joints operate by changing the length of the strut, usually pneumatically
or hydraulically. As a six-degree-of-freedom robot, the Stewart platform can be placed at
any point and inclination in three-dimensional space that is within its reach.

To simplify matters, the project concerns a two-dimensional version of the Stewart
platform. It will model a manipulator composed of a triangular platform in a fixed plane
controlled by three struts, as shown in Figure 1.14. The inner triangle represents the planar
Stewart platform whose dimensions are defined by the three lengths L, L, and L3. Let y
denote the angle across from side L. The position of the platform is controlled by the three
numbers pj, pa, and p3, the variable lengths of the three struts.

y
(%2, ¥2)
P3
(x+ Ly cos(f +y),y+ L,sin(6 + y))
L,
L, (x+Lzcos6,y+ Lysin0)
Y L,
[% P2
ntyT
= X
0,0) (1, 0)

Figure 1.14 Schematic of planar Stewart platform. The forward kinematics problem
is to use the lengths pq, py, p3 to determine the unknowns X, y, 6.

Finding the position of the platform, given the three strut lengths, is called the forward,
or direct, kinematics problem for this manipulator. Namely, the problem is to compute
(x, y) and 6 for each given p1, p2, p3. Since there are three degrees of freedom, it is natural
to expect three numbers to specify the position. For motion planning, it is important to solve
this problem as fast as possible, often in real time. Unfortunately, no closed-form solution
of the planar Stewart platform forward kinematics problem is known.

The best current methods involve reducing the geometry of Figure 1.14 to a single
equation and solving it by using one of the solvers explained in this chapter. Your job is to
complete the derivation of this equation and write code to carry out its solution.

Simple trigonometry applied to Figure 1.14 implies the following three equations:

pi=x>+7
P=0+ 42> + (v + B)?
Pr=(x 4 437 + (v + B3)>. (1.38)

In these equations,
Ar = L3cosH — x;
By, = L3sin6
Az = Lycos(f + y) — xa = La[cosfcosy — sinfsiny] — xa
B3 = Lssin(0 4+ y) — y» = La[cosfOsiny + sinfcosy] — »m.
Note that (1.38) solves the inverse kinematics problem of the planar Stewart platform, which

is to find p1, p2, p3, given x, y, 6. Your goal is to solve the forward problem, namely, to
find x, y, 0, given p1, p2, p3.

68 | CHAPTER 1 Solving Equations

Multiplying out the last two equations of (1.38) and using the first yields

p3 =x%+ y? +240x + 2Byy + A3 + BS = pi + 24>x +2Byy + A3 + B3
p3 =x%+ y? +243x + 2B3y + A3 + B} = pi + 243x + 2B3y + A3 + B3,

which can be solved for x and y as

N B33 — pi — 45— B) = Ba(py — pi — 43— BY)

T 2(42B5 — ByAs)
N2 —A3(p3 = pi = 45— B) + Ao(p3 — p} — A3 — BY) (139)
Y= T 2(42B5 — Bods3) ’ ‘

aslong as D =2(A2B3 — B2 A3) #0.
Substituting these expressions for x and y into the first equation of (1.38), and multi-
plying through by D?, yields one equation, namely,

f=N}+ N} —piD*=0 (1.40)

in the single unknown 6. (Recall that p1, p2, p3, L1, L2, L3, y, X1, X2, y» are known.) If the
roots of f(6) can be found, the corresponding x- and y- values follow immediately from
(1.39).

Note that f(6) is a polynomial in sin# and cos6, so, given any root 6, there are other
roots 6 + 2k that are equivalent for the platform. For that reason, we can restrict attention
to @ in [—, 7r]. It can be shown that f(6) has at most six roots in that interval.

1. Write a MATLAB function file for f(6). The parameters L1, L2, L3, v, x1, X2,)» are fixed
constants, and the strut lengths p1, p2, p3 will be known for a given pose. Check Appendix
B.5 if you are new to MATLAB function files. Here, for free, are the first and last lines:

function out=f (theta)

out=N1"2+N2"2-pl~2*D"2;

To test your code, set the parameters L} =2, L, = L3 = V2, y=m/2,p1=pr=
p3 = +/5 from Figure 1.15. Then, substituting § = — /4 or 6 = 7 /4, corresponding to
Figures 1.15(a, b), respectively, should make f(6) = 0.

2. Plot f(#) on [—m, w]. You may use the @ symbol as described in Appendix B.5 to assign a
function handle to your function file in the plotting command. You may also need to

precede arithmetic operations with the “.”” character to vectorize the operations, as
explained in Appendix B.2. As a check of your work, there should be roots at == /4.

3. Reproduce Figure 1.15. The MATLAB commands

>> plot ([ul u2 u3 ull, [vl v2 v3 v1],’r’); hold on
>> plot ([0 x1 x2],[0 0 y2],'bo")

will plot a red triangle with vertices (ul,vl), (u2,v2), (u3,v3) and place small
circles at the strut anchor points (0, 0), (0,x1), (x2,y2). In addition, draw the
struts.

4. Solve the forward kinematics problem for the planar Stewart platform specified by
x1=5,(x2,2) =(0,6),L1 = L3 =3,Ly =32,y =7/4, pi = p =5, p3 = 3. Begin

Software and Further Reading | 69

y y

46 4

3+ 3=

2+ 2+

1+ 1+
! ! ! o> x ! ! ! %> x
1 2 3 4 1 2 3 4

(a) (b)

Figure 1.15 Two poses of the planar Stewart platform with identical arm lengths.
Each pose corresponds to a solution of (1.38) with strut lengths p;=p,=p3=+/5. The
shape of the triangle is defined by L1=2, Ly =l3=+/2, y=71/2.

by plotting f(6). Use an equation solver to find all four poses, and plot them. Check your
answers by verifying that py, p2, p3 are the lengths of the struts in your plot.

5. Change strut length to p» = 7 and re-solve the problem. For these parameters, there are six
poses.

6. Find a strut length p», with the rest of the parameters as in Step 4, for which there are only
two poses.

7. Calculate the intervals in p;, with the rest of the parameters as in Step 4, for which there are
0,2,4, and 6 poses, respectively.

8. Derive or look up the equations representing the forward kinematics of the
three-dimensional, six-degrees-of-freedom Stewart platform. Write a MATLAB program
and demonstrate its use to solve the forward kinematics. See Merlet [2000] for a good
introduction to prismatic robot arms and platforms.

Software and Further Reading

There are many algorithms for locating solutions of nonlinear equations. The slow, but
always convergent, algorithms like the Bisection Method contrast with routines with faster
convergence, but without guarantees of convergence, including Newton’s Method and vari-
ants. Equation solvers can also be divided into two groups, depending on whether or not
derivative information is needed from the equation. The Bisection Method, the Secant
Method, and Inverse Quadratic Interpolation are examples of methods that need only a
black box providing a function value for a given input, while Newton’s Method requires
derivatives. Brent’s Method is a hybrid that combines the best aspects of slow and fast
algorithms and does not require derivative calculations. For this reason, it is heavily used
as a general-purpose equation solver and is included in many comprehensive software
packages.

MATLAB’s £zero command implements Brent’s Method and needs only an initial
interval or one initial guess as input. The ZBREN program of IMSL, the NAG rou-
tine c05adc, and netlib FORTRAN program fzero.f all rely on this basic approach.

70 | CHAPTER 1 Solving Equations

The MATLAB roots command finds all roots of a polynomial with an entirely different
approach, computing all eigenvalues of the companion matrix, constructed to have eigen-
values identical to all roots of the polynomial.

Other often-cited algorithms are based on Muller’s Method and Laguerre’s Method,
which, under the right conditions, is cubically convergent. For more details, consult the clas-
sic texts on equation solving by Traub [1964], Ostrowski [1966], and Householder [1970].

Systems of Equations

Physical laws govern every engineered structure, from
skyscrapers and bridges to diving boards and medi-
cal devices. Static and dynamic loads cause materials
to deform, or bend. Mathematical models of bending
are basic tools in the structural engineer’s workbench.
The degree to which a structure bends under a load
depends on the stiffness of the material, as measured
by its Young's modulus.The competition between stress
and stiffness is modeled by a differential equation,
which, after discretization, is reduced to a system of
linear equations for solution.

To increase accuracy, a fine discretization is used,
making the system of linear equations large and
usually sparse. Gaussian elimination methods are
efficient for moderately sized matrices, but special
iterative algorithms are necessary for large, sparse
systems.

Reality
Check Reality Check 2 on page 102 studies solu-

tion methods applicable to the Euler-Bernoulli model
for pinned and cantilever beams.

In the previous chapter, we studied methods for solving a single equation in a single vari-
able. In this chapter, we consider the problem of solving several simultaneous equations
in several variables. Most of our attention will be paid to the case where the number of
equations and the number of unknown variables are the same.

Gaussian elimination is the workhorse for reasonably sized systems of linear equations.
The chapter begins with the development of efficient and stable versions of this well-known
technique. Later in the chapter our attention shifts to iterative methods, required for very
large systems. Finally, we develop methods for systems of nonlinear equations.

2.1 GAUSSIAN ELIMINATION

Consider the system

x+y=3

3x —4y=2. 2.1

72 | CHAPTER 2 Systems of Equations

Figure 2.1 Geometric solution of a system of equations. Each equation of (2.1)
corresponds to a line in the plane. The intersection point is the solution.

A system of two equations in two unknowns can be considered in terms either of algebra
or of geometry. From the geometric point of view, each linear equation represents a line in
the xy-plane, as shown in Figure 2.1. The point x =2, y = 1 at which the lines intersect
satisfies both equations and is the solution we are looking for.

The geometric view is very helpful for visualizing solutions of systems, but for com-
puting the solution with a great deal of accuracy we return to algebra. The method known
as Gaussian elimination is an efficient way to solve n equations in » unknowns. In the next
few sections, we will explore implementations of Gaussian elimination that work best for
typical problems.

2.1.1 Naive Gaussian elimination

We begin by describing the simplest form of Gaussian elimination. In fact, it is so simple
that it is not guaranteed to proceed to completion, let alone find an accurate solution.
The modifications that will be needed to improve the “naive’” method will be introduced
beginning in the next section.

Three useful operations can be applied to a linear system of equations that yield an
equivalent system, meaning one that has the same solutions. These operations are as follows:

(1) Swap one equation for another.
(2) Add or subtract a multiple of one equation from another.
(3) Multiply an equation by a nonzero constant.

For equation (2.1), we can subtract 3 times the first equation from the second equation
to eliminate the x variable from the second equation. Subtracting 3 - [x + y = 3] from the
second equation leaves us with the system

x+y=3
—Ty=-1. 2.2)

Starting with the bottom equation, we can “backsolve” our way to a full solution, as in
—Ty=-T—y=1
and
x+y=3—x+1)=3—x=2.

Therefore, the solution of (2.1) is (x, y) = (2, 1).

» EXAMPLE 2.1

2.1 Gaussian Elimination | 73

The same elimination work can be done in the absence of variables by writing the
system in so-called tableau form:

1 1 | 3 subtract 3 x row 1 1 1] 3
|:3 4| 2i|—> fromrow2 —> 0o -7 | -7 | 2.3)

The advantage of the tableau form is that the variables are hidden during elimination. When
the square array on the left of the tableau is “triangular,” we can backsolve for the solution,
starting at the bottom.

Apply Gaussian elimination in tableau form for the system of three equations in three
unknowns:

x+2y—z=3
2x +y—2z=3
—3x+y+z=-6. (2.4)

This is written in tableau form as

-1 1] 3
-2 |1 3. 2.5
-3 1 | -6
Two steps are needed to eliminate column 1:
-1 3 subtract 2 x row 1 1 2 =1 | 3
-2 | 3 —> fromrow2 —> 0 -3 0o | -3
1| -6 | -3 1 1 | -6
subtract —3 x row 1 [1 2 =1
— from row 3 — | 0 =3 0 | -3
| 0 7 =2 | 3
and one more step to eliminate column 2:
1 2 -1 | 3 subtract —% X TOW 2 1 2 =1 | 3
0 -3 o | -3 |— from row 3 — | 0 =3 0| -3
0o 7 =2 | 3 0O 0 -2 | -4
Returning to the equations
X+2y—z=3
—3y=-3
—2z = —4, (2.6)
we can solve for the variables
x=3-2y+z
—3y=-3
—2z=—4 2.7)

and solve for z, y, x in that order. The latter part is called back substitution, or backsolving
because, after elimination, the equations are readily solved from the bottom up. The solution
isx=3,y=1,z=2. |

74 | CHAPTER 2 Systems of Equations

LEMMA 2.1

2.1.2 Operation counts

In this section, we do an approximate operation count for the two parts of Gaussian elim-
ination: the elimination step and the back-substitution step. In order to do this, it will help
to write out for the general case the operations that were carried out in the preceding two
examples. To begin, recall two facts about sums of integers.

For any positive integer n, (a) 1 +2+3+4+---+n=n(n + 1)/2 and (b) 12 422
+ 32 +42 4+ .+ nP=nmn+ D)2+ 1)/6. [

The general form of the tableau for » equations in » unknowns is

ajy aip ... aim | by

ay axn ... am | b
|

anl Ap2 ... Qup | by

To carry out the elimination step, we need to put zeros in the lower triangle, using the

allowed row operations.
We can write the elimination step as the loop

for j =1 : n-1
eliminate column j
end

where, by “eliminate column j,” we mean “use row operations to put a zero in each location
below the main diagonal, which are the locations a 11, ;,@;12,;,...,a,;.” For example, to
carry out elimination on column 1, we need to put zeros in azy, ..., a,1. This can be written
as the following loop within the former loop:

for j =1 : n-1

for i = j+1 : n
eliminate entry a(i,j)
end
end

It remains to fill in the inner step of the double loop, to apply a row operation that sets the
a;; entry to zero. For example, the first entry to be eliminated is the a;; entry. To accomplish
this, we subtract az;/aq; times row 1 from row 2, assuming that a1; # 0. That is, the first
two rows change from

ayy ap ... am | by
ay axp ... ay | b
to
ai anp cee Qg | by
any as] azl
0 apn—-—apn ... ay——a, | by— —b
al ary ar

Accounting for the operations, this requires one division (to find the multiplier a1 /a11),
plus » multiplications and » additions. The row operation used to eliminate entry a;; of the
first column, namely,

ain ap s Al | by
: o |
a1 ajl ail

0 ap——an ... ap——ay | bi——b
an ai ai

requires similar operations.

2.1 Gaussian Elimination | 75

The procedure just described works as long as the number a1 is nonzero. This number
and the other numbers a;; that are eventually divisors in Gaussian elimination are called
pivots. A zero pivot will cause the algorithm to halt, as we have explained it so far. This
issue will be ignored for now and taken up more carefully in Section 2.4.

Returning to the operation count, note that eliminating each entry ¢;; in the first column
uses one division, » multiplications, and » addition/subtractions, or 2n + 1 operations when
counted together. Putting zeros into the first column requires a repeat of these 2n + 1
operations a total of » — 1 times.

After the first column is eliminated, the pivot ap; is used to eliminate the second column
in the same way and the remaining columns after that. For example, the row operation used
to eliminate entry a;; is

0 0 a_,-_,- aj,_/'-H ajn | bj

AU |
aij aij dij
0 0 0 A j+1 — —aj j+1 <. Ain — —Qjp | bi——bj.
ajj ajj ajj
In our notation, a»,, for example, refers to the revised number in that position after the
elimination of column 1, which is not the original az,. The row operation to eliminate a;;
requires one division, n — j + 1 multiplications, and n — j + 1 addition/subtractions.

Inserting this step into the same double loop results in

for j =1 : n-1
if abs(a(j,j))<eps; error(’'zero pivot encountered’); end
for i = j+1 : n
mult = a(i,j)/a(j,j);
for k = j+1:n

a(i,k) = a(i,k) - mult*a(j, k);
end
b(i) = b(i) - mult*b(j);
end
end

Two comments on this code fragment are called for: First, asking the index & to move from
Jj to n will put a zero in the a;; location; however, moving from j + 1 to n is the most
efficient coding. The latter will not place a zero in the a;; entry, which was the entry we
are trying to eliminate! Although this seems to be a mistake, note that we will never return
to this entry in the remainder of the Gaussian elimination or back-substitution process, so
actually putting a zero there represents a wasted step from the point of view of efficiency.
Second, we ask the code to shut down, using MATLAB’s error command, if a zero pivot
is encountered. As mentioned, this possibility will be considered more seriously when row
exchanges are discussed in Section 2.4.

We can make a total count of operations for the elimination step of Gaussian elimination.
The elimination of each g; ; requires the following number of operations, including divisions,
multiplication, and addition/subtractions:

0
2n + 1 0
2n+1 2m—1)+1 0

2n+1 2m—-1)+1 2m—2)4+1 O

M4+l 2—D+1 20—2)+1 - 23)+1 0
2m+1 2m—D+1 20—=2)4+1 - 23)+1 2@ +1 0 |

76 | CHAPTER 2 Systems of Equations

It is convenient to add up the operations in reverse order of how they are applied. Starting
on the right, we total up the operations as

n—1 Jj n—1
2+ D+ 1= 2j(j+ 1D+
j=1i=1 j=1
n—1 n—1
)) (n—1Dn2n —1) (n— Dn
:2 2 =2
Z] +3Zj 5 +3 5
J=1 Jj=1
2n — 1 3 nn—1)@An+17)
- _1 — | =
(n)n|: 57—+ 2} G
2 1 7
= 5713 =+ 57’[2 — 67’[,

where Lemma 2.1 has been applied.

Operation count for the elimination step of Gaussian elimination

The elimination step for a system of n equations in # variables can be completed in %n3

1.2 7 :
+ 31" — gn operations.

Normally, the exact operation count is less important than order-of-magnitude esti-
mates, since the details of implementation on various computer processors differ. The main
point is that the number of operations is approximately proportional to the execution time
of the algorithm. We will commonly make the approximation of %n3 operations for elimi-
nation, which is a reasonably accurate approximation when 7 is large.

After the elimination is completed, the tableau is upper triangular:

ai ap ... ain | b

0 ann ... dop | b2
o

0 0 ann | by

In equation form,

ayxy + appxy + -+ apx, = by
anxy + - + amxy, = by

QpnXn = by, (2.8)

where, again, the a;; refer to the revised, not original, entries. To complete the computation
of the solution x, we must carry out the back-substitution step, which is simply a rewriting

of (2.8):
by —apxa — -+ — apxy
X1 =
ap
by — axxz — -+ — axxy
X2 =
an
b
Xp = ——. (2.9)

Ann

SPOTLIGHT ON

» EXAMPLE 2.2

2.1 Gaussian Elimination | 77

Complexity The operation count shows that direct solution of n equations in n
Ginknowns by Gatssian'elimination'is:an O (73)process. This is a useful fact for estimating time
required for solving large systems. For example, to estimate the time needed to solve a system

of n = 500 equations on a particular computer, we could get a fair guess by solving a system

of n = 50 equations and then scaling the elapsed time by 103 = 1000.

Because of the triangular shape of the nonzero coefficients of the equations, we start at the
bottom and work our way up to the top equation. In this way, the required x;’s are known
when they are needed to compute the next one. Counting operations yields

n n n n(n + 1)
1+3+5+-~-+(2n—1):221’—1:22;‘—21:27—;1:;12.

i=1 i=1 i=1

In MATLAB syntax, the back-substitution step is

for i =n : -1 : 1
for j = i+1 : n
b(i) = b(i) - a(i,j)*x(3);
end
x(i) = b(i)/a(i,1);
end

Operation count for the back-substitution step of Gaussian elimination

The back-substitution step for a triangular system of n equations in n variables can be
completed in n? operations.

The two operation counts, taken together, show that Gaussian elimination is made up
of two unequal parts: the relatively expensive elimination step and the relatively cheap
back-substitution step. If we ignore the lower order terms in the expressions for the number
of multiplication/divisions, we find that elimination takes on the order of 21> /3 operations
and that back substitution takes on the order of n>.

We will often use the shorthand terminology of “big-O” to mean “on the order of,”
saying that elimination is an on?) algorithm and that back substitution is 0(n?).

This usage implies that the emphasis is on large n, where lower powers of n become
negligible by comparison. For example, if # = 100, only about 1 percent or so of the calcu-
lation time of Gaussian elimination goes into the back-substitution step. Overall, Gaussian
elimination takes 273 /3 + n? &~ 213 /3 operations. In other words, for large 7, the lower
order terms in the complexity count will not have a large effect on the estimate for running
time of the algorithm and can be ignored if only an estimated time is required.

Estimate the time required to carry out back substitution on a system of 500 equations in
500 unknowns, on a computer where elimination takes 1 second.

Since we have just established that elimination is far more time consuming than
back substitution, the answer will be a fraction of a second. Using the approximate number
2(500)3 /3 for the number of multiply/divide operations for the elimination step, and (500)2
for the back-substitution step, we estimate the time for back substitution to be

(500)2 3

= =.003 sec. <
2(500)3/3 2(500)

The example shows two points: (1) Smaller powers of » in operation counts can often
be safely neglected, and (2) the two parts of Gaussian elimination can be very unequal

David Tran

78 | CHAPTER 2 Systems of Equations

» EXAMPLE 2.3

2.1 Exercises

in running time—the total computation time is 1.003 seconds, almost all of which would
be taken by the elimination step. The next example shows a third point. While the back-
substitution time may sometimes be negligible, it may factor into an important calculation.

On a particular computer, back substitution of a S000 x 5000 triangular matrix takes 0.1
seconds. Estimate the time needed to solve a general system of 3000 equations in 3000
unknowns by Gaussian elimination.

The computer can carry out (5000)2 operations in 0.1 seconds, or (5000)%(10) =
2.5 x 10% operations/second. Solving a general (nontriangular) system requires about
2(3000)3 /3 operations, which can be done in approximately

2(3000)3/3
———— &~ 72 sec.
(5000)2(10) <

Use Gaussian elimination to solve the systems:

2x —3y=2 x+2y=-1 —x+y=2
(@) g b 4 © 4
5x —6y=38 2x +3y=1 3x +4y=15
Use Gaussian elimination to solve the systems:
2x =2y —z=-2 xX+2y—z=2 2x+y—4z=-17
(a) dx +y—2z=1 (b) 3y+z=4 (¢ xX—y+z==-2
—2x4+y—z=-3 2x —y+z=2 —x+3y—2z=6
Solve by back substitution:
3x —4y+5z=2 X —=2y4+z=2
(a) 3y—4z=—-1 (b) 4y —3z=1
5z=15 —3z=3
Solve the tableau form
3 -4 -2 | 3 2 1 -1 | 2
(a) 6 —6 I | 2 (b) 6 2 -2 | 8
-3 8 2 | -1 4 6 -3 | 5

Use the approximate operation count 273 /3 for Gaussian elimination to estimate how much
longer it takes to solve n equations in #» unknowns if # is tripled.

Assume that your computer completes a 5000 equation back substitution in 0.005 seconds. Use
the approximate operation counts n2 for back substitution and 213 /3 for elimination to
estimate how long it will take to do a complete Gaussian elimination of this size. Round your
answer to the nearest second.

Assume that a given computer requires 0.002 seconds to complete back substitution on a
4000 x 4000 upper triangular matrix equation. Estimate the time needed to solve a general
system of 9000 equations in 9000 unknowns. Round your answer to the nearest second.

If a system of 3000 equations in 3000 unknowns can be solved by Gaussian elimination in 5
seconds on a given computer, how many back substitutions of the same size can be done per
second?

2.2 The LU Factorization | 79

2.1 Computer Problems

1.

Put together the code fragments in this section to create a MATLAB program for “naive’
Gaussian elimination (meaning no row exchanges allowed). Use it to solve the systems of
Exercise 2.

Let H denote the n x n Hilbert matrix, whose (7, j) entry is 1/(i + j — 1). Use the MATLAB
program from Computer Problem 1 to solve Hx = b, where b is the vector of all ones, for (a)
n=20)n=5(c)n=10.

2.2 THE LU FACTORIZATION

DEFINITION 2.2

» EXAMPLE 2.4

Carrying the idea of tableau form one step farther brings us to the matrix form of a system
of equations. Matrix form will save time in the long run by simplifying the algorithms and
their analysis.

2.2.1 Matrix form of Gaussian elimination

The system (2.1) can be written as Ax = b in matrix form, or

BREEH -

We will usually denote the coefficient matrix by A4 and the right-hand-side vector as b.
In the matrix form of the systems of equations, we interpret x as a column vector and Ax
as matrix-vector multiplication. We want to find x such that the vector 4x is equal to the
vector b. Of course, this is equivalent to having Ax and b agree in all components, which
is exactly what is required by the original system (2.1).

The advantage of writing systems of equations in matrix form is that we can use matrix
operations, like matrix multiplication, to keep track of the steps of Gaussian elimination. The
LU factorization is a matrix representation of Gaussian elimination. It consists of writing
the coefficient matrix A as a product of a lower triangular matrix L and an upper triangular
matrix U. The LU factorization is the Gaussian elimination version of a long tradition in
science and engineering—breaking down a complicated object into simpler parts.

Anm x n matrix L is lower triangular if its entries satisfy /;; =0 fori < j.Anm x n
matrix U is upper triangular if its entries satisfy u;; = 0 fori > j. O

Find the LU factorization for the matrix 4 in (2.10).
The elimination steps are the same as for the tableau form seen earlier:
1 1 subtract 3 x row 1 1 1
[3 _4:|—> from row 2 —>|:O _7]:U. (2.11)

The difference is that now we store the multiplier 3 used in the elimination step. Note
that we have defined U to be the upper triangular matrix showing the result of Gaussian
elimination. Define L to be the 2 x 2 lower triangular matrix with 1’s on the main diagonal
and the multiplier 3 in the (2,1) location:

ERtl

David Tran

80 | CHAPTER 2 Systems of Equations

Then check that

1 ol[1 1 11
LU:[3 1][0 _7}2[3 _4]:A. (2.12)
<

We will discuss the reason this works soon, but first we demonstrate the steps with a
3 x 3 example.

» EXAMPLE 2.5 Find the LU factorization of

12
A= 21 =2 |. (2.13)
31

This matrix is the matrix of coefficients of system (2.4). The elimination steps
proceed as before:

12 -l subtract 2 x row 1 I 2 -1
21 -2 —> fromrow2 — 0 -3 0
-3 1 1 i -3 1 1
subtract —3 x row 1 1 2 -1]
— from row 3 — 0 -3 0
0 7 —2 |
subtract —% X TOW 2 1 2 —1 7]
— from row 3 — | 0 =3 0 |=U.
0 0 —2

The lower triangular L matrix is formed, as in the previous example, by putting 1’s on the
main diagonal and the multipliers in the lower triangle—in the specific places they were
used for elimination. That is,

1
L= 2
-3 —

WN = O

0
0 | (2.14)
1

Notice that, for example, 2 is the (2,1) entry of L, because it was the multiplier used to
eliminate the (2,1) entry of 4. Now check that

1 00 1 2 -1 1 2 -1
2 10 0 -3 0 |= 2 1 =2 | =4. (2.15)
-3 -1 1 0 0 -2 -3 1 1 P

The reason that this procedure gives the LU factorization follows from three facts
about lower triangular matrices.

FACT1 Let L;;(—c) denote the lower triangular matrix whose only nonzero entries are 1’s on the
main diagonal and —c in the (i, j) position. Then 4 — L;;(—c) A represents the row
operation “‘subtracting ¢ times row j from row i.”

2.2 The LU Factorization | 81

For example, multiplication by L»j(—c) yields

ayy app ap 1 00 ajy app ap
A=| an ax» a3 |— | —c 1 0 a1 ax ax;
as; azy ass . 0 0 1 as; az ass
ap ap as
= | ay —cay ax —capp ax; — cas -
| a3l asn ass

FACT2 L;j(—o)~ ' = Lij(o).

FACT 3

For example,
—1

1 0 0 1 0 0
— 1 0 = c 1 0
0 0 1 0 0 1

Using Facts 1 and 2, we can understand the LU factorization of Example 2.4. Since the
elimination step can be represented by

Lo 1 1o
LZl(_3)A=[—3 1}[3 —4}2[0 —7]

we can multiply both sides on the left by Lo (—3)~! to get

1 1 1 0 1 1
A=[3 —4}2[3 1}[0 —7}’
which is the LU factorization of 4.)

To handle n x n matrices for n > 2, we need one more fact.

The following matrix product equation holds.

1 1 1 1
C1 1 1 1 = (4] 1
1 1653 1 c3 1 cp c3 1

This fact allows us to collect the inverse L;;’s into one matrix, which becomes the L
of the LU factorization. For Example 2.5, this amounts to

1 1 1 12 -1 1 2-1
1 1 —21 21-2|=|0-3 0|=U
IT1]]3 1 1 31 1 0 0-2
1 1 1 1 2-1
A=121 1 1 0-3 0
1 -3 1 -1 0 0-2

3
1 I 2 -1
= 2 1 0-3 0|=LU. (2.16)
7
-3 —31 0 0-2 3

2.2.2 Back substitution with the LU factorization

Now that we have expressed the elimination step of Gaussian elimination as a matrix product
LU, how do we translate the back-substitution step? More importantly, how do we actually
get the solution x?

82 | CHAPTER 2 Systems of Equations

Once L and U are known, the problem 4Ax = b can be written as LUx = b. Define a
new “auxiliary” vector ¢ = Ux. Then back substitution is a two-step procedure:

(a) Solve Lc = b for c.
(b) Solve Ux = ¢ for x.

Both steps are straightforward since L and U are triangular matrices. We demonstrate
with the two examples used earlier.

» EXAMPLE 2.6 Solve system (2.10), using the LU factorization (2.12).

The system has LU factorization

s]=e=[5 V][0]

from (2.12), and the right-hand side is » = [3, 2]. Step (a) is

ERE[EIE

which corresponds to the system

c1 +0c =3
3c1 + o =2.
Starting at the top, the solutions are ¢ = 3, ¢, = —7.

Step (b) is
1 1 xr | 3
0o -7 x || =7
which corresponds to the system

X1 +x=3
—Txy = —T7.

Starting at the bottom, the solutions are x; = 1, x; = 2. This agrees with the “classical”
Gaussian elimination computation done earlier. <

> EXAMPLE 2.7 Solve system (2.4), using the LU factorization (2.15).

The system has LU factorization

1 2 -1 1 0 0 1 2 -1
2 1 =2 |=LU= 2 1 0 0 -3 0
-3 1 1 -3 -1 1 0 0 -2
from (2.15), and b = (3,3, —6). The Lc = b step is
1 00 c 3
2 1 0 2 = 3)
-3 -1 1 c3 —6
which corresponds to the system
c1=3
2c1 + =3

7
—3c1 — 502 + c3 = —6.

David Tran

SPOTLIGHT ON

2.2 The LU Factorization | 83

Starting at the top, the solutions are ¢ = 3,¢» = —3,¢c3 = —4.
The Ux = c step is

1 2 -1 X1 3
0 -3 0 x | =1 =3 [,
0 0 -2 X3 —4

which corresponds to the system

X1 +2xp —x3=3

—3XQ =-3
—2x3 = —4,
and is solved from the bottom up to give x = [3, 1, 2]. <

2.2.3 Complexity of the LU factorization

Now that we have learned the “how” of the LU factorization, here are a few words about
“why.” Classical Gaussian elimination involves both 4 and b in the elimination step of
the computation. This is by far the most expensive part of the process, as we have seen.
Now, suppose that we need to solve a number of different problems with the same A and
different b. That is, we are presented with the set of problems

Ax:b1
Ax = by
Ax = by

with various right-hand side vectors b;. Classical Gaussian elimination will require approx-
imately 2kn>/3 operations, where A is an n x n matrix, since we must start over at the
beginning for each problem. With the LU approach, on the other hand, the right-hand-side b
doesn’t enter the calculations until the elimination (the 4 = LU factorization) is finished.
By insulating the calculations involving A4 from b, we can solve the previous set of equa-
tions with only one elimination, followed by two back substitutions (Lc = b, Ux = ¢) for
each new b. The approximate number of operations with the LU approach is, therefore,
2n3 /3 + 2kn*. When n? is small compared with > (i.e., when n is large), this is a significant
difference.

Even when k =1, there is no extra computational work done by the 4 = LU
approach, compared with classical Gaussian elimination. Although there appears to be

Complexity The main reason for the LU factorization approach to Gaussian elimina-
tion is the ubiquity of problems of form Ax = by, Ax = b;,Often, 4 is a so-called structure
matrix, depending only on the design of a mechanical or dynamic system, and b corresponds
to a “loading vector.” In structural engineering, the loading vector gives the applied forces
at various points on the structure. The solution x then corresponds to the stresses on the
structure induced by that particular combination of loadings. Repeated solution of 4x = b for
various b's would be used to test potential structural designs. Reality Check 2 carries out this

analysis for the loading of a beam.

84 | CHAPTER 2 Systems of Equations

» EXAMPLE 2.8

» EXAMPLE 2.9

2.2 Exercises

an extra back substitution that was not part of classical Gaussian elimination, these “extra’
calculations exactly replace the calculations that were saved during elimination because the
right-hand-side b was absent.

If all b; were available at the outset, we could solve all k problems simultaneously in
the same number of operations. But in typical applications, we are asked to solve some of
the Ax = b; problems before other b;’s are available. The"LU approach allows efficient
handling of all present and future problems that involve the same coefficient matrix 4.

Assume that it takes one second to factorize the 300 x 300 matrix 4 into 4 = LU. How
many problems Ax = by, ..., Ax = by can be solved in the next second?

The two back substitutions for each b; require a total of 2n2 operations. Therefore,
the approximate number of b; that can be handled per second is

253
3 =" 100 <
2n2 3 ’

The LU factorization is a significant step forward in our quest to run Gaussian elimination
efficiently. Unfortunately, not every matrix allows such a factorization.

Prove that 4 = |: (1) i :| does not have an LU factorization.

The factorization must have the form

O 1| |10 b c| | b c
L 1| |a 1 0 d| | ab ac+d |’
Equating coefficients yields » = 0 and ab = 1, a contradiction. <

The fact that not all matrices have an LU factorization means that more work is required
before we can declare the LU factorization a general Gaussian elimination algorithm.
The related problem of swamping is described in the next section. In Section 2.4, the
PA =LU factorization is introduced, which will overcome both problems.

Find the LU factorization of the given matrices. Check by matrix multiplication.

1 2 1 3 3 —4
(a)|:34](b)|:22](0)|:_5 2}

Find the LU factorization of the given matrices. Check by matrix multiplication.

31 2 4 2 0 (1)_;13

(a) 6 3 4 (b) 4 4 2 (©) L34 4
1 2 2

3 > 3 0 2 1 -1

Solve the system by finding the LU factorization and then carrying out the two-step back
substitution.

o [l o)0

David Tran

2.3 Sources of Error | 85

Solve the system by finding the LU factorization and then carrying out the two-step back

substitution.
31 2 x|) 4 2 0 x| 2
(a) 6 3 4 w» |=]1 (b) 4 4 2 xn |=| 4
315 X3 2 2 3 X3 6
Solve the equation Ax = b, where
1 00 0121 00 1
01 0 0 01 20 1
A= d b=
1310 00 —1 1 |™ 2
4121]L0o0 01 0

Given the 1000 x 1000 matrix 4, your computer can solve the 500 problems
Ax = by, ..
much of the minute was the computer working on the 4 = LU factorization? Round your

., Ax = bsqp in exactly one minute, using 4 = LU factorization methods. How

answer to the nearest second.

Assume that your computer can solve 1000 problems of type Ux = ¢, where U is an
upper-triangular 500 x 500 matrix, per second. Estimate how long it will take to solve a full
5000 x 5000 matrix problem Ax = b. Answer in minutes and seconds.

Assume that your computer can solve a 2000 x 2000 linear system Ax = b in 0.1 second.
Estimate the time required to solve 100 systems of 8000 equations in 8000 unknowns with the
same coefficient matrix, using the LU factorization method.

Let 4 be an n x n matrix. Assume that your computer can solve 100 problems
Ax = by, ..., Ax = bjpo by the LU method in the same amount of time it takes to solve the
first problem Ax = bg. Estimate n.

2.2 Computer Problems

1.

Use the code fragments for Gaussian elimination in the previous section to write a MATLAB
script to take a matrix A as input and output L and U. No row exchanges are allowed—the
program should be designed to shut down if it encounters a zero pivot. Check your program by
factoring the matrices in Exercise 2.

Add two-step back substitution to your script from Computer Problem 1, and use it to solve the
systems in Exercise 4.

2.3 SOURCES OF ERROR

There are two major potential sources of error in Gaussian elimination as we have described
it so far. The concept of ill-conditioning concerns the sensitivity of the solution to the input
data. We will discuss condition number, using the concepts of backward and forward error
from Chapter 1. Very little can be done to avoid errors in computing the solution of ill-
conditioned matrix equations, so it is important to try to recognize and avoid ill-conditioned
matrices when possible. The second source of error is swamping, which can be avoided
in the large majority of problems by a simple fix called partial pivoting, the subject of
Section 2.4.

86 | CHAPTER 2 Systems of Equations

DEFINITION 2.3

DEFINITION 2.4

» EXAMPLE 2.10

» EXAMPLE 2.11

The concept of vector and matrix norms are introduced next to measure the size of
errors, which are now vectors. We will give the main emphasis to the so-called infinity
norm.

2.3.1 Error magnification and condition number

In Chapter 1, we found that some equation-solving problems show a great difference
between backward and forward error. The same is true for systems of linear equations.
In order to quantify the errors, we begin with a definition of the infinity norm of a vector.

The infinity norm, or maximum norm, of the vector x = (x1,...,x;) 1S ||X]|co =
max |x;|,i = 1,...,n, that is, the maximum of the absolute values of the components
of x. 0

The backward and forward errors are defined in analogy with Definition 1.8. Backward
error represents differences in the input, or problem data side, and forward error represents
differences in the output, solution side of the algorithm.

Let x, be an approximate solution of the linear system Ax = b. The residual is the vector
r=b — Ax,. The backward error is the norm of the residual |6 — Ax|loo, and the
forward error is ||x — Xul|oo- 0

Find the backward and forward errors for the approximate solution x, = [1, 1] of the system

1 1 x| _[3
3 —4 x |7 2|
The correct solution is x = [2, 1]. In the infinity norm, the backward error is

e R (N

1
[l 3]2
o0
and the forward error is

eI

In other cases, the backward and forward errors can be of different orders of magnitude.

Find the forward and backward errors for the approximate solution [—1,3.0001] of the
system

Xp+x=2
1.0001x1 + x» = 2.0001. (2.17)

First, find the exact solution [x1, x2]. Gaussian elimination consists of the steps

subtract 1.0001 x row 1
1 Iz — from row 2 — 11 | 2
1.0001 1 | 2.0001 0 —0.0001 | —0.0001 [

David Tran

2.3 Sources of Error | 87

Solving the resulting equations

X1 +x2=2
—0.0001x, = —0.0001

yields the solution [x1,x2] =[1, 1].
The backward error is the infinity norm of the vector

R [t 11 -1
Ya =1 2.0001 1.0001 1 || 3.0001
T2 [2:0001 7_ [—0.0001
= | 2.0001 2 = 0.0001 |’

which is 0.0001. The forward error is the infinity norm of the difference

T T T2
R I 3.0001 || —2.0001 |

which is 2.0001.

<

Figure 2.2 helps to clarify how there can be a small backward error and large forward
error at the same time. Even though the “approximate root” (—1,3.0001) is relatively far
from the exact root (1, 1), it nearly lies on both lines. This is possible because the two lines
are almost parallel. If the lines are far from parallel, the forward and backward errors will

be closer in magnitude.

(98]
T

2
| |
1 1 ~ ¥

Figure 2.2 The geometry behind Example 2.11. System (2.17) is represented by
the lines x; =2-x7 and x, =2.0001-1.0001x4, which intersect at (1,1). The point
(-1, 3.0001) nearly misses lying on both lines and being a solution. The differences
between the lines is exaggerated in the figure—they are actually much closer.

and the relative forward error is

David Tran

88 | CHAPTER 2 Systems of Equations

SPOTLIGHT ON

DEFINITION 2.5

THEOREM 2.6

Conditioning Condition number is a theme that runs throughout numerical analy-
sis.In the discussions of the Wilkinson polynomial in Chapter 1, we found how to compute the
error magnification factor for root-finding, given small perturbations of an equation f(x) = 0.
For matrix equations Ax = b, there is a similar error magnification factor, and the maximum

possible factor is given by cond(4) = ||4|||]4~}]).

The érror magnification factor for Ax = b is the ratio of the two, or

¥ = xalloo
. . relative forward error X
error magnification factor = - = [x oo (2.18)
relative backward error [17]]00
115100

For system (2.17), the relative backward error is

0.0001

——— ~(0.00005 = 0.005%,
2.0001

and the relative forward error is

2.0001
=2.0001 ~ 200%.

The error magnification factor is 2.0001/(0.0001/2.0001) = 40004.0001.

In Chapter 1, we defined the concept of condition number to be the maximum error
magnification over a prescribed range of input errors. The “prescribed range” depends on
the context. Now we will be more precise about it for the current context of systems of
linear equations. For a fixed matrix 4, consider solving Ax = b for various vectors b. In
this context, b is the input and the solution x is the output. A small change in input is a
small change in b, which has an error magnification factor. We therefore make the following
definition:

The condition number of a square matrix 4, cond(4), is the maximum possible error
magnification factor for solving 4x = b, over all right-hand sides b.)

Surprisingly, there is a compact formula for the condition number of a square matrix.
Analogous to the norm of a vector, define the matrix norm of an » x n matrix 4 as

||4]]oo = maximum absolute row sum, (2.19)

that is, total the absolute values of each row, and assign the maximum of these » numbers
to be the norm of 4.

The condition number of the n x n matrix 4 is

cond(A) = ||4|| - [[47]I. [

Theorem 2.6, proved below, allows us to calculate the condition number of the coeffi-
cient matrix in Example 2.11. The norm of

1 1
AZ[1.0001 1 }

David Tran

David Tran

David Tran

» EXAMPLE 2.12

2.3 Sources of Error | 89

is ||4]] = 2.0001, according to (2.19). The inverse of 4 is

4= —10000 10000
- 10001 —10000 |’

which has norm ||A_1 || = 20001. The condition number of A4 is
cond(4) = (2.0001)(20001) = 40004.0001.

This is exactly the error magnification we found in Example 2.11, which evidently achieves
the worst case, defining the condition number. The error magnification factor for any other b
in this system will be less than or equal to 40004.0001. Exercise 3 asks for the computation
of some of the other error magnification factors.

The significance of the condition number is the same as in Chapter 1. Error magnifica-
tion factors of the magnitude cond(A) are possible. In floating point arithmetic, the relative
backward error cannot be expected to be less than ep,,ch, since storing the entries of b already
causes errors of that size. According to (2.18), relative forward errors of size €pyach - cond(A4)
are possible in solving 4x = b. In other words, if cond(4) ~ 10¥, we should prepare to
lose k digits of accuracy in computing x.

In Example 2.11, cond(4) ~ 4 x 10, so in double precision we should expect about
16 — 4 = 12 correct digits in the solution x. We can test this by introducing MATLAB’S best
general-purpose linear equation solver: \.

In MATLAB, the backslash command x = A\b solves the linear system by using an
advanced version of the LU factorization that we will explore in Section 2.4. For now, we
will use it as an example of what we can expect from the best possible algorithm operating in
floating point arithmetic. The following MATLAB commands deliver the computer solution
x4 of Example 2.10:

>> A = [1 1;1.0001 1]; b=[2;2.0001];
>> xa = A\b

Xa =
1.00000000000222
0.99999999999778

Compared with the correct solution x = [1, 1], the computed solution has about 11 correct
digits, close to the prediction from the condition number.

The Hilbert matrix H, with entries H;; = 1/(i + j — 1), is notorious for its large
condition number.

Let H denote the n x n Hilbert matrix. Use MATLAB’s \ to compute the solution of Hx = b,
where b= H - [1,..., 117, for n = 6 and 10.

The right-hand side b is chosen to make the correct solution the vector of # ones,
for ease of checking the forward error. MATLAB finds the condition number (in the infinity
norm) and computes the solution:

>> n=6;H=hilb(n) ;

>> cond (H, inf)

ans =
2.907027900294064e+007

>> b=H*ones (n, 1) ;

>> xa=H\b

xa

.99999999999923

.00000000002184

.99999999985267

o~ ol

90 | CHAPTER 2 Systems of Equations

1.00000000038240
0.99999999957855
1.00000000016588

The condition number of about 107 predicts 16 — 7 = 9 correct digits in the worst case;
there are about 9 correct in the computed solution. Now repeat with n = 10:

>> n=10;H=hilb (n) ;

>> cond (H, inf)

ans =
3.535371683074594e+013

>> b=H*ones (n, 1) ;

>> xa=H\b

xa

.99999999875463

.00000010746631

.99999771299818

.00002077769598

.99990094548472

.00027218303745

.99955359665722

.00043125589482

.99977366058043

.00004976229297

P oORror or or ol

Since the condition number is 10'3, only 16 — 13 = 3 correct digits appear in the solution.
For n slightly larger than 10, the condition number of the Hilbert matrix is larger
than 10'6, and no correct digits can be guaranteed in the computed x,,. <

Even excellent software may have no defense against an ill-conditioned problem.
Increased precision helps; in extended precision, €mach = 270 ~ 542 x 10729, and we
start with 20 digits instead of 16. However, the condition number of the Hilbert matrix
grows fast enough with # to eventually disarm any reasonable finite precision.

Fortunately, the large condition numbers of the Hilbert matrix are unusual. Well-
conditioned linear systems of #n equations in » unknowns are routinely solved in double
precision for n = 10* and larger. However, it is important to know that ill-conditioned
problems exist, and that the condition number is useful for diagnosing that possibility. See
Computer Problems 1-4 for more examples of error magnification and condition numbers.

The infinity vector norm was used in this section as a simple way to assign a length to
a vector. It is an example of a vector norm ||x||, which satisfies three properties:

(1) [lx]| = O with equality if and only if x = [0, ..., 0]
(i) for each scalar « and vector x, ||ax|| = || - ||x]|
(iii) for vectors x, y, [|x + y|| < |Ix|| + |||

In addition, ||4||~ is an example of a matrix norm, which satisfies three similar
properties:

(1) 4] = 0 with equality if and only if 4 =0
(i1) for each scalar @ and matrix A4, ||aA4|| = || - || 4]]
(iii) for matrices 4, B, ||4 + B|| < ||4]| + || B]|-

As a different example, the vector 1-norm of the vector x = [x1,...,x,] is ||x||1 =
[x1| + -+ + |x,]|. The matrix 1-norm of the n x n matrix A4 is || 4||; = maximum absolute
column sum—that is, the maximum of the 1-norms of the column vectors. See Exercises 9
and 10 for verification that these definitions define norms.

» EXAMPLE 2.13

2.3 Sources of Error | 91

The error magnification factor, condition number, and matrix norm just discussed can
be defined for any vector and matrix norm. We will restrict our attention to matrix norms
that are operator norms, meaning that they can be defined in terms of a particular vector
norm as

|| Ax||
lIx1

where the maximum is taken over all nonzero vectors x. Then, by definition, the matrix
norm is consistent with the associated vector norm, in the sense that

[|4|] = max

[Ax[| < [14]] - [Ix]] (2.20)

for any matrix A4 and vector x. See Exercises 10 and 11 for verification that the norm || 4||s0
defined by (2.20) is not only a matrix norm, but also the operator norm for the infinity vector
norm.

This fact allows us to prove the aforementioned simple expression for cond(4). The
proof works for the infinity norm and any other operator norm.

Proof of Theorem 2.6. We use the equalities 4(x — x,) = r and Ax = b. By consis-
tency property (2.20),

l1x — xgll < 1471 - 1171l
and
1 1
b1~ 1Al 1x]]

Putting the two inequalities together yields

llx = xall _ [14]l

< A7 il
[x]] 11511
showing that ||4|| [|47!|| is an upper bound for all error magnification factors. Second,
we can show that the quantity is always attainable. Choose x such that || 4|| = ||4x||/||x]]
and r such that ||47'|| = ||4~!r||/||r||, both possible by the definition of operator matrix
norm. Set x, =x — A~ 'r so that x — x, = A4~ '7. Then it remains to check the equality
llx — xall _ 11477l _ 14”1 114]]
[l [|[Ax||

for this particular choice of x and r.

2.3.2 Swamping
A second significant source of error in classical Gaussian elimination is much easier to fix.

We demonstrate swamping with the next example.

Consider the system of equations

1072 + =1
X1 + 2x, =4.
We will solve the system three times: once with complete accuracy, second where we mimic

a computer following IEEE double precision arithmetic, and once more where we exchange
the order of the equations first.

92 | CHAPTER 2 Systems of Equations

1. Exact solution. In tableau form, Gaussian elimination proceeds as

10720 1 | 1 subtract 1020 x row 1 10-20 1 1
|: 1 2|4:|—> from row 2 —>|: 0 2_102()'4_1020].

The bottom equation is

4 —10%
20N, _ 20 _
(2—10)x2_4—10 —>x2—m,
and the top equation yields
4 —10%
107 0%+ —- =11
X1+ >~ 102
4 —10%
=100(1 - —
i (2= 1020>
_—2x10%
AR (e
The exact solution is
[] 2 x 10 4 — 102 2.1]
X1,x2] = , ~[2,1].
PRI 100 220 2 — 1020
2. IEEE double precision. The computer version of Gaussian elimination proceeds slightly
differently:
107201 | 1 subtract 102 x row 1 10720 | | 1
|: | 2|4i|—> from row 2 —>|: 0 2_1020|4_1020i|.

In IEEE double precision, 2 — 10?0 is the same as —10?°, due to rounding. Similarly, 4 — 10°
is stored as —10?°. Now the bottom equation is

—10%x, = —10% — x, = 1.
The machine arithmetic version of the top equation becomes
1070 +1=1,
so x1 = 0. The computed solution is exactly
[x1,x2] = [0, 1].

This solution has large relative error compared with the exact solution.

3. IEEE double precision, after row exchange. We repeat the computer version of Gaussian
elimination, after changing the order of the two equations:

1 2 | 4 subtract 10720 x row 1
|:10_20 1 1}—> from row 2

2 | 4
0 1—-2x1072 | 1-4x1072 |

In IEEE double precision, 1 — 2 x 1072% is stored as 1 and 1 — 4 x 1072 is stored as 1. The
equations are now

X1 +2x, =4
x2 =1,

2.3 Exercises

2.3 Sources of Error | 93

which yield the computed solution x| = 2 and x> = 1. Of course, this is not the exact answer,
but it is correct up to approximately 16 digits, which is the most we can ask from a
computation that uses 52-bit floating point numbers.

The difference between the last two calculations is significant. Version 3 gave us an
acceptable solution, while version 2 did not. An analysis of what went wrong with version 2
leads to considering the multiplier 10?7 that was used for the elimination step. The effect
of subtracting 10?° times the top equation from the bottom equation was to overpower, or
“swamp,”’ the bottom equation. While there were originally two independent equations,
or sources of information, after the elimination step in version 2, there are essentially two
copies of the top equation. Since the bottom equation has disappeared, for all practical
purposes, we cannot expect the computed solution to satisfy the bottom equation; and it
does not.

Version 3, on the other hand, completes elimination without swamping, because
the multiplieris 10729 After elimination, the original two equations are still largely existent,
slightly changed into triangular form. The result is an approximate solution that is much
more accurate. <

The moral of Example 2.13 is that multipliers in Gaussian elimination should be kept
as small as possible to avoid swamping. Fortunately, there is a simple modification to naive
Gaussian elimination that forces the absolute value of multipliers to be no larger than 1.
This new protocol, which involves judicious row exchanges in the tableau, is called partial
pivoting, the topic of the next section.

Find the norm || 4[|~ of each of the following matrices:

1 5 1
(a) A:[; i} b A=| -1 2 -3
1 -7 0

Find the (infinity norm) condition number of

12 1 201 6 3
(a) A:|:3 4} (b) A:|:3 . } ©) A:|:4 2]

Find the forward and backward errors, and the error magnification factor (in the infinity norm)
for the following approximate solutions x, of the system in Example 2.11: (a) [—1, 3]
(0) [0,2] (¢) [2,2] (d) [-2,4] () [-2,4.0001].

Find the forward and backward errors and error magnification factor for the following
approximate solutions of the system x; + 2xp = 1,2x; + 4.01xp = 2: (a) [—-1, 1]
(®) [3,-1] (o) [2,-1/2].

Find the relative forward and backward errors and error magnification factor for the following
approximate solutions of the system x; — 2x, = 3,3x; — 4xp = 7: (a) [-2, —4]

(b) [—2,—3] (¢) [0, —=2] (d) [—1, —1] (¢) What is the condition number of the coefficient
matrix?

Find the relative forward and backward errors and error magnification factor for the following
approximate solutions of the system x; + 2x2 = 3,2x; + 4.01x, = 6.01: (a) [—10, 6]

(b) [—100, 52] (c) [—600, 301] (d) [—599, 301] (e) What is the condition number of the
coefficient matrix?

94 | CHAPTER 2 Systems of Equations

10.

11.
12.
13.
14.

15.

Find the norm || H||~ of the 5 x 5 Hilbert matrix.
(a) Find the condition number of the coefficient matrix in the system
1 1 2
AR as a function of § > 0. (b) Find the error magnification
146 1 X2 246

factor for the approximate root x, = [—1,3 + &].

(a) Prove that the infinity norm ||x||~ is a vector norm. (b) Prove that the 1-norm ||x||; is a
vector norm.

(a) Prove that the infinity norm || 4||~ is @ matrix norm. (b) Prove that the 1-norm || 4||; is a
matrix norm.

Prove that the matrix infinity norm is the operator norm of the vector infinity norm.
Prove that the matrix 1-norm is the operator norm of the vector 1-norm.

For the matrices in Exercise 1, find a vector x satisfying || 4||cc = || 4X|]oo/]|%|]co-
For the matrices in Exercise 1, find a vector x satisfying || 4|1 = ||4Ax]||1/]|x]|1-

Find the LU factorization of

10 20 1
A= 1 199 6
0 50 1

What is the largest magnitude multiplier /;; needed?

2.3 Computer Problems

1.

For the n x n matrix with entries 4;; =5/(+2j — 1),setx =[1,..., 117 and b = Ax. Use
the MATLAB program from Computer Problem 2.1.1 or MATLAB’s backslash command to
compute x., the double precision computed solution. Find the infinity norm of the forward
error and the error magnification factor of the problem Ax = b, and compare it with the
condition number of 4: (a)n =6 (b) n = 10.

Carry out Computer Problem 1 for the matrix with entries 4;; = 1/(li — j| + 1).

Let 4 be the n x n matrix with entries 4;; = |i — j| + 1. Define x =[1,..., 117 and b = Ax.
For n = 100, 200, 300, 400, and 500, use the MATLAB program from Computer Problem 2.1.1
or MATLAB’s backslash command to compute x., the double precision computed solution.
Calculate the infinity norm of the forward error for each solution. Find the five error
magnification factors of the problems 4Ax = b, and compare with the corresponding condition
numbers.

Carry out the steps of Computer Problem 3 for the matrix with entries

4ij =+ —))? +n/10.

For what values of n does the solution in Computer Problem 1 have no correct significant
digits?

Use the MATLAB program from Computer Problem 2.1.1 to carry out double precision
implementations of versions 2 and 3 of Example 2.13, and compare with the theoretical results
found in the text.

2.4 The PA=LU Factorization | 95

2.4 THE PA =LU FACTORIZATION

» EXAMPLE 2.14

The form of Gaussian elimination considered so far is often called “naive,”” because of two
serious difficulties: encountering a zero pivot and swamping. For a nonsingular matrix, both
can be avoided with an improved algorithm. The key to this improvement is an efficient
protocol for exchanging rows of the coefficient matrix, called partial pivoting.

2.4.1 Partial pivoting

At the start of classical Gaussian elimination of n equations in » unknowns, the first step is to
use the diagonal element a1 as a pivot to eliminate the first column. The partial pivoting
protocol consists of comparing numbers before carrying out each elimination step. The
largest entry of the first column is located, and its row is swapped with the pivot row, in
this case the top row.

In other words, at the start of Gaussian elimination, partial pivoting asks that we select
the pth row, where

lapt] = laitl (2.21)

for all 1 <i < n, and exchange rows 1 and p. Next, elimination of column 1 proceeds as
usual, using the “new” version of aj; as the pivot. The multiplier used to eliminate «;
will be
ail
mip = —
aii
and |m;(| < 1.
The same check is applied to every choice of pivot during the algorithm. When deciding
on the second pivot, we start with the current ay; and check all entries directly below. We
select the row p such that

lap2| > |ajz]

for all 2 <i <mn, and if p # 2, rows 2 and p are exchanged. Row 1 is never involved in
this step. If |aa>| is already the largest, no row exchange is made.

The protocol applies to each column during elimination. Before eliminating column
k, the p with k < p < n and largest |a | is located, and rows p and k are exchanged if
necessary before continuing with the elimination. Note that using partial pivoting ensures
that all multipliers, or entries of L, will be no greater than 1 in absolute value. With this
minor change in the implementation of Gaussian elimination, the problem of swamping
illustrated in Example 2.13 is completely avoided.

Apply Gaussian elimination with partial pivoting to solve the system (2.1).

The equations can be written in tableau form as

1 1] 3
3 -4 | 2|

According to partial pivoting, we compare |aj;| = 1 with all entries below it, in this case
the single entry ap; = 3. Since |az;| > |a11|, we must exchange rows 1 and 2. The new
tableau is

1
3 —4 | 2 subtract 3 x row 1
1 3 | fromrow2 —>

WIN
W P
| I

3
0

96 | CHAPTER 2 Systems of Equations

» EXAMPLE 2.15

After back substitution, the solution is x = 1 and then x; = 2, as we found earlier. When
we solved this system the first time, the multiplier was 3, but under partial pivoting this
would never occur. |

Apply Gaussian elimination with partial pivoting to solve the system
xX] —x2 4+ 3x3=-3
—X1] — ZX3 =1
2x1 + 2xp + 4x3 = 0.

This example is written in tableau form as

1 -1 3 | -3
1 0 -2 | 1
2 2 4] 0

Under partial pivoting we compare |aj1| = 1 with |a2;| = 1 and |a31| = 2, and choose a3
for the new pivot. This is achieved through an exchange of rows 1 and 3:

I 31 -3 exchange row 1 2 2 4 | 0
—1 0 -2 | 1 — androw3 —> -1 0 -2 | 1
2 2 4 | 0 L 1 -1 3] -

subtract —% x row 1 2 2 4 | 07
— from row 2 — 0 1 0 | 1
r -1 3 | =3]
subtract %x row 1 2 2 4 | 0]
— fromrow 3 — 0 1 0 | 1 |.
| 0 -2 1 | =3 |

Before eliminating column 2 we must compare the current |azy| with the current |a3;].
Because the latter is larger, we again switch rows:

2 241 0 exchange row 2 2 241 0
0 1 0 | 1 — androw3 —> o -2 1 | -3
0o -2 1| -3 | 0 1 0 | 1
subtract —3 X row 2 2 2 4 | 0
— from row 3 — o -2 1 1] =3
1 1
U L
Note that all three multipliers are less than 1 in absolute value.
The equations are now simple to solve. From
1 1
Zxa = ——
27T 2
—2x2 +x3=-3
2x1 + 2xp +4x3 =0,
we find that x = [1, 1, —1]. <

Notice that partial pivoting also solves the problem of zero pivots. When a potential
zero pivotis encountered, for example, if ;1 = 0, itis immediately exchanged for a nonzero
pivot somewhere in its column. If there is no such nonzero entry at or below the diagonal
entry, then the matrix is singular and Gaussian elimination will fail to provide a solution
anyway.

DEFINITION 2.7

THEOREM 2.8

2.4 The PA=LU Factorization | 97

2.4.2 Permutation matrices

Before showing how row exchanges can be used with the LU factorization approach to
Gaussian elimination, we will discuss the fundamental properties of permutation matrices.

A permutation matrix is an #n x n matrix consisting of all zeros, except for a single 1 in

every row and column. O
Equivalently, a permutation matrix P is created by applying arbitrary row exchanges

to the » x n identity matrix (or arbitrary column exchanges). For example,

Lo VLo

are the only 2 x 2 permutation matrices, and

100 01 0 100
o1 o0l 100/[|0o01],
oo 1] |loo 1|01 0]
f00 1700 17 [0 1 07
010,]1oo|, o001
1t oo0]lot1o |1 00|

are the six 3 x 3 permutation matrices.
The next theorem tells us at a glance what action a permutation matrix causes when
multiplied on the left of another matrix.

Fundamental Theorem of Permutation Matrices. Let P be the n x n permutation matrix
formed by a particular set of row exchanges applied to the identity matrix. Then, for
any n x n matrix 4, P A is the matrix obtained by applying exactly the same set of row
exchanges to 4. |

For example, the permutation matrix

S O =
- o O

0
1
0

is formed by exchanging rows 2 and 3 of the identity matrix. Multiplying an arbitrary matrix
on the left with P has the effect of exchanging rows 2 and 3:

1 0 0 a b c a b c
0 0 1 d e f |=| g h i
01 0 g h i d e f

A good way to remember Theorem 2.8 is to imagine multiplying P times the identity
matrix /:

There are two different ways to view this equality: first, as multiplication by the iden-
tity matrix (so we get the permutation matrix on the right); second, as the permutation
matrix acting on the rows of the identity matrix. The content of Theorem 2.8 is that
the row exchanges caused by multiplication by P are exactly the ones involved in the
construction of P.

98 | CHAPTER 2 Systems of Equations

» EXAMPLE 2.16

2.4.3 PA=LU factorization

In this section, we put together everything we know about Gaussian elimination into the
PA=LU factorization. This is the matrix formulation of elimination with partial pivot-
ing. The PA=LU factorization is the established workhorse for solving systems of linear
equations.

As its name implies, the PA=LU factorization is simply the LU factorization of a
row-exchanged version of 4. Under partial pivoting, the rows that need exchanging are not
known at the outset, so we must be careful about fitting the row exchange information into
the factorization. In particular, we need to keep track of previous multipliers when a row
exchange is made. We begin with an example.

Find the PA = LU factorization of the matrix

1 5
4 —4
3 1

A=

— AN

First, rows 1 and 2 need to be exchanged, according to partial pivoting:

010
P=|1 0 0
2 1 5 0 0 1 4 4 -4
4 4 —4 | —exchangerows land2— | 2 1
1 3 1 1 3 1

We will use the permutation matrix P to keep track of the cumulative permutation of rows
that have been done along the way. Now we perform two row operations, namely,

4 4 —4
subtract %x row 1 4 4 -4 subtract %x row 1
—> fromrow2 —> @—1 7| — fromrow3 —> @_1 7 ,

1T 3 1 22

to eliminate the first column. We have done something new—instead of putting only a zero
in the eliminated position, we have made the zero a storage location. Inside the zero at the
(i, j) position, we store the multiplier m;; that we used to eliminate that position. We do
this for a reason. This is the mechanism by which the multipliers will stay with their row,
in case future row exchanges are made.

Next we must make a comparison to choose the second pivot. Since |axn| =1 <
2 = |azz|, a row exchange is required before eliminating the second column. Notice that
the previous multipliers move along with the row exchange:

010
P=|0 0 1 i 4 4

1 00
—>exchange rows 2 and 3— 2 2

@ -1 7

Finally, the elimination ends with one more row operation:

4 —4
2

S

subtract —% X TOW 2 6

4
— from row 3 — ‘

» EXAMPLE 2.17

2.4 The PA=LU Factorization | 99

This is the finished elimination. Now we can read off the PA = LU factorization:

0 0

01 07[21 5 f 4 4 —4
00 11|44 —al=slz 10 02 2
1 1
1 ooll1 3 1 I 00 8
P A L U (2.22)

The entries of L are sitting inside the zeros in the lower triangle of the matrix (below the
main diagonal), and U comes from the upper triangle. The final (cumulative) permutation
matrix serves as P. <

Using the PA=LU factorization to solve a system of equations Ax = b is just a slight
variant of the 4 = LU version. Multiply through the equation Ax = b by P on the left, and
then proceed as before:

PAx = Pb
LUx = Pb (2.23)
Solve
1. Lc =Pb for c.
2. Ux=c for x. (2.24)

The important point, as mentioned earlier, is that the expensive part of the calculation,
determining PA = LU, can be done without knowing b. Since the resulting LU factorization
is of P A, a row-permuted version of the equation coefficients, it is necessary to permute
the right-hand-side vector b in precisely the same way before proceeding with the back-
substitution stage. That is achieved by using Pb in the first step of back substitution. The
value of the matrix formulation of Gaussian elimination is apparent: All of the bookkeeping
details of elimination and pivoting are automatic and contained in the matrix equations.

Use the PA =LU factorization to solve the system Ax = b, where

21 5 5
A=| 4 4 -4 |, b=|0
13 1 6

The PA=LU factorization is known from (2.22). It remains to complete the two back
substitutions.

1. Lc = Pb:
1 00 cl 01 0 5 0
I 1o e l=l0 01 0l=1|6
11 c 100 6 5

Starting at the top, we have
c1 =0

1
Z(O)+cg=6:>cz=6

1 1
5(0)——(6)-{-03:5:03:8.

2
2.Ux =c:
4 4 —4 X1 0
0 2 2 X2 | =] 6
0 0 8 X3 8

100 | CHAPTER 2 Systems of Equations

» EXAMPLE 2.18

Starting at the bottom,

8x3=8=>x3=1
20 +2()=6=x,=2
4x1 +42) —4(1)=0=x; = —1. (2.25)

Therefore, the solution is x = [—1,2, 1]. <

Solve the system 2x1 + 3x2 = 4, 3x1 + 2x2 = 1 using the PA = LU factorization with par-
tial pivoting.

In matrix form, this is the equation

IR

We begin by ignoring the right-hand-side b. According to partial pivoting, rows 1 and 2
must be exchanged (because a»; > aj1). The elimination step is

P:Ol

1 0
2 3 3 2
A= [3 2] —>exchange rows 1 and 2— |:) 3]

} |

subtract %x row 1 3
—

— from row 2 @

[SNIV N)

Therefore, the PA = LU factorization is
[olls M e 5]
1 o3 2 Z1JLo 3]
P A L U
The first back substitution Lc = Pb is

Lla -0 e]l
2 1jle] 1O
Starting at the top, we have
cir=1
%(1)+cz=4:>c2=9.
3 3
The second back substitution Ux = ¢ is
3 2 x| 1
ol]l)

Starting at the bottom, we have

5 10 N 5
—X = — X =
32T 3
3x +2Q2)=1=x; =—1. (2.26)

Therefore, the solution is x = [—1, 2]. <

2.4 Exercises

2.4 The PA=LU Factorization | 101

Every n x n matrix has a PA = LU factorization. We simply follow the partial pivoting
rule, and if the resulting pivot is zero, it means that all entries that need to be eliminated are
already zero, so the column is done.

All of the techniques described so far are implemented in MATLAB. The most sophis-
ticated form of Gaussian elimination we have discussed is the PA=LU factorization.
MaTLAB’s 1u command accepts a square coefficient matrix 4 and returns P, L, and U. The
following MATLAB script defines the matrix of Example 2.16 and computes its factorization:

>> A=[2 1 5; 4 4 -4; 1 3 1];
>> [L,U,P]l=1u(Ad)

L=
1.0000 0 0
0.2500 1.0000 0
0.5000 -0.5000 1.0000
U=
4 4 -4
0 2 2
0 0 8
pP=
0 1 0
0 0
1 0 0

Find the PA = LU factorization (using partial pivoting) of the following matrices:

13 2 4 1 5 0 1
@) [2 3} ®) [1 3} © [5 12] @ [1 0]

Find the PA =LU factorization (using partial pivoting) of the following matrices:

11 0 0 13 12 -3 010
(a) 21 -1 (b) 2 11 (c) 24 2 (d) 102
-11-1 -1 -12 —-10 3 210

Solve the system by finding the PA =LU factorization and then carrying out the two-step back

substitution.
31 2 0
370 x 1 t
(a) 6 1 = 1 (b) 6 3 4 x2 | =11
x _
g 315 || x 3
Solve the system by finding the PA=LU factorization and then carrying out the two-step back
substitution.
4 2 0 X1 2 -1 0 1 X1 -2
@@ | 4 4 2 x2 |=] 4| ® 2.1 1 x |=1 17
2 2 3 X3 6 -1 2 0 X3 3

102 | CHAPTER 2 Systems of Equations

Reality

10.

Write down a 5 x 5 matrix P such that multiplication of another matrix by P on the left causes
rows 2 and 5 to be exchanged.

(a) Write down the 4 x 4 matrix P such that multiplying a matrix on the left by P causes the
second and fourth rows of the matrix to be exchanged. (b) What is the effect of multiplying on
the right by P? Demonstrate with an example.

Change four entries of the leftmost matrix to make the matrix equation correct:

00 0 0 1 2 3 4 56 7 8
00 00 34561 [3 456
00 00 56 7 8| |78 90
00 0 0 7 8 9 0 1 2 3 4

Find the PA=LU factorization of the matrix A4 in Exercise 2.3.15. What is the largest
multiplier /;; needed?

1 0 0 1
. . -1 1 0 1

(a) Find the PA = LU factorization of 4 = 1 | L (b)Let Abethen x n
-1 -1 -1 1

matrix of the same form as in (a). Describe the entries of each matrix of its PA=LU
factorization.

(a) Assume that 4 is an n x n matrix with entries |@;;| < 1 for I <i, j < n. Prove that the
matrix U in its PA=LU factorization satisfies |u;;| < 27— forall 1 <i, j <n.See
Exercise 9(b). (b) Formulate and prove an analogous fact for an arbitrary n x n

matrix A.

Check B The Euler-Bernoulli Beam

The Euler-Bernoulli beam is a fundamental model for a material bending under stress.
Discretization converts the differential equation model into a system of linear equations. The
smaller the discretization size, the larger is the resulting system of equations. This example
will provide us an interesting case study of the roles of system size and ill-conditioning in
scientific computation.

The vertical displacement of the beam is represented by a function y(x), where 0 < x <
L along the beam of length L. We will use MKS units in the calculation: meters, kilograms,
seconds. The displacement y(x) satisfies the Euler—Bernoulli equation

EIY" = f(x) (2.27)

where E, the Young’s modulus of the material, and /, the area moment of inertia, are
constant along the beam. The right-hand-side f'(x) is the applied load, including the weight
of the beam, in force per unit length.

Techniques for discretizing derivatives are found in Chapter 5, where it will be shown
that a reasonable approximation for the fourth derivative is

g Y& —2h) —4y(x — h) +6y(x) —4y(x +h) + y(x + 2h)
yox) ~ W

for a small increment /. The discretization error of this approximation is proportional to
h? (see Exercise 5.1.21.). Our strategy will be to consider the beam as the union of many
segments of length /4, and to apply the discretized version of the differential equation on
each segment.

(2.28)

2.4 The PA =LU Factorization | 103

For a positive integer n, set # = L /n. Consider the evenly spaced grid 0 = xg < x| <
...<x, =1L, where h =x; —x;_1 for i =1,...,n. Replacing the differential equation
(2.27) with the difference approximation (2.28) to get the system of linear equations for the
displacements y; = y(x;) yields

h4
Vico —4yi1 + 6y —4yip1 + yigo = Ef(xi)' (2.29)

We will develop n equations in the » unknowns yi, ..., 3,. The coefficient matrix, or
structure matrix, will have coefficients from the left-hand side of this equation. However,
notice that we must alter the equations near the ends of the beam to take the boundary
conditions into account.

Adiving board is a beam with one end clamped at the support, and the opposite end free.
This is called the clamped-free beam or sometimes the cantilever beam. The boundary
conditions for the clamped (left) end and free (right) end are

y(0) =y (0)=)"(L)=y"(L)=0.

In particular, yp = 0. Note that finding y;, however, presents us with a problem, since
applying the approximation (2.29) to the differential equation (2.27) at x| results in

h4
Y1 =4+ 6y —4dy+ 3= Ef(m), (2.30)

and y_1 is not defined. Instead, we must use an alternate derivative approximation at the
point x1 near the clamped end. Exercise 5.1.22(a) derives the approximation

_16y(x1) — 9y(x1 + h) + $y(x1 + 2h) — zy(x1 + 3h)

y//// (x1) h4

2.31)

which is valid when y(xo) = y/(xg) = 0.

Calling the approximation “valid,” for now, means that the discretization error of the
approximation is proportional to 42, the same as for equation (2.28). In theory, this means
that the error in approximating the derivative in this way will decrease toward zero in
the limit of small 4. This concept will be the focal point of the discussion of numerical
differentiation in Chapter 5. The result for us is that we can use approximation (2.31) to
take the endpoint condition into account for i = 1, yielding

1631 — Oy + o L= S(x1)
V1 23— =y /.
The free right end of the beam requires a little more work because we must compute
y; all the way to the end of the beam. Again, we need alternative derivative approximations
at the last two points x,_; and x,. Exercise 5.1.22 gives the approximations

=28y, + 72v—1 — 60y,_2 + 16y, _

y////(. 1) ~ J’n y}'l 11 S J’n 2 yn 3 (232)
72y, — 156y,_1 + 96y,_0 — 12y, _

y////() A Vn Vn 11 . Yn—2 VYn-3 (2.33)

which are valid under the assumption)" (x,) = " (x,) = 0.

104 | CHAPTER 2 Systems of Equations

Now we can write down the system of » equations in #» unknowns for the diving
board. This matrix equation summarizes our approximate versions of the original differential

equation (2.27) at each point x1, ..., X,, accurate within terms of order h?:
[16-9 §—3 10 »n 7 BACH
—4 6-4 1 »n S(x2)
1-4 6 -4 1 . .

1-4 6-4 1
. h4
- =— : . (234
1-4 6 —4 1 EI ’
1 4 6 —4 1
loe _60 72 _28 : :
b oo 1 7 || S G
L -7 -1 mdL L ()

The structure matrix 4 in (2.34) is a banded matrix, meaning that all entries sufficiently
far from the main diagonal are zero. Specifically, the matrix entries a;; = 0, except for
|i — j| < 3. The bandwidth of this banded matrix is 7, since i — j takes on 7 values for
nonzero a;;.

Finally, we are ready to model the clamped-free beam. Let us consider a solid wood
diving board composed of Douglas fir. Assume that the diving board is L = 2 meters long,
30 cm wide, and 3 cm thick. The density of Douglas fir is approximately 480 kg/m>. One
Newton of force is 1 kg-m/sec?, and the Young’s modulus of this wood is approximately
E = 1.3 x 10! Pascals, or Newton/m?. The area moment of inertia / around the center of
mass of a beam is wd> /12, where w is the width and d the thickness of the beam.

You will begin by calculating the displacement of the beam with no payload, so that
f(x) represents only the weight of the beam itself, in units of force per meter. Therefore
f(x) is the mass per meter 480wd times the downward acceleration of gravity —g = —9.81
m/sec?, or the constant f(x) = f = —480wdg. The reader should check that the units match
on both sides of (2.27). There is a closed-form solution of (2.27) in the case f is constant,
so that the result of your computation can be checked for accuracy.

Following the check of your code for the unloaded beam, you will model two further
cases. In the first, a sinusoidal load (or “pile’”) will be added to the beam. In this case, there
is again a known closed-form solution, but the derivative approximations are not exact, So
you will be able to monitor the error of your modeling as a function of the grid size /4,
and see the effect of conditioning problems for large n. Later, you will put a diver on the
beam.

1. Write a MATLAB program to define the structure matrix 4 in (2.34). Then, using the
MATLAB \ command or code of your own design, solve the system for the displacements y;
using n = 10 grid steps.

2. Plot the solution from Step 1 against the correct solution
y(x) = (f/24ED)x%(x* — 4Lx + 6L?%), where f = f(x) is the constant defined above.
Check the error at the end of the beam, x = L meters. In this simple case the derivative
approximations are exact, so your error should be near machine roundoff.

3. Rerun the calculation in Step 1 for n = 10 - 2% where k = 1,..., 11. Make a table of the
errors at x = L for each n. For which # is the error smallest? Why does the error begin to
increase with n after a certain point? You may want to make an accompanying table of the

2.4 The PA =LU Factorization | 105

condition number of A as a function of n to help answer the last question. To carry out this
step for large &, you may need to ask MATLAB to store the matrix 4 as a sparse matrix to
avoid running out of memory. To do this, just initialize 4 with the command

A=sparse (n,n), and proceed as before. We will discuss sparse matrices in more detail in
the next section.

. Add a sinusoidal pile to the beam. This means adding a function of form

s(x) = — pgsin %x to the force term f'(x). Prove that the solution
VR oo pgL (L 7w xX* L, L?
=— —4L 6L°) — — | =sin—x — — + —x" — —
YO =t YO = g\ B T e Tt Tt

satisfies the Euler—Bernoulli beam equation and the clamped-free boundary conditions.

. Rerun the calculation as in Step 3 for the sinusoidal load. (Be sure to include the weight of
the beam itself.) Set p = 100 kg/m and plot your computed solutions against the correct
solution. Answer the questions from Step 3, and in addition the following one: Is the error at
x = L proportional to 42 as claimed above? You may want to plot the error versus /4 on a
log—log graph to investigate this question. Does the condition number come into

play?

. Now remove the sinusoidal load and add a 70 kg diver to the beam, balancing on the last 20
cm of the beam. You must add a force per unit length of —g times 70/0.2 kg/m to f'(x;) for
all 1.8 < x; <2, and solve the problem again with the optimal value of » found in Step 5.
Plot the solution and find the deflection of the diving board at the free end.

. If we also fix the free end of the diving board, we have a “clamped-clamped’’ beam,
obeying identical boundary conditions at each end: y(0) = y/(0) = y(L) = y/(L) = 0. This
version is used to model the sag in a structure, like a bridge. Begin with the slightly
different evenly spaced grid 0 = xo < x| < ... <X, < Xp4+1 = L, where h = x; — x;_ for
i =1,...,n, and find the system of n equations in » unknowns that determine yy, ..., y,. (It
should be similar to the clamped-free version, except that the last two rows of the
coefficient matrix A should be the first two rows reversed.) Solve for a sinusoidal load and
answer the questions of Step 5 for the center x = L /2 of the beam. The exact solution for
the clamped-clamped beam under a sinusoidal load is

L2
/ 2L —x)? - P8
24EI TtEl

240
Y(x) = (L sin Tx + x(x — L)).
. Ideas for further exploration: If the width of the diving board is doubled, how does the
displacement of the diver change? Does it change more or less than if the thickness is
doubled? (Both beams have the same mass.) How does the maximum displacement change
if the cross-section is circular or annular with the same area as the rectangle? (The area
moment of inertia for a circular cross-section of radius 7 is [= r* /4, and for an annular
cross-section with inner radius 71 and outer radius 7 is / = JT(Vg — ri‘) /4.) Find out the
area moment of inertia for I-beams, for example. The Young’s modulus for different
materials are also tabulated and available. For example, the density of steel is about 7850
kg/m? and its Young’s modulus is about 2 x 10! Pascals.

The Euler—Bernoulli beam is a relatively simple, classical model. More recent models, such
as the Timoshenko beam, take into account more exotic bending, where the beam
cross-section may not be perpendicular to the beam’s main axis.

106 | CHAPTER 2 Systems of Equations

2.5 ITERATIVE METHODS

» EXAMPLE 2.19

» EXAMPLE 2.20

Gaussian elimination is a finite sequence of O (rn?) floating point operations that result in a
solution. For that reason, Gaussian elimination is called a direct method for solving systems
of linear equations. Direct methods, in theory, give the exact solution within a finite number
of steps. (Of course, when carried out by a computer using limited precision, the resulting
solution will be only approximate. As we saw earlier, the loss of precision is quantified
by the condition number.) Direct methods stand in contrast to the root-finding methods
described in Chapter 1, which are iterative in form.

So-called iterative methods also can be applied to solving systems of linear equations.
Similar to Fixed-Point Iteration, the methods begin with an initial guess and refine the guess
at each step, converging to the solution vector.

2.5.1 Jacobi Method

The Jacobi Method is a form of fixed-point iteration for a system of equations. In FPI
the first step is to rewrite the equations, solving for the unknown. Therfirstisteprofithe
Jacobi Method is to do this in the following standardized way: Solve the ith equation
for the ith unknown. Then, iterate as in Fixed-Point Iteration, starting with an initial
guess.

Apply the Jacobi Method to the system 3u + v =5,u + 2v =5.

Begin by solving the first equation for # and the second equation for v. We will
use the initial guess (ug, vg) = (0,0). We have

5—v
u =
3
5—u
> (2.35)
The two equations are iterated:
[ug] _ [0
| v | [0
r 7 " 5—w 5-0 5
up | _ 3 _ 3 _ | 3
v | 5”0:|_|:5;]_[§]
- - L 2 2 2
- - r 5—v; 5-5/2 5
uz _ 3 _ 3 _ 6
v | S5—uy - 5-5/3 | s
L . L 2 3
F] [10
3 _ 3 _ 9
v | =] 55 i| = |: 2 i| (2.36)
- - L 72 12
Further steps of Jacobi show convergence toward the solution, which is [1, 2]. |

Now suppose that the equations are given in the reverse order.

Apply the Jacobi Method to the system u + 2v =5,3u + v =5.

Solve the first equation for the first variable u# and the second equation for v. We
begin with
u=5—-2v
v=1>5—3u. (2.37)

David Tran

DEFINITION 2.9

THEOREM 2.10

» EXAMPLE 2.21

2.5 [terative Methods | 107

The two equations are iterated as before, but the results are quite different:

[ug _ [0

L Yo | - i 0

[up _ [5 —2up)

L V1 i B L 5— 3u0 B 5

_uz___5—2v1 | =5

_vz___5—3u] | —=10

_u3___5—2(—10) | 25

| v3 | - | 5 —3(-5) 120 |° (2.38)
In this case the Jacobi Method fails, as the iteration diverges. <

Since the Jacobi Method does not always succeed, it is helpful to know conditions
under which it does work. One important condition is given in the following definition:

The n x n matrix 4 = (a;;) is strictly diagonally dominant if, foreach 1 <i < n, |a;;| >
>_ i laij|. In other words, each main diagonal entry dominates its row in the sense that
it is greater in magnitude than the sum of magnitudes of the remainder of the entries in
its row. a

If the n x n matrix A is strictly diagonally dominant, then (1) 4 is a nonsingular matrix,
and (2) for every vector b and every starting guess, the Jacobi Method applied to 4x = b
converges to the (unique) solution. |

Theorem 2.10 says that, if A4 is strictly diagonally dominant, then the Jacobi Method
applied to the equation Ax = b converges to a solution for each starting guess. The proof
of this fact is given in Section 2.5.3. In Example 2.19, the coefficient matrix is at first

31
A:[l 2]

which is strictly diagonally dominant because 3 > 1 and 2 > 1. Convergence is guaranteed
in this case. On the other hand, in Example 2.20, Jacobi is applied to the matrix

12
=[31)

which is not diagonally dominant, and no such guarantee exists. Note that strict diagonal
dominance is only a sufficient condition. The Jacobi Method may still converge in its
absence.

Determine whether the matrices

3 1 -1 3 2
A=1| 2 =5 2 and B=| 1 8 1
1 6 8 9 2 -

are strictly diagonally dominant.

The matrix A4 is diagonally dominant because |3| > |[1| + | — 1|,| — 5] > |2] +
|2], and |8] > |1] + |6|. B is not, because, for example, |3| > |2| + |6] is not true. However,
if the first and third rows of B are exchanged, then B is strictly diagonally dominant and
Jacobi is guaranteed to converge. |

David Tran

108 | CHAPTER 2 Systems of Equations

The Jacobi Method is a form of fixed-point iteration. Let D denote the main diagonal
of 4, L denote the lower triangle of A (entries below the main diagonal), and U denote the
upper triangle (entries above the main diagonal). Then 4 = L + D + U, and the equation
to be solved is Lx + Dx 4+ Ux = b. Note that this use of L and U differs from the use
in the LU factorization, since all diagonal entries of this L and U are zero. The system of
equations Ax = b can be rearranged in a fixed-point iteration of form:

Ax =b
(D+L+Ux=5b
Dx=b— (L+U)x
x=D"'b~(L+Ux). (2.39)

Since D is a diagonal matrix, its inverse is the matrix of reciprocals of the diagonal

entries of A. The Jacobi Method is just the fixed-point iteration of (2.39):

Jacobi Method

xo = initial vector
Xip1 = DN b = (L + U)xp) for k=0,1,2,.... (2.40)

e

the fixed-point iteration (2.40) with x; = |: Zk i| is
k

For Example 2.19,

Vk+1
13 0 5 0 1 up
1 0 12 51 |10 vk
_[(5—7)1{)/3}

LG w2 |’

which agrees with our original version.

2.5.2 Gauss-Seidel Method and SOR

Closely related to the Jacobi Method is an iteration called the Gauss=Seidel'MethodsThe
only difference between Gauss—Seidel and Jacobi is that in the former, the most recently
apdatedivaluesrof therunknownsrarerusedratieachistep, even if the updating occurs in the
current step. Returning to Example 2.19, we see that Gauss—Seidel looks like this:

[up _ [0

L V0 i o L 0

- 9 [5w] [520 5
ui _ 3 _ 3 _ 3
V] - S5—uy - 5-5/3 - 5

- - L 2 L 2 3

r b [5—v; 7] r 5-5/3 10
us _ 3 _ 3 _ 9
v - S5—up - 5—-10/9 - 35

- - L 2 L 2 18

r u B [5—v 7] [5-35/18 55

3 _ 3 _ 3 _ 54

V3 - S5—u3 - 5—55/54 - 215 ! (2'41)

- - L 2 L 2 108

David Tran

David Tran

» EXAMPLE 2.22

2.5 [terative Methods | 109

Note the difference between Gauss—Seidel and Jacobi: The definition of v; uses u;, not
uo. We see the approach to the solution [1, 2] as with the Jacobi Method, but somewhat
more accurately at the same number of steps. Gauss—Seidel often converges faster than
Jacobi if the method is convergent. Theorem 2.11 verifies that the Gauss—Seidel Method,
like Jacobi, converges to the solution as long as the coefficient matrix is strictly diagonally
dominant.

Gauss—Seidel can be written in matrix form and identified as a fixed-point iteration
where we isolate the equation (L + D + U)x = b as

(L + D)xj+1 = —Uxy + b.

Note that the usage of newly determined entries of xj1 is accommodated by including the
lower triangle of A4 into the left-hand side. Rearranging the equation gives the Gauss—Seidel
Method.

Gauss-Seidel Method

X = initial vector
Xpp1 = D7V — Uxy — Lxgyy) for k=0,1,2,....

Apply the Gauss—Seidel Method to the system

31 —
2 4 v | =] 1
-1 2 1
The Gauss—Seidel iteration is
4 — v + wy
u =
k+1 3
1 — 2ujq1 — wi
Vbl = ————
I+ upp1 — 2v41
Wi41 = 5 .

Starting with xo = [ug, vo, wo] = [0, 0, 0], we calculate

4-0-0 _ 4
uj 3 T3 1.3333
v | =] 2= 3 x| —04167
w1 1+4/3+5/6 _ 19 0.6333
35 T3
and
101
u 60 1.6833
v |=| -3 [~| —0.7500
wy 251 0.8367
300

The system is strictly diagonally dominant, and therefore the iteration will converge to the
solution [2, —1, 1]. |

The method called Successive Over-Relaxation (SOR) takes the Gauss—Seidel direc-
tion toward the solution and “overshoots’ to try to speed convergence. Let @ be a real

110 | CHAPTER 2 Systems of Equations

» EXAMPLE 2.23

number, and define each component of the new guess x;4| as a weighted average of w
times the Gauss—Seidel formula and 1 — o times the current guess xx. The number w is
called the relaxation parameter, and w > 1 is referred to as over-relaxation.

Apply SOR with w = 1.25 to the system of Example 2.22.

Successive Over-Relaxation yields

4—vy+w
ups1 = (1 — w)uy + w%
1 —2u —w
Vet = (1 =)+ 0————
1+4+u — 2,
wi+1 = (1 — w)wg + o k+15 axl
Starting with [ug, v, wo] = [0, 0, 0], we calculate
uy 1.6667
V1 ~ | —0.7292
wi 1.0312
and
uy 1.9835
v |[~| —1.0672
wy 1.0216

In this example, the SOR iteration converges faster than Jacobi and Gauss—Seidel to the
solution [2, —1, 1]. <

Just as with Jacobi and Gauss—Seidel, an alternative derivation of SOR follows
from treating the system as a fixed-point problem. The problem 4Ax = b can be written
(L + D + U)x = b, and, upon multiplication by @ and rearranging,

(wL + wD + wU)x = wb
(wL + D)x = wb — wUx + (1 — w)Dx
x = (ol + D) '[(1 — w)Dx — 0wUx] 4+ o(D + wL)"'b.

Successive Over-Relaxation (SOR)

x(= initial vector
Xie1 = (@L + D)7 '[(1 — w)Dxy — wUx] + (D + wL)"'b for k=0,1,2,....

SOR with @ = 1 is exactly Gauss—Seidel. The parameter @ can also be allowed to be
less than 1, in a method called Successive Under-Relaxation.

> EXAMPLE 2.24 Compare Jacobi, Gauss—Seidel, and SOR on the system of six equations in six unknowns:

3 -1 0 0 0 FqTw] T 3T
1 3
-1 3 -1 0 1 0 us 3
0 -1 3 -1 0 0 us 1

0 0 -1 3 -1 0| 7|1 (242)
o L o -1 3 -1 3
2 us 2
1 5
0 0o o0 -1 3 v 3

2.5 [terative Methods | 111

The solutionis x = [1, 1, 1, 1, 1, 1]. The approximate solution vectors x¢, after running
six steps of each of the three methods, are shown in the following table:

Jacobi | Gauss—Seidel SOR

0.9879 0.9950 0.9989
0.9846 0.9946 0.9993
0.9674 0.9969 1.0004
0.9674 0.9996 1.0009
0.9846 1.0016 1.0009
0.9879 1.0013 1.0004

The parameter w for Successive Over-Relaxation was set at 1.1. SOR appears to be
superior for this problem. <

Figure 2.3 compares the infinity norm error in Example 2.24 after six iterations for
various w. Although there is no general theory describing the best choice of w, clearly there
is a best choice in this case. See Ortega [1972] for discussion of the optimal @ in some
common special cases.

0.004} ®4 o

0.002

0 I I I I !
I 105 11 115 12 125

X

Figure 2.3 Infinity norm error after six steps of SOR in Example 2.24, as a func-
tion of over-relaxation parameter w. Gauss-Seidel corresponds to w=1. Minimum
error occurs for v ~ 1.13

2.5.3 Convergence of iterative methods

In this section we prove that the Jacobi and Gauss—Seidel Methods converge for strictly
diagonally dominant matrices. This is the content of Theorems 2.10 and 2.11.
The Jacobi Method is written as

xkp1 = =D YL + U)xy + D 'b. (2.43)

Theorem A.7 of Appendix A governs convergence of such an iteration. According to this
theorem, we need to know that the spectral radius p (D~Y(L 4+ U)) < linorderto guarantee
convergence of the Jacobi Method. This is exactly what strict diagonal dominance implies,
as shown next.

Proof of Theorem 2.10. Let R = L + U denote the nondiagonal part of the matrix. To
check p(D~'R) < 1, let A be an eigenvalue of D~! R with corresponding eigenvector v.
Choose this v so that ||v]|ec = 1, so that for some 1 <m < n, the component v,, = 1
and all other components are no larger than 1. (This can be achieved by starting with any
eigenvector and dividing by the largest component. Any constant multiple of an eigenvector
is again an eigenvector with the same eigenvalue.) The definition of eigenvalue means that
D Ry = Av, or Rv = ADv.

112 | CHAPTER 2 Systems of Equations

THEOREM 2.11

Since 7y, = 0, taking absolute values of the mth component of this vector equation

implies
[Fm1v1 + Fmava + - + Tmm—1Vm—1 + "'mm+1Vm+1 + -+ + PmnUn|
= |[Adumvm| = [M|dpm].

Since all |v;| < 1, the left-hand side is at most) m |7 71, which, according to the strict
diagonal dominance hypothesis, is less than |d,;,|. This implies that |A||dym| < |dmmls
which in turn forces |A| < 1. Since A was an arbitrary eigenvalue, we have shown
p(D7'R) < 1, as desired. Now Theorem A.7 from Appendix A implies that Jacobi

converges to a solution of 4x = b. Finally, since Ax = b has a solution for arbitrary b, 4
is a nonsingular matrix.

Putting the Gauss—Seidel Method into the form of (2.43) yields
Xje1 = —(L + D) 'Uxi + (L + D)7 'b.

It then becomes clear that convergence of Gauss—Seidel follows if the spectral radius of the
matrix

(L+D)"'U (2.44)
is less than one. The next theorem shows that strict diagonal dominance implies that this

requirement is imposed on the eigenvalues.

If the n x n matrix A is strictly diagonally dominant, then (1) 4 is a nonsingular matrix,
and (2) for every vector b and every starting guess, the Gauss—Seidel Method applied to
Ax = b converges to a solution. |

Proof. Let A be an eigenvalue of (2.44), with corresponding eigenvector v. Choose
the eigenvector so that v,, = 1 and all other components are smaller in magnitude, as in the
preceding proof. Note that the entries of L are the a;; for7 > j, and the entries of U are the
a;j; fori < j. Then viewing row m of the eigenvalue equation of (2.44),

MDD+ Lyv="Uv,
yields a string of inequalities similar to the previous proof:

Al (Z |am,-|) < |l (|amm| -y |ami|>

i>m i<m

<l (|amm| — > amiv)
i<m

= |)\|)amm + Zamivi
i<m
= ‘Zamivi‘
i>m
=< Zlamil-
i>m

It follows that |1| < 1, which finishes the proof. 0

2.5 [terative Methods | 113

2.5.4 Sparse matrix computations

Direct methods based on Gaussian elimination provide the user a finite number of steps that
terminate in the solution. What is the reason for pursuing iterative methods, which are only
approximate and may require several steps for convergence?

There are two major reasons for using iterative methods like Gauss—Seidel. Both reasons
stem from the fact that one step of an iterative method requires only a fraction of the floating
point operations of a full LU factorization. As we established earlier in the chapter, Gaussian
elimination for an n x n matrix costs on the order of n3 operations. A single step of Jacobi’s
Method, for example, requires about n> multiplications (one for each matrix entry) and
about the same number of additions. The question is how many steps will be needed for
convergence within the user’s tolerance.

One particular circumstance that argues for an iterative technique is when a good
approximation to the solution is already known. For example, suppose that a solution to
Ax = b is known, after which A4 and/or b change by a small amount. We could imagine a
dynamic problem where A4 and b are remeasured constantly as they change, and an accurate
updated solution x is constantly required. If the solution to the previous problem is used as a
starting guess for the new but similar problem, fast convergence of Jacobi or Gauss—Seidel
can be expected.

Suppose the b in problem (2.42) is changed slightly from the original b =
[2.5,1.5,1,1,1.5,2.5] to anew b =[2.2,1.6,0.9,1.3,1.4,2.45]. We can check that the
true solution of the system is changed from [1,1,1,1,1,1]to [0.9,1,1, 1.1, 1, 1]. Assume
that we have in memory the sixth step of the Gauss—Seidel iteration x¢ from the preceding
table, to use as a starting guess. Continuing Gauss—Seidel with the new b and with the
helpful starting guess x¢ yields a good approximation in only one additional step. The next
two steps are as follows:

X7 X8
0.8980 | 0.8994
0.9980 | 0.9889
0.9659 | 0.9927
1.0892 | 1.0966
0.9971 | 1.0005
0.9993 | 1.0003

This technique is often called polishing, because the method begins with an approx-
imate solution, which could be the solution from a previous, related problem, and
then merely refines the approximate solution to make it more accurate. Polishing is
common in real-time applications where the same problem needs to be re-solved repeat-
edly with data that is updated as time passes. If the system is large and time is short,
it may be impossible to run an entire Gaussian elimination or even a back substitu-
tion in the allotted time. If the solution hasn’t changed too much, a few steps of a
relatively cheap iterative method might keep sufficient accuracy as the solution moves
through time.

The second major reason to use iterative methods is to solve sparse systems of equa-
tions. A coefficient matrix is called sparse if many of the matrix entries are known to be zero.
Often, of the n? eligible entries in a sparse matrix, only O(n) of them are nonzero. A full
matrix is the opposite, where few entries may be assumed to be zero. Gaussian elimination
applied to a sparse matrix usually causes fill-in, where the coefficient matrix changes from
sparse to full due to the necessary row operations. For this reason, the efficiency of Gaus-
sian elimination and its PA = LU implementation become questionable for sparse matrices,
leaving iterative methods as a feasible alternative.

114 | CHAPTER 2 Systems of Equations

Example 2.24 can be extended to a sparse matrix as follows:
> EXAMPLE 2.25 Use the Jacobi Method to solve the 100,000-equation version of Example 2.24.
Let n be an even integer, and consider the # x n matrix 4 with 3 on the main

diagonal, —1 on the super- and subdiagonal, and 1/2 in the (i,n + 1 — i) position for all
i=1,...,n,exceptfori =n/2andn/2 4+ 1. Forn = 12,

3 -1 0 0 0 0 0 0 0 0 0 3T
-1 3 -1 0 0 0 0 0 o0 o0 I o0
0 -1 3 -1 0 0 0 0 0 5 0 0
0 0 -1 3 -1 0 0 0 5 0 0 0
o 0 0 -1 3 -1 0 % 0 0 0 0
o 0 0 0 -1 3 -1 0 0 0 0 0

410 0 0 0 0 -1 3 -1 0 0 0 0 245)

o 0 0 0 %+ 0 -1 3 -1 0 0 0
o 0 0 4+ 0 0 0 -1 3 -1 0 0
o 0 7 0 0 0 0 0 -1 3 -1 0
o 4 0 0 0 0 0 0 0 -1 3 -1

. § 0 0 0 0 O O 0 0 0 -1 3]

Define the vector b = (2.5,1.5,...,1.5,1.0,1.0,1.5,...,1.5,2.5), where there are n — 4
repetitions of 1.5 and 2 repetitions of 1.0. Note that if » = 6, A and b define the system of
Example 2.24. The solution of the system for general n is [1, ..., 1]. No row of 4 has more
than 4 nonzero entries. Since fewer than 4z of the n> potential entries are nonzero, we may
call the matrix A4 sparse.

If we want to solve this system of equations for n = 100, 000 or more, what are the
options? Treating the coefficient matrix 4 as a full matrix means storing n> = 10'? entries,
each as a floating point double precision number requiring 8 bytes of storage. Note that
8 x 100 bytes is approximately 80 gigabytes. Depending on your computational setup, it
may be impossible to fit the entire #2 entries into RAM.

Not only is size an enemy, but so is time. The number of operations required by
Gaussian elimination will be on the order of 7 & 10>, If your machine runs on the order
of a few GHz (10° cycles per second), an upper bound on the number of floating point
operations per second is around 108. Therefore, 1013/10% = 107 is a reasonable guess at
the number of seconds required for Gaussian elimination. There are 3 x 107 seconds in a
year. Although this is back-of-the-envelope accounting, it is clear that Gaussian elimination
for this problem is not an overnight computation.

On the other hand, one step of an iterative method will require approximately
2 x 4n = 800, 000 operations, two for each nonzero matrix entry. We could do 100 steps of
Jacobi iteration and still finish with fewer than 10% operations, which should take roughly a
second or less on a modern PC. For the system just defined, with » = 100, 000, the following
Jacobi code jacobi . mneeds only 50 steps to converge from a starting guess of (0, ..., 0)
to the solution (1, ..., 1) within six correct decimal places. The 50 steps require less than 1
second on a typical PC.

o°

Program 2.1 Sparse matrix setup
Input: n = size of system
Outputs: sparse matrix a, r.h.s. b

o°

o°

function [a,b] = sparsesetup (n)

e = ones(n,1); n2=n/2;

a = spdiags([-e 3*e -e],-1:1,n,n); % Entries of a
c=spdiags([e/2],0,n,n);c=fliplr(c) ;a=a+c;

a(n2+1,n2) = -1; a(n2,n2+1) = -1; % Fix up 2 entries
b=zeros(n,1) ; % Entries of r.h.s. b

b(1l)=2.5;b(n)=2.5;b(2:n-1)=1.5;b(n2:n2+1) =1;

2.5 Exercises

2.5 [terative Methods | 115

o°

Program 2.2 Jacobi Method

Inputs: full or sparse matrix a, r.h.s. b,
number of Jacobi iterations, k

Output: solution x

function x = jacobi (a,b, k)

n=length (b) ; find n

o° o°

o°

o\?°

d=diag(a) ; % extract diagonal of a
r=a-diag(d) ; % r is the remainder
x=zeros (n, 1) ; % initialize vector x
for j=1:k % loop for Jacobi iteration
x = (b-r*x)./d;
end % End of Jacobi iteration loop

Note a few interesting aspects of the preceding code. The program
sparsesetup.muses MATLAB’s spdiags command, which defines the matrix 4 as a
sparse data structure. Essentially, this means that the matrix is represented by a set of triples
(i, j,d), where d is the real number entry in position (i, j) of the matrix. Memory is not
reserved for the entire n> potential entries, but only on an as-needed basis. The spdiags
command takes the columns of a matrix and places them along the main diagonal, or a
specified sub- or super-diagonal below or above the main diagonal.

MATLAB’s matrix manipulation commands are designed to work seamlessly with
the sparse matrix data structure. For example, an alternative to the preceding code would be
touse MATLAB’s 1u command to solve the system directly. However, for that example, even
though A4 is sparse, the upper-triangular matrix U that follows from Gaussian elimination
suffers from fill-in during the process. For example, the upper-triangular U from Gaussian
elimination for size n = 12 of the preceding matrix 4 is

3 —1.0 0 0 0 0 0 0 0 0 0 0.500
0 27 -1.0 0 0 0 0 0 0 0 0500 0.165
0 0 26 —-1.0 0 0 0 0 0 0500 0.187 0.062
0 0 0 26 -1.000 0 0 0 0500 0.191 0.071 0.024
0 0 0 0 2618 —1.000 0 0500 0.191 0.073 0.027 0.009
0 0 0 0 0 2618 —1.000 0.191 0.073 0.028 0.010 0.004
0 0 0 0 0 0 2618 —-0927 0.028 0.011 0.004 0.001
0 0 0 0 0 0 0 2562 -1.032 -0.012 -0.005 -0.001
0 0 0 0 0 0 0 0 2473 —1.047 -0.018 —0.006
0 0 0 0 0 0 0 0 0 2445 —-1.049 -0.016
0 0 0 0 0 0 0 0 0 0 2440 -—1.044
L 0 0 0 0 0 0 0 0 0 0 0 2458 |

Since U turns out to be a relatively full matrix, the memory restrictions previously
mentioned again become a limitation. A significant fraction of the n> memory locations will
be necessary to store U on the way to completing the solution process. It is more efficient,
by several orders of magnitude in execution time and storage, to solve this large sparse
system by an iterative method. |

Compute the first two steps of the Jacobi and the Gauss—Seidel Methods with starting vector
[0,...,0].

- 2 -1 0 u 0
(a) i‘;““}:{i} (b) 1 2 -1 v =] 2
L~ v 0 -1 2 w 0

(c)

—_——
— 00
[OSI
<
I
[V, S e)

116 | CHAPTER 2 Systems of Equations

2. Rearrange the equations to form a strictly diagonally dominant system. Apply two steps of the
Jacobi and Gauss—Seidel Methods from starting vector [0, ..., 0].

13 | u—8v—-2w=1 u+4v=>5

v=—

(@) 5”+4 ¢ ™ wrvisw=4 © vi2w=2
u V= 3u—v+w=-2 du+3w=0

3. Apply two steps of SOR to the systems in Exercise 1. Use starting vector [0, ..., 0] and
w=1.5.

4. Apply two steps of SOR to the systems in Exercise 2 after rearranging. Use starting vector
[0,...,0]and w = 1 and 1.2.

5. Let X be an eigenvalue of an n x n matrix 4. (a) Prove the Gershgorin Circle Theorem: There
is a diagonal entry 4,,,, such that |4,,,, — A| < Z#m [Amj]. (Hint: Begin with an
eigenvector v such that ||v||oo = 1, as in the proof of Theorem 2.10.) (b) Prove that a strictly
diagonally dominant matrix cannot have a zero eigenvalue. This is an alternative proof of
part (1) of Theorem 2.10.

2.5 Computer Problems

1. Use the Jacobi Method to solve the sparse system within six correct decimal places (forward
error in the infinity norm) for » = 100 and » = 100000. The correct solution is [1,..., 1].
Report the number of steps needed and the backward error. The system is

3 -1 X1 2
—1 3 -1 1
—1 3 -1 1

—1 3 Xp 2

2. Use the Jacobi Method to solve the sparse system within three correct decimal places (forward
error in the infinity norm) for » = 100. The correct solution is [1, —1, 1, —1,..., 1, —1]. Report
the number of steps needed and the backward error. The system is

2 1 X1 1
1 2 1 0
1 2 1 0

1 2 X —1

3. Rewrite Program 2.2 to carry out Gauss—Seidel iteration. Solve the problem in Example 2.24
to check your work.

4. Rewrite Program 2.2 to carry out SOR. Use w = 1.1 to recheck Example 2.24.

5. Carry out the steps of Computer Problem 1 with n = 100 for (a) Gauss—Seidel Method and
(b) SOR with w = 1.2.

6. Carry out the steps of Computer Problem 2 for (a) Gauss—Seidel Method and (b) SOR with
w=1.5.

7.

2.6 Methods for symmetric positive-definite matrices | 117

Using your program from Computer Problem 3, decide how large a system of type (2.38) you
can solve accurately by the Gauss—Seidel Method in one second of computation. Report the
time required and forward error for various values of n.

2.6 METHODS FOR SYMMETRIC POSITIVE-DEFINITE MATRICES

DEFINITION 2.12

» EXAMPLE 2.26

» EXAMPLE 2.27

Symmetric matrices hold a favored position in linear systems analysis because of their spe-
cial structure, and because they have only about half as many independent entries as general
matrices. That raises the question whether a factorization like the LU can be realized for half
the computational complexity, and using only half the memory locations. For symmetric
positive-definite matrices, this goal can be achieved with the Cholesky factorization.

Symmetric positive-definite matrices also allow a quite different approach to solving
Ax = b, one that does not depend on a matrix factorization. This new approach, called the
conjugate gradient method, is especially useful for large, sparse matrices, where it falls into
the family of iterative methods.

To begin the section, we define the concept of positive-definiteness for symmetric
matrices. Then we show that every symmetric positive-definite matrix A can be factored
as 4 = RT R for an upper-triangular matrix R, the Cholesky factorization. As a result, the
problem Ax = b can be solved using two back substitutions, just as with the LU factoriza-
tion in the nonsymmetric case. We close the section with the conjugate gradient algorithm
and an introduction to preconditioning.

2.6.1 Symmetric positive-definite matrices

Then x n matrix 4 issymmetricif 47 = 4. The matrix 4 is positive-definite if x7 4x > 0
for all vectors x # 0. O

Show that the matrix 4 = |: ; g i| is symmetric positive-definite.

Clearly A4 is symmetric. To show it is positive-definite, one applies the definition:

Cacmln w12 2][2]

= Zx% + 4dx1x0 + SX%
=2(x1 +x2)* + 3x%

This expression is always non-negative, and cannot be zero unless both x, =0 and
X1 + x2 = 0, which together imply x = 0. <

2 . . .
4 5] is not positive-definite.
Compute x” 4x by completing the square:

xTsz[xl xz][i g}[i;}

= Zx% + 8x1x2 + Sx%

= 2()(12 + 4x1x3) + S)C%
=2(x1 + 2x2)* — 8x5 + 5x3
=2(x1 4 2x2)% — 3x3

Show that the symmetric matrix 4 = [

118 | CHAPTER 2 Systems of Equations

Property 1

Property 2

DEFINITION 2.13

Property 3

Setting x; = —2and x» = 1, for example, causes the result to be less than zero, contradicting
the definition of positive-definite. <

Note that a symmetric positive-definite matrix must be nonsingular, since it is impos-
sible for a nonzero vector x to satisfy 4x = 0. There are three additional important facts
about this class of matrices.

If the n x n matrix 4 is symmetric, then A is positive-definite if and only if all of its
eigenvalues are positive.

Proof. Theorem A.5 says that, the set of unit eigenvectors is orthonormal and spans
R". If A is positive-definite and 4v = Av for a nonzero vector v, then 0 < vl Ay =
vl (w) =)»||v||%, so A > 0. On the other hand, if all eigenvalues of 4 are positive,
then write any nonzero x = cjvy + ... + ¢, v, wWhere the v; are orthonormal unit vectors
and not all ¢; are zero. Then x7 Ax = (civ] + ... + chvn) T Micivl + ... + Aycrvy) =
)»]C% + ...+)\ncﬁ > 0, so 4 is positive-definite.)

The eigenvalues of 4 in Example 2.26 are 6 and 1. The eigenvalues of 4 in Example
2.27 are approximately 7.77 and —0.77.

If Aisn x n symmetric positive-definite and X is ann x m matrix of full rank withn > m,
then X7 AX is m x m symmetric positive-definite.

Proof. The matrix is symmetric since (X7 4 X)T = XT 4 X. To prove positive-definite,
consider a nonzero m-vector v. Note that v’ (X7 AX)v = (Xv)T A(Xv) > 0, with equality
only if Xv = 0, due to the positive-definiteness of 4. Since X has full rank, its columns are
linearly independent, so that Xv = 0 implies v = 0. a

A principal submatrix of a square matrix 4 is a square submatrix whose diagonal entries
are diagonal entries of 4.)

Any principal submatrix of a symmetric positive-definite matrix is symmetric positive-
definite.

Proof. Exercise 12. a

For example, if
aip a2 aiz ay
azy 4z Az dx4
asp daszz aszz dz4
aq) a4y 443 a4

is symmetric positive-definite, then so is

azy azz
aszy asz

THEOREM 2.14

2.6 Methods for symmetric positive-definite matrices | 119

2.6.2 Cholesky factorization

To demonstrate the main idea, we start with a 2 x 2 case. All of the important issues arise
there; the extension to the general size is only some extra bookkeeping.
Consider the symmetric positive-definite matrix

)

By Property 3 of symmetric positive-definite matrices, we know that a > 0. In addition, we
know that the determinant ac — b? of A is positive, since the determinant is the product of
the eigenvalues, all positive by Property 1. Writing 4 = R” R with an upper triangular R
implies the form

a b | va o Ja u | a u/a

b c | u v 0 v | u\/a u? + 02
and we want to check whether this is possible. Comparing left and right sides yields the
identities u = b//a and v> = ¢ — u?. Note that v> = ¢ — (b//a)> = ¢ — b*/a > 0 from

our knowledge of the determinant. This verifies that v can be defined as a real number and
so the Cholesky factorization

b Ja 0 va L

G oVemPla || o Je=pa |

exists for 2 x 2 symmetric positive-definite matrices. The Cholesky factorization is not
unique; clearly we could just as well have chosen v to be the negative square root of
c —b%/a.

The next result guarantees that the same idea works for the n x n case.

b ¢

(Cholesky Factorization Theorem) If 4 is a symmetric positive-definite n x n matrix, then
there exists an upper triangular n x 7 matrix R such that A = R” R. |

Proof. We construct R by induction on the size n. The case n = 2 was done above.
Consider A4 partitioned as

,,,,,,,,,,,,,,,,,,,,,

where b is an (n — 1)-vector and C is an (n — 1) x (n — 1) submatrix. We will use block
multiplication (see the Appendix section A.2) to simplify the argument. Set u = b/\/a as
in the 2 x 2 case. Setting 4; = C — uu! and defining the invertible matrix

,,,,,,,,,,,,,,,,,,,,,,,,

120 | CHAPTER 2 Systems of Equations

yields

10 07 T gie o o [0 0 0] [vaL T

L I B e 0 0
sT S = i

Ay u 1 : A 1
0 01 0
a pT
= =A

,,,,,,,,,,,,,,,,,,,,,

is symmetric positive-definite by Property 2, and therefore so is the (n — 1) x (n — 1)
principal submatrix 41 by Property 3. By the induction hypothesis, 4] = VTV where V is
upper triangular. Finally, define the upper triangular matrix

ﬁ u’l
R R
R= .
: V
0
and check that
Va o 0| vai a b"
,,,,,,,,,,,,,,,,,,,,,,,,, 0]
RTR = : = =4,
u yT : % b uul + VTV
0
which completes the proof. 0

The construction of the proof can be carried out explicitly, in what has become the
standard algorithm for the Cholesky factorization. The matrix R is built from the outside
in. First we find 711 = /a1 and set the rest of the top row of R to ul = bT/ru. Then
uu” is subtracted from the lower principal (n — 1) x (n — 1) submatrix, and the same
steps are repeated on it to fill in the second row of R. These steps are continued until
all rows of R are determined. According to the theorem, the new principal submatrix is
positive-definite at every stage of the construction, so by Property 3, the top left corner
entry is positive, and the square root operation succeeds. This approach can be put directly
into the following algorithm. We use the “colon notation" where convenient to denote
submatrices.

» EXAMPLE 2.28

2.6 Methods for symmetric positive-definite matrices | 121

Cholesky factorization

fork=1,2,...,n

if Az < 0, stop, end

Rik =/ Ak
”T = RkaAk,k-i-l:n

Rijestn = ul

Ak+1:n,k+1:n = Ak+l:n,k+l:n —uu”
end

The resulting R is upper triangular and satisfies 4 = RT R.

4 -2 2
Find the Cholesky factorization of | —2 2 —4
2 -4 11
The top row of R is R = /a1 =2, followed by Ry 2.3 =[-2,2]/Ry1 =[-1,1]:
20 -1 1

,,,,,,,,,,,,,,,,,

Subtracting the outer product uu’ = |: _i :| [=1 1] from the lower principal 2 x 2

submatrix A7.3 2.3 of 4 leaves

=411 -1 =3 10

Now we repeat the same steps on the 2 x 2 submatrix to find Ry =1 and Ry3 =
-3/1=-3:

,,,,,,,,,,,,,,,,,,,,

The lower 1 x 1 principal submatrix of 4 is 10 — (=3)(—=3) =1, so R33 = V1. The
Cholesky factor of 4 is

2 -1 1
R=|0 1 -3 |.
0 0 1 <

Solving Ax = b for symmetric positive-definite A follows the same idea as the LU
factorization. Now that 4 = R” R is a product of two triangular matrices, we need to solve
the lower triangular system R” ¢ = b and the upper triangular system Rx = c to determine
the solution x.

2.6.3 Conjugate Gradient Method

The introduction of the Conjugate Gradient Method (Hestenes and Steifel, 1952) ushered
in a new era for iterative methods to solve sparse matrix problems. Although the method
was slow to catch on, once effective preconditioners were developed, huge problems that
could not be attacked any other way became feasible. The achievement led shortly to much
further progress and a new generation of iterative solvers.

122 | CHAPTER 2 Systems of Equations

SPOTLIGHT ON

DEFINITION 2.15

Orthogonality Our first real application of orthogonality in this book uses it in a
roundabout way, to solve a problem that has no obvious link to orthogonality. The Conju-
gate Gradient Method tracks down the solution of a positive-definite n x n linear system
by successively locating and eliminating the n orthogonal components of the error, one by
one. The complexity of the algorithm is minimized by using the directions established by
pairwise orthogonal residual vectors. We will develop this point of view further in Chapter 4,

culminating in the GMRES method, a nonsymmetric counterpart to conjugate gradients.

The ideas behind conjugate gradients rely on the generalization of the usual idea
of inner product. The Euclidean inner product (v, w) = v’ w is symmetric and linear
in the inputs v and w, since (v, w) = (w,v) and (v + Bw,u) = a(v,u) + B(w,u) for
scalars & and S. The Euclidean inner product is also positive-definite, in that (v, v) > 0 if

v # 0.

Let A4 be a symmetric positive-definite » x n matrix. For two n-vectors v and w, define the
A-inner product

(v, w) 4 =v! Aw.

The vectors v and w are 4-conjugate if (v, w)4 = 0. O

Note that the new inner product inherits the properties of symmetry, linearity, and
positive-definiteness from the matrix 4. Because 4 is symmetric, so is the 4-inner product:
v, w) g = vl Aw = T Aw)T = w? Av = (w, v) 4. The A-inner product is also linear, and
positive-definiteness follows from the fact that if A is positive-definite, then

(v,v)4 = vl Av >0

if v #0.
Strictly speaking, the Conjugate Gradient Method is a direct method, and arrives at the
solution x of the symmetric positive-definite system Ax = b with the following finite loop:

Conjugate Gradient Method

Xo = initial guess

do=ro=>b— Axg

fork=0,1,2,...,n — 1
if r, = 0, stop, end

_ l’[l’k

T dl Ady

Xp+1 = Xk + apdy

i1 = e — o Ady

875

T
— The1 k1
b=
di+1 = i1 + Brdk

end

An informal description of the iteration is next, to be followed by proof of the necessary
facts in Theorem 2.16. The conjugate gradient iteration updates three different vectors on
each step. The vector xj is the approximate solution at step k. The vector ry represents the

» EXAMPLE 2.29

2.6 Methods for symmetric positive-definite matrices | 123

residual of the approximate solution xj. This is clear for 7y by definition, and during the
iteration, notice that

Axpy1 + w1 = A(xk + axdy) + 1 — o Ady
= Axp + ¢,

and so by induction ry = b — Axy for all k. Finally, the vector dj represents the new search
direction used to update the approximation xj to the improved version xj1.

The method succeeds because each residual is arranged to be orthogonal to all previous
residuals. If this can be done, the method runs out of orthogonal directions in which to
look, and must reach a zero residual and a correct solution in at most n steps. The key
to accomplishing the orthogonality among residuals turns out to be choosing the search
directions dj pairwise conjugate. The concept of conjugacy generalizes orthogonality and
gives its name to the algorithm.

Now we explain the choices of «j and Si. The directions dj are chosen from the
vector space span of the previous residuals, as seen inductively from the last line of the
pseudocode. In order to ensure that the next residual is orthogonal to all past residuals, o
in chosen precisely so that the new residual 744 is orthogonal to the direction dj:

Xj1 = Xk + ogdy
b — Axjy1 =b — Axp — ap Ady
Tyl =g — o Ady
0=dl riy1 =dl ri — axd] Ady
dkTrk
~al Ady

o

This is not exactly how o is written in the algorithm, but note that since dj—1 is
orthogonal to 7, we have

dr — 1k = Br—1dk—1
rdek —rkTrk=O,

which justifies the rewriting rkT dy = rkT rx. Secondly, the coefficient fy is chosen to ensure
the pairwise A-conjugacy of the dy:

diy1 = riy1 + Brdk
0=d! Adgy1 = dl Ari1 + Brdl Ady
B dkT Arip
k=——7
d kT Ad
The expression for B can be rewritten in the simpler form seen in the algorithm, as shown
in (2.47) below.

Theorem 2.16 below verifies that all 7 produced by the conjugate gradient iteration are
orthogonal to one another. Since they are n-dimensional vectors, at most » of the 7 can be
pairwise orthogonal, so either 7, or a previous 7, must be zero, solving Ax = b. Therefore
after at most n steps, conjugate gradient arrives at a solution. In theory, the method is a
direct, not an iterative, method.

Before turning to the theorem that guarantees the success of the Conjugate Gradient
Method, it is instructive to carry out an example in exact arithmetic.

Solve |: ; g i| |: Z i| = |: g i| using the Conjugate Gradient Method.

124 | CHAPTER 2 Systems of Equations

Following the above algorithm we have

616
B 3 3 3 45 5
0 61 T2 2 6 T 6184327 21
HiEH Y
To 5767 [10/7
M=o | Tl 3 [T 57
[e6 57187 1/7
=[5)ala el o]
_r{r1_144.5/49_16
'Bo_roTro_ 36 +9 49
B 1/7 6 180/49
d1_1z[_2/7] 9[3} [—120/49]
12/7 12/7
24/7 ~24/7 7

180/49 180/49 10
—120/49 —120/49
[1077 180/49 4
2= 57 —120/49 -1

N IV 2 2 180/49 7 [0
2= —2/7 | " 10| 2 5 || —120/49 | 7| 0

Since r, = b — Axp = 0, the solution is xo = [4, —1]. <

THEOREM 2.16 Let 4 be a symmetric positive-definite » x » matrix and let b # 0 be a vector. In the
Conjugate Gradient Method, assume that r; 7 0 for k < n (if rx = 0 the equation is solved).
Then foreach 1 <k <n,
(a) The following three subspaces of R” are equal:

(X1, xk) = (ro, ..., 1k—1) = (do, ..., dr—1).

(b) the residuals 7y are pairwise orthogonal: rkT r; =0for j <k,
(c) the directions dj, are pairwise 4-conjugate: dkT Ad; =0for j < k. |

Proof. (a) For k = 1, note that (x{) = (dp) = (rp), since xo = 0. By definition x; =
Xi—1 + oj—1dk—1. This implies by induction that (xy,...,x;) = (do, ..., dr—1). A similar
argument using dy = ry + Br—1dx—1 shows that (rg, ..., rx—1) is equal to (dp, ..., dk—1).

For (b) and (c), proceed by induction. When k& = 0 there is nothing to prove. Assume
(b) and (c) hold for k, and we will prove (b) and (c) for £ 4+ 1. Multiply the definition of
Fi+1 by 7] on the left:

T T rk kT
PiTkal =TTk — dTAd JAdk (2.46)

If j <k —1, then r].Trk = 0 by the induction hypothesis (b). Since r; can be expressed
as a combination of dy,...,d;, the term roAdk = 0 from the induction hypothesis (c),

2.6 Methods for symmetric positive-definite matrices | 125

and (b) holds. On the other hand, if j = k, then rkT rr+1 = 0 again follows from (2.46)
because d Ady = r] Adi + Pr—1d]_| Ady = r] Ady, using the induction hypothesis (c).
This proves (b).

Now that 7/ 141 = 0, (2.46) with j = k + 1 says

T T
D1kl _rk+1Adk 2.47)
rkTrk dgAdk ’ ’
This together with multiplying the definition of dj on the left by d]T A yields
T
T _ T e Ad p
d] Adk+1 = d/ Al’k+1 - Wd] Adk (248)

If j =k, then dkTAdkH =0 from (2.48), using the symmetry of 4. If j <k — 1, then
Ad; = (rj — rj11)/a; (from the definition of 74 1) is orthogonal to 741, showing the first
term on the right-hand side of (2.48) is zero, and the second term is zero by the induction
hypothesis, which completes the argument for (c). d

In Example 2.29, notice that 7| is orthogonal to rg, as guaranteed by Theorem 2.16.
This fact is the key to success for the Conjugate Gradient Method: Each new residual 7; is
orthogonal to all previous r;’s. If one of the r; turns out to be zero, then Ax; = b and x; is
the solution. If not, after n steps through the loop, r;, is orthogonal to a space spanned by
the n pairwise orthogonal vectors ry, ..., r,—1, which must be all of R". So r, must be the
zero vector, and Ax;, = b.

The Conjugate Gradient Method is in some ways simpler than Gaussian elimination.
For example, writing the code appears to be more foolproof—there are no row operations to
worry about, and there is no triple loop as in Gaussian elimination. Both are direct methods,
and they both arrive at the theoretically correct solution in a finite number of steps. So two
questions remain: Why shouldn’t conjugate gradient be preferred to Gaussian elimination,
and why is Conjugate Gradient often treated as an iterative method?

The answer to both questions begins with an operation count. Moving through the loop
requires one matrix-vector product 4d,_ and several additional dot products. The matrix-
vector product alone requires n> multiplications for each step (along with about the same
number of additions), for a total of #> multiplications after n steps. Compared to the count
of n3 /3 for Gaussian elimination, this is three times too expensive.

The picture changes if A4 is sparse. Assume that 7 is too large for the n> /3 operations
of Gaussian elimination to be feasible. Although Gaussian elimination must be run to
completion to give a solution x, Conjugate Gradient gives an approximation x; on each step.

The backward error, the Euclidean length of the residual, decreases on each step, and
so at least by that measure, Ax; is getting nearer to b on each step. Therefore by monitoring
the 7;, a good enough solution x; may be found to avoid completing all n steps. In this
context, Conjugate Gradient becomes indistinguishable from an iterative method.

The method fell out of favor shortly after its discovery because of its susceptibility
to accumulation of round-off errors when A is an ill-conditioned matrix. In fact, its per-
formance on ill-conditioned matrices is inferior to Gaussian elimination with partial piv-
oting. In modern days, this obstruction is relieved by preconditioning, which essentially
changes the problem to a better-conditioned matrix system, after which Conjugate Gradient
is applied. We will investigate the preconditioned Conjugate Gradient Method in the next
section.

The title of the method comes from what the Conjugate Gradient Method is really doing:
sliding down the slopes of a quadratic paraboloid in #» dimensions. The “gradient’ part of

126 | CHAPTER 2 Systems of Equations

» EXAMPLE 2.30

the title means it is finding the direction of fastest decline using calculus, and “conjugate”
means not quite that its individual steps are orthogonal to one another, but that at least the
residuals 7; are. The geometric details of the method and its motivation are interesting. The
original article Hestenes and Steifel [1952] gives a complete description.

Apply the Conjugate Gradient Method to system (2.45) with » = 100, 000.

After 20 steps of the Conjugate Gradient Method, the difference between the computed
solution x and the true solution (1, ..., 1) is less than 10~? in the vector infinity norm. The
total time of execution was less than one second on a PC. <

2.6.4 Preconditioning

Convergence of iterative methods like the Conjugate Gradient Method can be acceler-
ated by the use of a technique called preconditioning. The convergence rates of iterative
methods often depend, directly or indirectly, on the condition number of the coefficient
matrix 4. The idea of preconditioning is to reduce the effective condition number of the
problem.

The preconditioned form of the n x n linear system Ax = b is

MY Ax = M~ b,

where M is an invertible n x n matrix called the preconditioner. All we have done is to
left-multiply the equation by a matrix. An effective preconditioner reduces the condition
number of the problem by attempting to invert 4. Conceptually, it tries to do two things at
once: the matrix M should be (1) as close to 4 as possible and (2) simple to invert. These
two goals usually stand in opposition to one another.

The matrix closest to 4 is A4 itself. Using M = 4 would bring the condition num-
ber of the problem to I, but presumably A is not trivial to invert or we would not
be using a sophisticated solution method. The easiest matrix to invert is the identity
matrix M = I, but this does not reduce the condition number. The perfect preconditioner
would be a matrix in the middle of the two extremes that combines the best properties
of both.

A particularly simple choice is the Jacobi preconditioner M = D, where D is the
diagonal of A. The inverse of D is the diagonal matrix of reciprocals of the entries of D.
In a strictly diagonally dominant matrix, for example, the Jacobi preconditioner holds a
close resemblance to 4 while being simple to invert. Note that each diagonal entry of a
symmetric positive-definite matrix is strictly positive by Property 3 of section 2.6.1, so
finding reciprocals is not a problem.

When 4 is a symmetric positive-definite n x » matrix, we will choose a symmetric
positive-definite matrix M for use as a preconditioner. Recall the M-inner product
(v,w)yr = v Mw as defined in Section 2.6.3. The Preconditioned Conjugate Gradi-
ent Method is now easy to describe: Replace Ax = b with the preconditioned equation
M~'Ax = M~'b, and replace the Euclidean inner product with (v, w) . The reasoning
used for the original conjugate gradient method still applies because the matrix M~!4
remains symmetric positive-definite in the new inner product.

For example,

M Av, w)y = vl AM " Mw =T 4w = v MM~ 4w = (v, M~ Aw) .

To convert the algorithm from Section 2.6.3 to the preconditioned version, let
ze = M'b — M~V Ax;, = M~ be the residual of the preconditioned system. Then

2.6 Methods for symmetric positive-definite matrices | 127

@ zm
 (de, M~V Ady)
X1 = X + ady

o

Zhkt1 = Zk — OlelAdk
(Zkt1, Zk+ 1) M
Br=—"—"
(Zk» ZK) m
di+1 = zkt1 + Brdk-

Multiplications by M can be reduced by noting that
(2 200 = 2z Mzp = z{ 7
(di, M~ Ady)y = d}f Ady
(Zk+1> Zk+ 1M = Z;{+1Mzk+l = Z;f+1rk+1-

With these simplifications, the pseudocode for the preconditioned version goes as fol-
lows.

Preconditioned Conjugate Gradient Method

Xo = initial guess

ro = b — AX()

doy=z0=M"rg

fork=0,1,2,...,n — 1
if rx = 0, stop, end
oy = rszk/dkTAdk
Xk+1 = Xk + apdy
Tkl = 1y — o Ady
Zkpr = Mgy
Be=rl zee1/r] 2
di+1 = zg+1 + Brdr

end

The approximation to the solution of Ax = b after k steps is x;. Note that no explicit
multiplications by M~ should be carried out. They should be replaced with appropriate
back substitutions due to the relative simplicity of M.

The Jacobi preconditioner is the simplest of an extensive and growing library of possible
choices. We will describe one further family of examples, and direct the reader to the
literature for more sophisticated alternatives.

The symmetric successive over-relaxation (SSOR) preconditioner is defined by

M= (D + oL)D™ (D + oU)

where 4 = L + D + U is divided into its lower triangular part, diagonal, and upper trian-
gular part. As in the SOR method, w is a constant between 0 and 2. The special case w = 1
is called the Gauss—Seidel preconditioner.

A preconditioner is of little use if it is difficult to invert. Notice that the SSOR pre-
conditioner is defined as a product M = (I + wL D~ ") (D + wU) of a lower triangular
and an upper triangular matrix, so that the equation z = M ~'v can be solved by two back
substitutions:

(I+wLD He=v
(D+wlU)z=c

128 | CHAPTER 2 Systems of Equations

» EXAMPLE 2.31

2.6 Exercises

For a sparse matrix, the two back substitutions can be done in time proportional to the
number of nonzero entries. In other words, multiplication by M~! is not significantly
higher in complexity than multiplication by M.

Let A denote the matrix with diagonal entries 4;; = Vifori=1,...,n and Aii+10=
Ajyi10; =cosi for i =1,...,n — 10, with all other entries zero. Set x to be the vector
of n ones, and define b = Ax. For n = 500, solve Ax = b with the Conjugate Gradient
Method in three ways: using no preconditioner, using the Jacobi preconditioner, and using
the Gauss—Seidel preconditioner.
The matrix can be defined in MATLAB by
A=diag(sgrt(l:n))+ diag(cos(l:(n-10)),10)
+ diag(cos(l:(n-10)),-10).

Figure 2.4 shows the three different results. Even with this simply defined matrix, the
Conjugate Gradient Method is fairly slow to converge without preconditioning. The Jacobi
preconditioner, which is quite easy to apply, makes a significant improvement, while the
Gauss—Seidel preconditioner requires only about 10 steps to reach machine accuracy. <

100 T : .

g ¢ N
3] |

10710 ¢ .l b

¢ | |
* "
| |
1075 | ’W:wmwwwy
1 1 1
0 10 20 30 40
Step Number

Figure 2.4 Efficiency of Preconditioned Conjugate Gradient Method for the solu-
tion of Example 2.31. Error is plotted by step number. Circles: no preconditioner.
Squares: Jacobi preconditioner. Diamonds: Gauss-Seidel preconditioner.

Show that the following matrices are symmetric positive-definite by expressing x” Ax as a
sum of squares.

1 0 0
(a)[(l) 2}@)[; 130}«:) 020
0 0 3

Show that the following symmetric matrices are not positive-definite by finding a vector x # 0
such that x7 Ax < 0.

1 0 0
1 0 1 2 1 -1
(a)[o _3}@)[2 2}(@[_1 0}(01) 0 -2 0

10.

11.

12.

13.

14.

15.

2.6 Methods for symmetric positive-definite matrices | 129

Use the Cholesky factorization procedure to express the matrices in Exercise 1 in the form

A=RTR.
Show that the Cholesky factorization procedure fails for the matrices in Exercise 2.

Find the Cholesky factorization 4 = RT R of each matrix.

12 4 -2 %55)
(a){z 8i|(b)|:—2 5/4}(6)[5 26](d)|:—2 5}

Find the Cholesky factorization A = R R of each matrix.

4 =2 0 1 2 0 1 11 1 -1
()| -2 2 =3 || 25 2 (@1 2 2 |@]| -1 2
0 -3 10 0 2 5 1 2 3 -1 1

Solve the system of equations by finding the Cholesky factorization of 4 followed by two back

substitutions.

SRR EEE BNk

Solve the system of equations by finding the Cholesky factorization of 4 followed by two back

substitutions.
4 0 -2 X1 4 4 -2 0 X1
(a) 0 1 1 X2 | =1 2 b)| -2 2 -1 X2 | =
-2 1 3 X3 0 0 -1 5 X3

1 2
Prove that if d > 4, the matrix 4 = |:) d] is positive-definite.

Find all numbers d such that 4 = ; _5 :| is positive-definite.
1 -1 0
Find all numbers d suchthat 4 = | —1 2 1 | is positive-definite.
0 1 d

|

Prove that a principal submatrix of a symmetric positive-definite matrix is symmetric

positive-definite. (Hint: Consider an appropriate X and use Property 2.)

Solve the problems by carrying out the Conjugate Gradient Method by hand.

SHH R BCEH RN

Solve the problems by carrying out the Conjugate Gradient Method by hand.

LRI HE W BEE

Carry out the conjugate gradient iteration in the general scalar case Ax = b where 4Aisal x 1

matrix. Find a1, x1, and confirm that »; = 0 and Ax; = b.

130 | CHAPTER 2 Systems of Equations

2.6 Computer Problems

1.

10.

Write a MATLAB version of the Conjugate Gradient Method and use it to solve the systems

BN BEHEE BN

Use a MATLAB version of conjugate gradient to solve the following problems:

1 -1 0 u 0 1 -1 0 3
(| —1 2 1 v |=1] 2 |b)] -1 2 1 v =] -3
0 1 2 3 0 1 5 4

Solve the system Hx = b by the Conjugate Gradient Method, where H is the n x n Hilbert
matrix and b is the vector of all ones, for (a) n =4 (b) n = 8.

Solve the sparse problem of (2.45) by the Conjugate Gradient Method for (a) n = 6 (b) n = 12.

Use the Conjugate Gradient Method to solve (2.45) for n = 100, 1000, and 10, 000. Report the
size of the final residual, and the number of steps required.

Let 4 be the n x n matrix with » = 1000 and entries

A, D)) =i, AG, i+ 1) =AG + 1,i)=1/2,A@,i +2) = AG + 2,i) = 1/2 for all i that fit
within the matrix. (a) Print the nonzero structure spy (2) . (b) Let x, be the vector of n ones.
Set b = Ax,, and apply the Conjugate Gradient Method, without preconditioner, with the
Jacobi preconditioner, and with the Gauss—Seidel preconditioner. Compare errors of the three
runs in a plot versus step number.

Let n = 1000. Start with the n x n matrix 4 from Computer Problem 6, and add the nonzero
entries 4(i,2i) = A(2i,i) =1/2 for 1 <i <n/2. Carry out steps (a) and (b) as in that
problem.

Let n = 500, and let 4 be the n x »n matrix with entries

A, 1) =2,40,i +2)=AG +2,i)=1/2,A@,i +4) = AG + 4,i) = 1/2 for all i, and
A(500,i) = A(i,500) = —0.1 for 1 <i <495. Carry out steps (a) and (b) as in Computer
Problem 6.

Let A4 be the matrix from Computer Problem 8, but with the diagonal elements replaced by
A, i) = i. Carry out parts (a) and (b) as in that problem.

Let C be the 195 x 195 matrix block with C(i,i) =2,C(i,i +3)=C(+ 3,i) = 0.1,
Ci,i+39=CG+39,i)=1/2,C(i,i +42)=C({ +42,i) = 1/2 for all i. Define A4 to
be the n x n matrix with n = 780 formed by four diagonally arranged blocks C, and with
blocks %C on the super- and subdiagonal. Carry out steps (a) and (b) as in Computer
Problem 6 to solve Ax = b.

2.7 NONLINEAR SYSTEMS OF EQUATIONS

Chapter 1 contains methods for solving one equation in one unknown, usually nonlinear. In
this Chapter, we have studied solution methods for systems of equations, but required the
equations to be linear. The combination of nonlinear and “more than one equation” raises
the degree of difficulty considerably. This section describes Newton’s Method and variants
for the solution of systems of nonlinear equations.

2.7 Nonlinear Systems of Equations | 131

2.7.1 Multivariate Newton’s Method

The one-variable Newton’s Method

S (xe)
S (xx)

provides the main outline of the multivariate Newton’s Method. Both are derived from the
linear approximation afforded by the Taylor expansion. For example, let

Xft1 = Xf —

fiu,v,w)=0
Sr(u,v,w) =0 (2.49)
fu,v,w)=0

be three nonlinear equations in three unknowns u, v, w. Define the vector-valued function
F(u,v,w) = (f1, f>, f3),and denote the problem (2.49) by F(x) = 0, where x = (u, v, w).

The analogue of the derivative f” in the one-variable case is the Jacobian matrix
defined by

VY
ou ov ow
prw=| 2b 1B 1h
ou ov ow
0fs 9f3 9f3
ou v ow

The Taylor expansion for vector-valued functions around xg is
F(x) = F(x0) + DF(xo) - (x — x0) + O(x — x0)°.

For example, the linear expansion of F'(u, v) = ("1, sinu) around x¢ = (0, 0) is
1 A u 2
F(x)—[o}ﬂ—[coso 0}[v}+0(x)

_ 1 u—+v 2

[o]+ T]+ o
Newton’s Method is based on a linear approximation, ignoring the O (x?) terms. As in the
one-dimensional case, let x = r be the root, and let x(be the current guess. Then

0= F(r) ~ F(xo) + DF(xo) - (r — xo),
or
—DF(x0)"'F(xo) = r — x. (2.50)
Therefore, a better approximation for the root is derived by solving (2.50) for r.

Multivariate Newton’s Method

Xxo = initial vector
Xkl = xk — (DF(xp) ' F(xp) fork=0,1,2,....

David Tran

132 | CHAPTER 2 Systems of Equations

Since computing inverses is computationally burdensome, we use a trick to avoid it. On
each step, instead of following the preceding definition literally, set x4 = x; — s, where s
is the solution of D F(xz)s = F(x;). Now, only Gaussian elimination (n3 /3 multiplications)
is needed to carry out a step, instead of computing an inverse (about three times as many).

DF(xg)s = —F(xk)

2.51
{xk+1=Xk+S- 2.51)

> EXAMPLE 2.32 Use Newton’s Method with starting guess (1, 2) to find a solution of the system

v—ud=0
W +02—1=0.

Figure 2.5 shows the sets on which f(u,v) = v — u” and f>(u, v) = u> + v> — 1 are
zero and their two intersection points, which are the solutions to the system of equations.
The Jacobian matrix is

—3u? 1
DF(u,v)=|: 2;‘ 2v].

Using starting point xg = (1,2), on the first step we must solve the matrix

equation (2.51):
-3 1 st 1
2 4 s || 4|

The solutionis s = (0, —1), so the first iteration produces x; = xo + s = (1, 1). The second
step requires solving

2F xpe@

Figure 2.5 Newton’s Method for Example 2.32. The two roots are the dots on the
circle. Newton’s Method produces the dots that are converging to the solution at
approximately (0.8260, 0.5636).

The solution is s = (—1/8,—-3/8) and xp = x; + s = (7/8,5/8). Both iterates are
shown in Figure 2.5. Further steps yield the following table:

David Tran

» EXAMPLE 2.33

2.7 Nonlinear Systems of Equations | 133

step u v
0 1.00000000000000 | 2.00000000000000
1 1.00000000000000 | 1.00000000000000
2 0.87500000000000 | 0.62500000000000
3 0.82903634826712 | 0.56434911242604
4 | 0.82604010817065 | 0.56361977350284
5 | 0.82603135773241 | 0.56362416213163
6 | 0.82603135765419 | 0.56362416216126
7 | 0.82603135765419 | 0.56362416216126

The familiar doubling of correct decimal places characteristic of quadratic convergence is
evident in the output sequence. The symmetry of the equations shows that if (u,v) is a
solution, then so is (—u, —v), as is visible in Figure 2.5. The second solution can also be
found by applying Newton’s Method with a nearby starting guess. <

Use Newton’s Method to find the solutions of the system

ﬁ(u7v)=6u3+uv—3v3—4=0
frlu,v) = u* — 18uv? + 16v° + 1 =0.

Notice that (u,v) = (1, 1) is one solution. It turns out that there are two others. The
Jacobian matrix is
u — 92 i|

18u2 + v

2u — 1812

DF@.v) = [—36uv + 4802

Which solution is found by Newton’s Method depends on the starting guess, just as in the
one-dimensional case. Using starting point (i, vo) = (2, 2), iterating the preceding formula
yields the following table:

step

u

v

0

~N NN BN =

2.00000000000000
1.37258064516129
1.07838681200443
1.00534968896520
1.00003367866506
1.00000000111957
1.00000000000000
1.00000000000000

2.00000000000000
1.34032258064516
1.05380123264984
1.00269261871539
1.00002243772010
1.00000000057894
1.00000000000000
1.00000000000000

Other initial vectors

Newton’s Method is a good choice if the Jacobian can be calculated. If not, the best

lead to the other two roots,
(0.865939,0.462168) and (0.886809, —0.294007). See Computer Problem 2.

alternative is Broyden’s Method, the subject of the next section.

2.7.2 Broyden’s Method

which are approximately

Newton’s Method for solving one equation in one unknown requires knowledge of the
derivative. The development of this method in Chapter 1 was followed by the discussion
of the Secant Method, for use when the derivative is not available or is too expensive to
evaluate.

Now that we have a version of Newton’s Method for systems of nonlinear equations
F(x) =0, we are faced with the same question: What if the Jacobian matrix D F is not

134 | CHAPTER 2 Systems of Equations

available? Although there is no simple extension of Newton’s Method to a Secant Method
for systems, Broyden [1965] suggested a method that is generally considered the next
best thing.

Suppose A4; is the best approximation available at step i to the Jacobian matrix, and
that it has been used to create

Xip1 =x;i — A7 F (). (2.52)

To update A4; to A;1 for the next step, we would like to respect the derivative aspect of the
Jacobian DF, and satisfy

Ait18i+1 = Aiyr, (2.53)

where 8; 11 = xj+1 — x; and A; 11 = F(xj+1) — F(x;). On the other hand, for the orthog-
onal complement of §;,.1, we have no new information. Therefore, we ask that

Aipyw = Ajw (2.54)
for every w satisfying 8l.T 1w = 0. One checks that a matrix that satisfies both (2.53) and
(2.54) s

(Ajy1 — A;8)8T
Aigr = 4y + — L (2.55)
8ip18i+1

Broyden’s Method uses the Newton’s Method step (2.52) to advance the current guess,
while updating the approximate Jacobian by (2.55). Summarizing, the algorithm starts with
an initial guess xp and an initial approximate Jacobian A, which can be chosen to be the
identity matrix if there is no better choice.

Broyden’s Method |

X = initial vector
Ap = initial matrix
fori =0,1,2,...
Xip1 =X — A7 F(x;)
(Ajp1 — Ai8iy1)8T,
Ai+1 — 4, + i+ - 19i+1)9% 41
8i118i+1

end
where §; 11 = x;p1 — x; and Ay = F(xi41) — F(xp).

Note that the Newton-type step is carried out by solving 4;8;+1 = F(x;), just as for
Newton’s Method. Also like Newton’s Method, Broyden’s Method is not guaranteed to
converge to a solution.

A second approach to Broyden’s Method avoids the relatively expensive matrix solver
step A;8;+1 = F(x;). Since we are at best only approximating the derivative D F during
the iteration, we may as well be approximating the inverse of D F' instead, which is what is
needed in the Newton step.

We redo the derivation of Broyden from the point of view of B; = A;l . We would like
to have

Si+1 = Bit14Ait1, (2.56)

where §j41 =x;41 —x; and Aj4; = F(x;4+1) — F(x;), and for every w satisfying

(Sﬁrlw = 0, still satisty 4;4 1w = 4;w, or

B,'_HAI'U) = w. (257)

2.7 Nonlinear Systems of Equations | 135

A matrix that satisfies both (2.56) and (2.57) is

T
(Sis1 —TB,'AiJrl)SH-lBl‘. (2.58)
8[_;’_1 Bi Ai+1

Biy1 =B +

The new version of the iteration, which needs no matrix solve, is
Xit1 =X — Bi F(x;). (2.59)
The resulting algorithm is called Broyden’s Method II.
Broyden’s Method Il

X = initial vector
By = initial matrix
fori =0,1,2,...
Xit1=x; — Bi F(x;)
(Gis1 — Bidiy1)8], | Bi

i+1
5T

Biy1=B; +
iv1 Bidit

end
where (Si =X; — Xj—1 and Al‘ = F(xi) — F(xi_1).

To begin, an initial vector xo and an initial guess for By are needed. If it is impossible
to compute derivatives, the choice By = I can be used.

A perceived disadvantage of Broyden II is that estimates for the Jacobian, needed for
some applications, are not easily available. The matrix B; is an estimate for the matrix
inverse of the Jacobian. Broyden I, on the other hand, keeps track of 4;, which estimates
the Jacobian. For this reason, in some circles Broyden I and II are referred to as “Good
Broyden” and “Bad Broyden,” respectively.

Both versions of Broyden’s Method converge superlinearly (to simple roots), slightly
slower than the quadratic convergence of Newton’s Method. If a formula for the Jacobian
is available, it usually speeds convergence to use the inverse of D F'(xp) for the initial
matrix By.

MaATLAB code for Broyden’s Method 11 is as follows:

o\°

Program 2.3 Broyden’s Method II
Input: initial vector x0, max steps k
Output: solution x
Example usage: broyden2 (f, [1;1],10)
function x=broyden2 (f,x0,k)
[n,m] =size (x0) ;
b=eye(n,n) ; % initial b
for i=1:k
x=x0-b*f (x0) ;
del=x-x0;delta=f (x)-f (x0) ;
b=b+ (del-b*delta) *del’ *b/ (del’ *b*delta) ;
x0=X%X;
end

o o

o\©

For example, a solution of the system in Example 2.32 is found by defining a function
>> f=@(x) [x(2)-x(1)73;x(1) " 2+x(2)"2-1];
and calling Broyden’s Method II as

>> x=broyden2 (£, [1;1],10)

136 | CHAPTER 2 Systems of Equations

2.7 Exercises

Broyden’s Method, in either implementation, is very useful in cases where the Jacobian
is unavailable. A typical instance of this situation is illustrated in the model of pipe buckling
in Reality Check 7.

7.

8.

Find the Jacobian of the functions (a) F(u,v) = (13, uv3)
(b) F(u,v) = (sinuv,e”’)) Fu,v) = w2 +v2 -1, u—D2+2 -1
d) F(u,v,w) = w? + v — w?, sinuvw, uvw?).

Use the Taylor expansion to find the linear approximation L(x) to F(x) near xq.
(@) F(u,v) = (1 + "2, sin(u + v)), xo = (0,0)
(b) F(u,v) =+ ¢e"7?,2u +v),x0 = (1,1)

Sketch the two curves in the uv-plane, and find all solutions exactly by simple algebra.
@ ur +v2 =1) u? + 4v? =4 © u?> — 4’ =4
(u—1)2+v2:1 i +0v2 =4 (u—1)2+v2:4
Apply two steps of Newton’s Method to the systems in Exercise 3, with starting point (1, 1).

Apply two steps of Broyden I to the systems in Exercise 3, with starting point (1, 1), using
Ay =1.

Apply two steps of Broyden II to the systems in Exercise 3, with starting point (1, 1), using
By=1.

Prove that (2.55) satisfies (2.53) and (2.54).
Prove that (2.58) satisfies (2.56) and (2.57).

2.7 Computer Problems

1.

Implement Newton’s Method with appropriate starting points to find all solutions. Check with
Exercise 3 to make sure your answers are correct.

w? +02=1 u? + 402 =4 u? — 4 =4
(a) 2 2 (b) 2 2 (©) 2 >
u—-—0D"+0v"=1 4u” +v° =4 u—1D"4+v"=4
Use Newton’s Method to find the three solutions of Example 2.31.

Use Newton’s Method to find the two solutions of the system > — v3 4+ 1 = 0 and
2 2
u”+v- =1

(a) Apply Newton’s Method to find both solutions of the system of three equations.

2u —du+ v+ 3w+ 6w +2=0
u2+v2—2v+2w2—5=0
32 — 12u+ 2 + 3w +8=0

Use Multivariate Newton’s Method to find the two points in common of the three given
spheres in three-dimensional space. (a) Each sphere has radius 1, with centers
(1,1,0),(1,0,1),and (0,1, 1). (Ans. (1,1, 1) and (1/3,1/3,1/3)) (b) Each sphere has radius
5, with centers (1, —2,0), (—2,2,—1), and (4, -2, 3).

11.

12.

Software and Further Reading | 137

Although a generic intersection of three spheres in three-dimensional space is two points, it can
be a single point. Apply Multivariate Newton’s Method to find the single point of intersection
of the spheres with center (1,0, 1) and radius /8, center (0, 2, 2) and radius +/2, and center
(0,3,3) and radius ~/2. Does the iteration still converge quadratically? Explain.

Apply Broyden I with starting guesses xo = (1, 1) and 49 = I to the systems in Exercise 3.
Report the solutions to as much accuracy as possible and the number of steps required.

Apply Broyden II with starting guesses (1, 1) and By = [to the systems in Exercise 3. Report
the solutions to as much accuracy as possible and the number of steps required.

Apply Broyden I to find the sets of two intersection points in Computer Problem 5.

Apply Broyden I to find the intersection point in Computer Problem 6. What can you observe
about the convergence rate?

Apply Broyden II to find the sets of two intersection points in Computer Problem 5.

Apply Broyden II to find the intersection point in Computer Problem 6. What can you observe
about the convergence rate?

Software and Further Reading

Many excellent texts have appeared on numerical linear algebra, including Stewart [1973]
and the comprehensive reference Golub and Van Loan [1996]. Two excellent books with a
modern approach to numerical linear algebra are Demmel [1997] and Trefethen and Bau
[1997]. Books to consult on iterative methods include Axelsson [1994], Hackbush [1994],
Kelley [1995], Saad [1996], Traub [1964], Varga [2000], Young [1971], and Dennis and
Schnabel [1983].

LAPACK is a comprehensive, public domain software package containing high-quality
routines for matrix algebra computations, including methods for solving 4x = b, matrix
factorizations, and condition number estimation. It is carefully written to be portable to
modern computer architectures, including shared memory vector and parallel processors.
See Anderson et al. [1990].

The portability of LAPACK depends on the fact that its algorithms are written in
such a way as to maximize use of the Basic Linear Algebra Subprograms (BLAS), a set
of primitive matrix/vector computations that can be tuned to optimize performance on
particular machines and architectures. BLAS is divided roughly into three parts: Level 1,
requiring O(n) operations like dot products; Level 2, operations such as matrix/vector
multiplication, that are O(n2); and Level 3, including full matrix/matrix multiplication,
which has complexity O (n3).

The general dense matrix routine in LAPACK for solving 4x = b in double precision,
using the PA = LU factorization, is called DGESYV, and there are other versions for sparse and
banded matrices. See www.netlib.org/lapack for more details. Implementations of
LAPACK routines also form the basis for MATLAB’s matrix algebra computations, and those
of the IMSL and NAG packages.

www.netlib.org/lapack

Interpolation

Polynomial interpolation is an ancient practice, but the
heavy industrial use of interpolation began with cubic
splines in the 20th century. Motivated by practices in
the shipbuilding and aircraft industries, engineers Paul
de Casteljau and Pierre Bézier at rival European car
manufacturers Citroen and Renault, followed by oth-
ers at General Motors in the United States, spurred the
development of what are now called cubic splines and
Bézier splines.

Although developed for aerodynamic studies of
automobiles, splines have been used for many appli-
cations, including computer typesetting. A revolution
in printing was caused by two Xerox engineers who
formed a company named Adobe and released the

PostScript™ language in 1984. It came to the atten-
tion of Steve Jobs at Apple Corporation, who was look-
ing for a way to control a newly invented laser printer.
Bézier splines were a simple way to adapt the same
mathematical curves to fonts with multiple printer res-
olutions. Later, Adobe used many of the fundamen-
tal ideas of PostScript as the basis of a more flexible
format called PDF (Portable Document Format), which
became a ubiquitous document file type by the early
21st century.

Reality
Check Reality Check 3 on page 183 explores

how PDF files use Bézier splines to represent printed
characters in arbitrary fonts.

fficient ways of representing data are fundamental to advancing the understanding of

scientific problems. At its most fundamental, approximating data by a polynomial is
an act of data compression. Suppose that points (x, y) are taken from a given function
y = f(x), or perhaps from an experiment where x denotes temperature and y denotes
reaction rate. A function on the real numbers represents an infinite amount of information.
Finding a polynomial through the set of data means replacing the information with a rule
that can be evaluated in a finite number of steps. Although it is unrealistic to expect the
polynomial to represent the function exactly at new inputs x, it may be close enough to

solve practical problems.

This chapter introduces polynomial interpolation and spline interpolation as convenient
tools for finding functions that pass through given data points.

3.1 Data and Interpolating Functions | 139

3.7 DATA AND INTERPOLATING FUNCTIONS

DEFINITION 3.1

SPOTLIGHT ON

A function is said to interpolate a set of data points if it passes through those points. Suppose
that a set of (x, y) data points has been collected, such as (0, 1), (2,2), and (3, 4). There is
a parabola that passes through the three points, shown in Figure 3.1. This parabola is called
the degree 2 interpolating polynomial passing through the three points.

Figure 3.1 Interpolation by parabola. The points (0,1), (2,2), and (3,4) are interpolated by the
function P(x) = %xz - %x + 1.

The function y = P(x) interpolates the data points (x1, y1), ..., (xu, y») if P(x;) = y; for
eachl <i <n.)

Note that P is required to be a function; that is, each value x corresponds to a single y.
This puts a restriction on the set of data points {(x;, y;)} that can be interpolated—the x;’s
must be all distinct in order for a function to pass through them. There is no such restriction
on the y;’s.

To begin, we will look for an interpolating polynomial. Does such a polynomial always
exist? Assuming that the x-coordinates of the points are distinct, the answer is yes. No
matter how many points are given, there is some polynomial y = P(x) that runs through
all the points. This and several other facts about interpolating polynomials are proved in
this section.

Interpolation is the reverse of evaluation. In polynomial evaluation (such as the nested
multiplication of Chapter 0), we are given a polynomial and asked to evaluate a y-value for
a given x-value—that is, compute points lying on the curve. Polynomial interpolation asks
for the opposite process: Given these points, compute a polynomial that can generate them.

Complexity Why do we use polynomials? Polynomials are very often used for inter-
polation because of their straightforward mathematical properties. There is a simple theory
about when an interpolating polynomial of a given degree exists for a given set of points.
More important, in a real sense, polynomials are the most fundamental of functions for digital
computers. Central processing units usually have fast methods in hardware for adding and
multiplying floating point numbers, which are the only operations needed to evaluate a poly-

nomial. Complicated functions can be approximated by interpolating polynomials in order to

make them computable with these two hardware operations.

140 | CHAPTER 3 Interpolation

» EXAMPLE 3.1

3.1.1 Lagrange interpolation

Assume that » data points (x1, y1),..., (x,, »,) are given, and that we would like to find
an interpolating polynomial. There is an explicit formula, called the Lagrange interpolating
formula, for writing down a polynomial of degree d = n — 1 that interpolates the points.
For example, suppose that we are given three points (x1, y1), (x2, »2), (x3, 13). Then the
polynomial

(x — x2)(x — x3) (x —x)(x — x3) (x —x1)(x — x2)
X1 — x2)(x1 — X3 X2 — x1)(x2 — x3 x3 — x1)(x3 — x2)
(3.1

P;

is the Lagrange interpolating polynomial for these points. First notice why the points
each lie on the polynomial curve. When x1 is substituted for x, the terms evaluate to
y1 + 04 0= y;. The second and third numerators are chosen to disappear when x; is
substituted, and the first denominator is chosen just so to balance the first denominator
so that y; pops out. It is similar when x, and x3 are substituted. When any other number
is substituted for x, we have little control over the result. But then, the job was only to
interpolate at the three points—that is the extent of our concern. Second, notice that the
polynomial (3.1) is of degree 2 in the variable x.

Find an interpolating polynomial for the data points (0, 1), (2, 2), and (3,4) in Figure 3.1.

Substituting into Lagrange’s formula (3.1) yields

(=9 -3) L, e6-06-3) ,&-0x—-2)

Pr(x) =
20 =0 "n0-3 TPecoe-3 T G-0G -2
1 1 1
=-(2=5x+6)+2(—=)?=30)+4(=)x*—2x)
6 2 3
1 1
= EXZ — EX + 1.
Check that % (0) =1, P2(2) =2,and P,(3) =4. <
In general, suppose that we are presented with »n points (x1, y1), ..., (x,, y»). For each k

between 1 and 7, define the degree n — 1 polynomial

(x=x) (0 = =) (X = Xpg1) - (8 — xp)

Li(x) =)
(xp — x1) - (k — Xk—1) 0k — Xgg1) -+ (K — Xp)

The interesting property of Ly is that L (xx) = 1, while Ly (x;) = 0, where x; is any of the
other data points. Then define the degree n — 1 polynomial

Poo1(x) = yiL1(x) + -+ + Yo Ln(x).

This is a straightforward generalization of the polynomial in (3.1) and works the same way.
Substituting x4 for x yields

Po1Ge) = nLiGxeg) + -+ YuLln(xk) =0+ - + 0+ 3 Lp(xg) +0+ - + 0=y,

so it works as designed.
We have constructed a polynomial of degree at most n — 1 that passes through any set
of n points with distinct x;’s. Interestingly, it is the only one.

David Tran

THEOREM 3.2

» EXAMPLE 3.2

DEFINITION 3.3

3.1 Data and Interpolating Functions | 141

Main Theorem of Polynomial Interpolation. Let (x1, y1), ..., (x,,) be n points in the
plane with distinct x;. Then there exists one and only one polynomial P of degree n — 1 or
less that satisfies P(x;) = y; fori =1,...,n. [|

Proof. The existence is proved by the explicit formula for Lagrange interpolation. To
show there is only one, assume for the sake of argument that there are two, say, P(x) and
0O(x), that have degree at most n — 1 and that both interpolate all » points. That is, we are
assuming that P(x1) = Q(x1) = y1, P(x2) = Q(x2) = y2,..., P(xn) = Q(xn) = yn. Now
define the new polynomial H(x) = P(x) — Q(x). Clearly, the degree of H is also at most
n — 1, and note that 0 = H(x;) = H(x») = --- = H(x,); that is, H has n distinct zeros.
According to the Fundamental Theorem of Algebra, a degree d polynomial can have at most
d zeros, unless it is the identically zero polynomial. Therefore, H is the identically zero
polynomial, and P(x) = Q(x). We conclude that there is a unique P(x) of degree <n — 1
interpolating the n points (x;, ;). 0

Find the polynomial of degree 3 or less that interpolates the points (0, 2), (1, 1), (2,0), and
@3,—-1.

The Lagrange form is as follows:

)D& -9 -3) x—-0x -2 —3)
O—1(0—-2)(0-3) (1 =01 —-2)(1-23)
-0« -hHx—-3) x-0x-Dx~-2)
2-02-D2-3) (B-0B-1H3-2)

Px) =

+0

1 1 1
= —§(x3 —6x2 4 11x — 6) + E(x3 —5x% 4+ 6x) — 6(x3 —3x% 4+ 2x)
=—x+ 2.

Theorem 3.2 says that there exists exactly one interpolating polynomial of degree 3 or
less, but it may or may not be exactly degree 3. In Example 3.2, the data points are
collinear, so the interpolating polynomial has degree 1. Theorem 3.2 implies that there
are no interpolating polynomials of degree 2 or 3. It may be already intuitively obvious to
you that no parabola or cubic curve can pass through four collinear points, but here is the
reason. <

3.1.2 Newton'’s divided differences

The Lagrange interpolation method, as described in the previous section, is a constructive
way to write the unique polynomial promised by Theorem 3.2. It is also intuitive; one glance
explains why it works. However, it is seldom used for calculation because alternative meth-
ods result in more manageable and less computationally complex forms.

Newton’s divided differences give a particularly simple way to write the interpolating
polynomial. Given n data points, the result will be a polynomial of degree at mostn — 1,
just as Lagrange form does. Theorem 3.2 says that it can be none other than the same as the
Lagrange interpolating polynomial, written in a disguised form.

The idea of divided differences is fairly simple, but some notation needs to be mastered
first. Assume that the data points come from a function f'(x), so that our goal is to interpolate

(1, S ooy (ns f(n)).

Denote by f[x;...x,] the coefficient of the x"~! term in the (unique) polynomial that
interpolates (x1, f(x1)), ..., (xp, f(x)). O

142 | CHAPTER 3 Interpolation

Example 3.1 shows that f[0 2 3] = 1/2, where we assume f(0) =1, f(2) =2, and
f(3) =4. Of course, by uniqueness, all permutations of 0,2,3 give the same value:
1/2 = f103 2] = f[3 0 2] etc. Using this definition, the following somewhat remarkable
alternative formula for the interpolating polynomial holds, called the Newton’s divided
difference formula

P(x) = flx1] + flx1 x2](x — x1)
+/1x1 x2 x3](x — x1)(x — x2)
+/Tx1 x2 x3 x4](x — x1)(x — x2)(x — x3)
+/1x1 - xpl(x — x1) - (x — xp—1)- (3.2)

Moreover, the coefficients f[x;...x,] from the above definition can be recursively calcu-
lated as follows. List the data points in a table:

xp | f(xp)
x2 | f(x2)
o | £,

Now define the divided differences, which are the real numbers

Slxel = fGex)
Skl — fIxk]

SIxk xp1l =
Xk+1 — Xk
Flxk Xes1 xxia] = Sk Xew2l = fIxk X1l
+1 Xp2] =
Xk+2 — Xk
Skt Xkt2 Xke3] — fIxk Xer1 Xi2]
SIxe Xkp1 Xkg2 Xkg3l = , (3.3)
Xk43 — Xk

and so on. Both important facts, that (1) the unique polynomial interpolating
(x1, f(x1))s ..., (xpn, f(xp)) is given by (3.2) and (2) the coefficients can be calculated as
(3.3), are not immediately obvious, and proofs will be provided in Section 3.2.2. Notice that
the divided difference formula gives the interpolating polynomial as a nested polynomial.
It is automatically ready to be evaluated in an efficient way.

Newton’s divided differences

end
The interpolating polynomial is

P(x) =Y fIxi... x](x = x1)-++(x — x; 1)
i=1

David Tran

» EXAMPLE 3.3

» EXAMPLE 3.4

3.1 Data and Interpolating Functions | 143

The recursive definition of the Newton’s divided differences allows arrangement into
a convenient table. For three points the table has the form

xt | flx1]
Sflx1 x2]

x2 | flx2] Sflx1 x2 x3]
Sflx2 x3]

x3 | flx3]

The coefficients of the polynomial (3.2) can be read from the top edge of the triangle.

Use divided differences to find the interpolating polynomial passing through the points
0,1),(2,2),3,4).

Applying the definitions of divided differences leads to the following table:

0] 1
1
2
1

2|2 !
2

34

This table is computed as follows: After writing down the x and y coordinates in separate
columns, calculate the next columns, left to right, as divided differences, as in (3.3). For
example,

2-1 1

2-0 2
2—%_1
3—-0 2

4-2

3-2°

After completing the divided difference triangle, the coefficients of the polynomial 1, 1/2, 1/2
can be read from the top edge of the table. The interpolating polynomial can be written as

Px)=1+ %(x —-0) + %(x —0)(x —2),
or, in nested form,
1 1
P(x)=1+(x—0)<§+(x—2)-§>.

The base points for the nested form (see Chapter 0) are 7; = 0 and , = 2. Alternatively,
we could do more algebra and write the interpolating polynomial as

PO =1+ ox 4 2x(x —2) = 2x% — 2x + 1
X) = 2x 2xx —2x 2x s

matching the Lagrange interpolation version shown previously. <

Using the divided difference approach, new data points that arrive after computing the
original interpolating polynomial can be easily added.
Add the fourth data point (1, 0) to the list in Example 3.3.

We can keep the calculations that were already done and just add a new bottom
row to the triangle:

David Tran

144 | CHAPTER 3 Interpolation

» EXAMPLE 3.5

01
1
2
1
2 (2 P
2 —32
304 0
2
10

The result is one new term to add to the original polynomial P>(x). Reading from the top
edge of the triangle, we see that the new degree 3 interpolating polynomial is

1 1 1
Ps(x)=1+ E(X -0 + E(x —-0)(x—-2)— E(x —0)(x —2)(x — 3).

Note that P3(x) = P>(x) — %(x — 0)(x — 2)(x — 3), so the previous polynomial can be
reused as part of the new one. <

It is interesting to compare the extra work necessary to add a new point to the Lagrange
formulation versus the divided difference formulation. The Lagrange polynomial must be
restarted from the beginning when a new point is added; none of the previous calculation
can be used. On the other hand, in divided difference form, we keep the earlier work and add
one new term to the polynomial. Therefore, the divided difference approach has a “real-time
updating” property that the Lagrange form lacks.

Use Newton’s divided differences to find the interpolating polynomial passing through
(Oa 2)7 (17])7 (29 O)’ (39 _1)'

The divided difference triangle is

0 2
—1
1 1 0
—1 0
2 0 0
—1
31 -1

Reading off the coefficients, we find that the interpolating polynomial of degree 3 or less is
PXx)=2+(-D(x -0 =2~-x,

agreeing with Example 3.2, but arrived at with much less work. <

3.1.3 How many degree d polynomials pass through n points?

Theorem 3.2, the Main Theorem of Polynomial Interpolation, answers this question if
0<d<n—1.Given n = 3 points (0, 1), (2,2), (3,4), there is one interpolating polyno-
mial of degree 2 or less. Example 3.1 shows that it is degree 2, so there are no degree 0 or
I interpolating polynomials through the three data points.

How many degree 3 polynomials interpolate the same three points? One way to con-
struct such a polynomial is clear from the previous discussion: Add a fourth point. Extending
the Newton’s divided difference triangle gives a new top coefficient. In Example 3.4, the
point (1, 0) was added. The resulting polynomial,

1
P3y(x) = Px) = 5(x = 0)(x = 2)(x —3), G4

» EXAMPLE 3.6

3.1 Data and Interpolating Functions | 145

passes through the three points in question, in addition to the new point (1,0). So there
is at least one degree 3 polynomial passing through our three original points (0, 1),
(2,2),(3,4).

Of course, there are many different ways we could have chosen the fourth point. For
example, if we keep the same x4 = 1 and simply change)4 from 0, we must get a differ-
ent degree 3 interpolating polynomial, since a function can only go through one y-value
at x4. Now we know there are infinitely many polynomials that interpolate the three points
(x1, 1), (x2,), (x3, 13), since for any fixed x4 there are infinitely many ways y4 can be
chosen, each giving a different polynomial. This line of thinking shows that given » data
points (x;, y;) with distinct x;, there are infinitely many degree n polynomials passing
through them.

A second look at (3.4) suggests a more direct way to produce interpolating polynomials
of degree 3 through three points. Instead of adding a fourth point to generate a new degree
3 coefficient, why not just pencil in an arbitrary degree 3 coefficient? Does the result
interpolate the original three points? Yes, because P>(x) does, and the new term evaluates
to zero at x1, x2, and x3. So there is really no need to construct the extra Newton’s divided
differences for this purpose. Any degree 3 polynomial of the form

P3s(x) = P(x) + cx(x — 2)(x — 3)

with ¢ # 0 will pass through (0, 1), (2,2), and (3,4). This technique will also easily con-
struct (infinitely many) polynomials of degree > n for n given data points, as illustrated in
the next example.

How many polynomials of each degree 0 <d <5 pass through the points (—1, —5),
0,-1),(2,1), and (3, 11)?

The Newton’s divided difference triangle is

—1| =5
4
0] —1 -1
1 1
2 1 3
10
3 11

So there are no interpolating polynomials of degree 0, 1, or 2, and the single degree 3 is
Prx)=-5+4x+ 1) —(x+ Dx+ (x + Dx(x — 2).
There are infinitely many degree 4 interpolating polynomials
Py(x) = P3(x) + c1(x + Dx(x —2)(x — 3)
for arbitrary c¢; # 0, and infinitely many degree 5 interpolating polynomials
Ps(x) = P3(x) + e2(x + Dx*(x = 2)(x — 3)

for arbitrary ¢y # 0. <

3.1.4 Code for interpolation

The MATLAB program newtdd . m for computing the coefficients follows:

146 | CHAPTER 3 Interpolation

SPOTLIGHT ON

$Program 3.1 Newton Divided Difference Interpolation Method
$Computes coefficients of interpolating polynomial
$Input: x and y are vectors containing the x and y coordinates
of the n data points
Output: coefficients ¢ of interpolating polynomial in nested form
Use with nest.m to evaluate interpolating polynomial
function c=newtdd(x,y,n)
for j=1:n
v(j,1)=y(J); % Fill in y column of Newton triangle
end
for i=2:n For column i,
for j=1l:n+1-1 fill in column from top to bottom
v(j,i)=(v(j+1,1-1)-v(F,1i-1))/(x(F+1i-1)-x(3F));
end
end
for i=1:n
c(i)=v(1,1);
end

o°

o oe

o o

Read along top of triangle
for output coefficients

o° o

This program can be applied to the data points of Example 3.3 to return the coefficients
1,1/2,1/2 found above. These coefficients can be used in the nested multiplication program
to evaluate the interpolating polynomial at various x-values.

For example, the MATLAB code segment

x0=[0 2 3];

yo=[1 2 4];
c=newtdd (x0,y0,3);
x=0:.01:4;

y=nest (2,c,x,x0) ;
plot (x0,y0, 0’ ,x,Vy)

will result in the plot of the polynomial shown in Figure 3.1.

Compression This is our first encounter with the concept of compression in numer-
ical analysis. At first, interpolation may not seem like compression. After all, we take n points
as input and deliver n coefficients (of the interpolating polynomial) as output. What has been
compressed?

Think of the data points as coming from somewhere, say as representatives chosen from
the multitude of points on a curve y = f(x).The degree n — 1 polynomial, characterized by n
coefficients, is a“compressed version” of f(x),and may in some cases be used as a fairly simple
representative of f(x) for computational purposes.

For example, what happens when the sin key is pushed on a calculator? The calculator
has hardware to add and multiply, but how does it compute the sin of a number? Somehow
the operation must reduce to the evaluation of a polynomial, which requires exactly those
operations. By choosing data points lying on the sine curve, an interpolating polynomial can
be calculated and stored in the calculator as a compressed version of the sine function.

This type of compression is “lossy compression,” meaning that there will be error
involved, since the sine function is not actually a polynomial. How much error is made when a

function f(x) is replaced by an interpolating polynomial is the subject of the next section.

» EXAMPLE 3.7

3.1 Data and Interpolating Functions | 147

N

-2

‘33 | 0 1 2 3

Figure 3.2 Interpolation program 3.2 using mouse input. Screenshot of MATLAB

code clickinterp.m with four input data points.

Now that we have MATLAB code for finding the coefficients of the interpolating poly-
nomial (newtdd.m) and for evaluating the polynomial (nest.m), we can put them
together to build a polynomial interpolation routine. The program clickinterp.muses
MATLAB’s graphics capability to plot the interpolation polynomial as it is being created.
See Figure 3.2. MATLAB’s mouse input command ginput is used to facilitate data entry.

$Program 3.2. Polynomial Interpolation Program
$Click in MATLAB figure window to locate data point.
% Continue, to add more points.

% Press return to terminate program.

function clickinterp

x1=-3;xr=3;yb=-3;yt=3;

plot ([x1 xr]l, [0 0],’k’, [0 01, [yb ytl,’k’);grid on;
xlist=[];ylist=[];

k=0; % initialize counter k
while (0==0)
[xnew, ynew] = ginput (1) ; % get mouse click
if length (xnew) <1
break % 1f return pressed, terminate
end
k=k+1; % k counts clicks

xlist (k) =xnew; ylist (k)=ynew; % add new point to the list
c=newtdd (x1list,ylist,k); % get interpolation coeffs

)

x=x1:.01:XT; % define x coordinates of curve

y=nest (k-1,c,x,xlist); % get y coordinates of curve

plot (xlist,ylist,’o’,x,y, [x1 xr],[0,0],'k’, [0 0], [yb yt],'k");
axis ([x1l xr yb ytl);grid on;

end

3.1.5 Representing functions by approximating polynomials

A major use of polynomial interpolation is to replace evaluation of a complicated function
by evaluation of a polynomial, which involves only elementary computer operations like
addition, subtraction, and multiplication. Think of this as a form of compression: Something
complex is replaced with something simpler and computable, with perhaps some loss in
accuracy that we will have to analyze. We begin with an example from trigonometry.

Interpolate the function f(x) = sinx at 4 equally spaced points on [0, 7t /2].

Let’s compress the sine function on the interval [0, 77 /2]. Take four data points at
equally spaced points and form the divided difference triangle. We list the values to four
correct places:

148 | CHAPTER 3 Interpolation

0 | 0.0000
0.9549
/6 | 0.5000 —0.2443
0.6990 —0.1139
27 /6 | 0.8660 —0.4232
0.2559
37/6 | 1.0000

The degree 3 interpolating polynomial is therefore

P5(x) = 0 + 0.9549x — 0.2443x (x — 7/6) — 0.1139x(x — 7/6)(x — 7/3)
=0+ x(0.9549 + (x — 7/6)(—0.2443 + (x — 7/3)(—=0.1139))). (3.5)

This polynomial is graphed together with the sine function in Figure 3.3. At this level of
resolution, P3(x) and sinx are virtually indistinguishable on the interval [0, 7 /2]. We have
compressed the infinite amount of information held by the sine curve into a few stored
coefficients and the ability to perform the 3 adds and 3 multiplies in (3.5). <

How close are we to designing the s in key on a calculator? Certainly we need to handle
inputs from the entire real line. But due to the symmetries of the sine function, we have done
the hard part. The interval [0, /2] is a so-called fundamental domain for sine, meaning
that an input from any other interval can be referred back to it. Given an input x from
[/2,], say, we can compute sinx as sin(;r — x), since sin is symmetric about x = /2.
Given an input x from [7, 2], sinx = —sin(2wr — x) due to antisymmetry about x = 7.
Finally, because sin repeats its behavior on the interval [0, 27] across the entire real line,
we can calculate for any input by first reducing modulo 27. This leads to a straightforward
design for the sin key:

o°

Program 3.3 Building a sin calculator key, attempt #1
Approximates sin curve with degree 3 polynomial
(Caution: do not use to build bridges,
at least until we have discussed accuracy.)
sInput: x
$Output: approximation for sin (x)
function y=sinl (x)
$First calculate the interpolating polynomial and
% store coefficients
b=pi* (0:3)/6;yb=sin(b) ; % b holds base points
c=newtdd (b, vyb, 4) ;
$For each input x, move x to the fundamental domain and evaluate

o° o° o°

\o

% the interpolating polynomial
s=1; % Correct the sign of sin
x1l=mod (x,2*pi) ;
if x1s>pi
x1 = 2*pi-x1;
s = -1;
end

if x1 > pi/2
x1l = pi-x1;
end
y = s*nest(3,c,x1,b);

Most of the work in Program 3.3 is to place x into the fundamental domain. Then we
evaluate the degree 3 polynomial by nested multiplication. Here is some typical output from
Program 3.3:

3.1 Exercises

3.1 Data and Interpolating Functions | 149

Figure 3.3 Degree 3 interpolation of sinx. The interpolation polynomial (solid curve)
is plotted along with y = sinx. Equally spaced interpolation nodes are at 0,7/6,21/6,

and 37 /6. The approximation is very close between 0 and /2.

X sin x sinl (x) error
1 0.8415 0.8411 0.0004
2 0.9093 0.9102 0.0009
3 0.1411 0.1428 0.0017

4 | —0.7568 | —0.7557 | 0.0011
14 0.9906 0.9928 0.0022
1000 0.8269 0.8263 0.0006

This is not bad for the first try. The error is usually under 1 percent. In order to get enough cor-
rect digits to fill the calculator readout, we’ll need to know a little more about interpolation
error, the topic of the next section.

Use Lagrange interpolation to find a polynomial that passes through the points.

(@ (0,1),(2,3),3,0)
() (=1,0),2, 1,3, 1),(5.2)
(C) (0! _2)7 (27 1)7 (4’ 4)

Use Newton’s divided differences to find the interpolating polynomials of the points in
Exercise 1, and verify agreement with the Lagrange interpolating polynomial.

How many degree d polynomials pass through the four points (—1, 3), (1, 1), (2,3), (3,7)?
Write one down if possible. (a)d =2 (b)d =3 (¢c)d = 6.

(a) Find a polynomial P(x) of degree 3 or less whose graph passes through the points

(0,0), (1, 1),(2,2),(3,7). (b) Find two other polynomials (of any degree) that pass through
these four points. (c) Decide whether there exists a polynomial P(x) of degree 3 or less whose
graph passes through the points (0, 0), (1, 1), (2,2), (3,7), and (4, 2).

(a) Find a polynomial P(x) of degree 3 or less whose graph passes through the four data points
(—2,8),(0,4),(1,2),(3,—2). (b) Describe any other polynomials of degree 4 or less which
pass through the four points in part (a).

Write down a polynomial of degree exactly 5 that interpolates the four points
(1,1),(2,3),3,3), 4,4).

150 | CHAPTER 3 Interpolation

10.

11.

12.

13.

14.

15.

16.

17.

18.

Find P(0), where P(x) is the degree 10 polynomial that is zero at x = 1, ..., 10 and satisfies
P(12) = 44.

Let P(x) be the degree 9 polynomial that takes the value 112 at x = 1, takes the value 2 at
x = 10, and equals zero for x = 2,...,9. Calculate P(0).

Give an example of the following, or explain why no such example exists. (a) A degree 6
polynomial L(x) thatis zero at x = 1,2,3,4,5,6 and equal to 10 at x = 7. (b) A degree 6
polynomial L(x) thatis zero at x = 1,2,3,4,5,6, equal to 10 at x = 7, and equal to 70 at
x =8.

Let P(x) be the degree 5 polynomial that takes the value 10 at x = 1,2, 3,4, 5 and the value 15
at x = 6. Find P(7).

Let Py, P>, P, and Py be four different points lying on a parabola y = ax? + bx + c.
How many cubic (degree 3) polynomials pass through those four points? Explain your
answer.

Can a degree 3 polynomial intersect a degree 4 polynomial in exactly five points? Explain.

Let P(x) be the degree 10 polynomial through the 11 points
(=5,5),(=4,5),(=3,5),(=2,5),(-1,5),(0,5),(1,5),(2,5), (3,5), (4,5), (5,42).
Calculate P(6).

Write down 4 noncollinear points (1, y1), (2, 12), (3, 33), (4, y4) that do not lie on any
polynomial y = P3(x) of degree exactly three.

Write down the degree 25 polynomial that passes through the points
1,-1),(2,-2),...,(25,—25) and has constant term equal to 25.

List all degree 42 polynomials that pass through the eleven points
(—5,5),(—4,4),...,(4,—4), (5, —5) and have constant term equal to 42.

The estimated mean atmospheric concentration of carbon dioxide in earth’s atmosphere is
given in the table that follows, in parts per million by volume. Find the degree 3 interpolating
polynomial of the data and use it to estimate the CO; concentration in (a) 1950 and (b) 2050.
(The actual concentration in 1950 was 310 ppm.)

year | CO; (ppm)
1800 280
1850 283
1900 291
2000 370

The expected lifetime of an industrial fan when operated at the listed temperature is shown in
the table that follows. Estimate the lifetime at 70°C by using (a) the parabola from the last
three data points (b) the degree 3 curve using all four points.

temp (°C) | hrs (x1000)

25 95
40 75
50 63

60 54

3.2 Interpolation Error | 151

3.1 Computer Problems

1.

Apply the following world population figures to estimate the 1980 population, using (a) the
straight line through the 1970 and 1990 estimates; (b) the parabola through the 1960, 1970, and
1990 estimates; and (c) the cubic curve through all four data points. Compare with the 1980
estimate of 4452584592.

year | population

1960 | 3039585530
1970 | 3707475887
1990 | 5281653820
2000 | 6079603571

Write a version of Program 3.2 that is a MATLAB function, whose inputs x and y are equal
length vectors of data points, and whose output is a plot of the interpolating polynomial. In this
way, the points can be entered more accurately than by mouse input. Check your program by
replicating Figure 3.2.

Write a MATLAB function polyinterp.m that takes as input a set of (x, y) interpolating
points and another xp, and outputs)y, the value of the interpolating polynomial at x¢. The first
line of the file should be function y0 =polyinterp (x,y,x0), where x and y are
input vectors of data points. Your function may call newtdd from Program 3.1 and nest
from Chapter 0, and may be structured similarly to Program 3.2, but without the graphics.
Demonstrate that your function works.

Remodel the sin1 calculator key in Program 3.3 to build cos1, a cosine key that follows the
same principles. First decide on the fundamental domain for cosine.

(a) Use the addition formulas for sin and cos to prove that tan(7 /2 — x) = 1/tanx. (b) Show
that [0, 7r /4] can be used as a fundamental domain for tan x. (c) Design a tangent key, following
the principles of Program 3.3, using degree 3 polynomial interpolation on this fundamental
domain. (d) Empirically calculate the maximum error of the tangent key in [0, 77 /4].

3.2 INTERPOLATION ERROR

The accuracy of our sin calculator key depends on the approximation in Figure 3.3. How
close is it? We presented a table indicating that, for a few examples, the first two digits are
fairly reliable, but after that the digits are not always correct. In this section, we investigate
ways to measure this error and determine how to make it smaller.

3.2.1 Interpolation error formula

Assume that we start with a function y = f(x) and take data points from it to build an inter-
polating polynomial P(x), as we did with f(x) = sinx in Example 3.7. The interpolation
error at x is f(x) — P(x), the difference between the original function that provided the
data points and the interpolating polynomial, evaluated at x. The interpolation error is the
vertical distance between the curves in Figure 3.3. The next theorem gives a formula for
the interpolation error that is usually impossible to evaluate exactly, but often can at least
lead to an error bound.

152 | CHAPTER 3 Interpolation

THEOREM 3.4

» EXAMPLE 3.8

Assume that P(x) is the (degree n — 1 or less) interpolating polynomial fitting the » points
(x1, 1) -+, (xn, ¥»). The interpolation error is

(x —xp)(x —x2)++(x — xp)
n!

fx) — P(x) = £, (3.6)

where c lies between the smallest and largest of the numbers x, xq, ..., x,. [|

See Section 3.2.2 for a proof of Theorem 3.3. We can use the theorem to assess the
accuracy of the sin key we built in Example 3.7. Equation (3.6) yields

-0(x-F)(x-3F) (-3
41

f//// (C) ,

sinx — P(x) =

where 0 < ¢ < 7/2. The fourth derivative f””(c) = sin c varies from 0 to 1 in this range.
At worst, | sin c| is no more than 1, so we can be assured of an upper bound on interpolation
error:

|x = 0)(x = %) (x = F) (x — %)||1|,

inx — P -
| sinx x)] < 7

At x = 1, the worst-case error is

a-0@1-%0-3)0-3)
24

Isinl — P(1)] < 1] & 0.0005348. (3.7)

This is an upper bound for the error, since we used a “worst case’” bound for the fourth
derivative. Note that the actual error at x = 1 was .0004, which is within the error bound
given by (3.7). We can make some conclusions on the basis of the form of the interpolation
error formula. We expect smaller errors when x is closer to the middle of the interval of x;’s
than when it is near one of the ends, because there will be more small terms in the product.
For example, we compare the preceding error bound to the case x = 0.2, which is near the
left end of the range of data points. In this case, the error formula is

1] ~ 0.00313,

about six times larger. Correspondingly, the actual error is larger, specifically,
[sin0.2 — P(0.2)] =10.19867 — 0.20056] = 0.00189.

Find an upper bound for the difference at x = 0.25 and x = 0.75 between f(x) = e* and
the polynomial that interpolates it at the points —1, —0.5,0,0.5, 1.

Construction of the interpolating polynomial, shown in Figure 3.4, is not necessary
to find the bound. The interpolation error formula (3.6) gives

(x—i—l)(x—i—%)x(x—%)(x—l)
5!

fx) — Py(x) = 19,

3.2 Interpolation Error | 153

-3 -2 -1 1 2

Figure 3.4 Interpolating Polynomial for Approximating f(x) = . Equally spaced
base points —1,—0.5,0,0.5, 1. The solid curve is the interpolating polynomial.

where —1 < ¢ < 1. The fifth derivative is £ (c) = e°. Since e* is increasing with x, its
maximum is at the right-hand end of the interval, so |f(5)| <elon [-1,1].For—1 <x <1,
the error formula becomes

x + 1)(x+ %)x(x - %)(x —1)
¥ — Pyx)] < 5 e.
At x = 0.25, the interpolation error has the upper bound
(1.25)(0.75)(0.25)(—0.25)(—0.75)
e
120

102 — P4(0.25)] <
~ .000995.

At x = 0.75, the interpolation error is potentially larger:

(1.75)(1.25)(0.75)(0.25)(0.25)
120 ¢

%75 — P4(0.75)] <
~ .002323.

Note again that the interpolation error will tend to be smaller close to the center of the
interpolation interval. |

3.2.2 Proof of Newton form and error formula

In this section, we explain the reasoning behind two important facts used earlier. First we
establish the Newton’s divided difference form of the interpolating polynomial, and then
we prove the interpolation error formula.

Recall what we know so far. If xq,...,x, are n distinct points on the real line and
1, ..., ¥y are arbitrary, we know by Theorem 3.2 that there is exactly one (degree at most
n — 1) interpolating polynomial P,_1(x) for these points. We also know that the Lagrange
interpolating formula gives such a polynomial.

We are missing the proof that the Newton’s divided difference formula also gives an
interpolating polynomial. Once we prove that it does in Theorem 3.5, we will know it must
agree with the Lagrange version.

Let P(x) denote the (unique) polynomial that interpolates (x1, f(x1)), ..., (xn, f(xn)),
and as in Definition 3.3, denote by f[x;...x,] the degree n — 1 coefficient of P(x). Thus
P(x)=ag + ajx + arx? + ...+ a,_1x"', where a,_; = flx1...x,], and two facts are
readily apparent.

154 | CHAPTER 3 Interpolation

FACT1

FACT 2

THEOREM 3.5

flx1...x,]1 = flo(x1)...0(x,)] for any permutation o of the x;.)

Proof. Clear by uniqueness of the interpolating polynomial, proved in
Theorem 3.2. 0
P(x) can be written in the form

Px)=co+ci(x —x1) +ea(x —xpP)(x —x2) + ... +cpo1(x —x1) - (x — xp-1).

a

Proof. Clearly we should choose ¢,—1 = a,—1. The remaining ¢,_», ¢,—3, ..., co are
defined recursively by setting ¢ to be the degree k coefficient of the (degree at most k)
polynomial

P(x) —cn—1(x = x1) - (x = xp—1) — cp—2(x —x1) -+ (X — xp-2)

—o = Ch1(x —x1) - (X = Xpy1)-

(This is a degree at most k£ polynomial due to the choice of cy1.) a

Let P(x) be the interpolating polynomial of (x{, f(x1)),..., (x,, f(x,)) where the x; are
distinct. Then

@Px) = flx1] + flxix2](x — x1) + flxixox3](x —x)(x —x2) + ...
+ flx1x2 ... xp](x — x1)(x — x2)---(x — x,—1),and

_ flxo...xk] — flxr...xk—1]

(b) fork > 1, flxg...xx] [|
X — X1
Proof. (a) We must prove that cx—1 = f[x1...x¢] fork =1,...,n. Itis already clear
for & = n by definition. In general, successively substitute x1, ..., xz into the form of P(x)

in Fact 2. Only the first k£ terms are nonzero. We conclude that the polynomial consisting
of the first k£ terms of P(x) suffice to interpolate x, ..., xz, and so by Definition 3.2 and
the uniqueness of interpolating polynomial, cy—; = f[x1...xt]. (b) According to (a), the
interpolating polynomial of x», x3, ..., X¢—1, X1, X 1S

Pi(x) = flx2] + flx2 xal(x — x2) + ... + fIx2 x3 ... xp—1x1](x — x2) -+ (X — Xg—1)
+fIx2 x3 XX](x — x2) - (6 — xp— 1) (x — X1)
and the interpolating polynomial of x2, x3, ..., Xt—1, Xk, X1 1S
Py(x) = flxa2] + flx2 x3](x — x2) + ...+ flx2 x3 oxpo1x](x — x2) - (X — x—1)
+flx2 x3 oo xgx] (6 = x2) - (0 = Xk 1) (X — xp).
By uniqueness, P = P». Setting P;(x;) = P»(x;) and canceling terms yields
Slxooxporxy 1o — x2) - (5 — xXk—1) + flx2. o xp—1x1 x5 (o — x2)
s = Xp—1) Ok — x1) = flxz.oxe](xp — x2) - (0 — Xg—1)

or

Slxzoxpox) + flxz.oxpoxxe] (e — x1) = flxo..oxg

» EXAMPLE 3.9

3.2 Interpolation Error | 155

Using Fact 1, this can be rearranged to

f[xl...xk]:f[xz"'xk]_f[xl...xk_l].]

X — X1

Next we prove the Interpolation Error Theorem 3.4. Consider adding one more point
x to the set of interpolation points. The new interpolation polynomial would be

Po(t) = Poo1(®) + flxr... x,x](t = x1) -+ (t — xp).
Evaluated at the extra point x, P,(x) = f(x), so

S = Poo1(x) + flxr...xpx](x — x1) - (x — xp). (3.8)

This formula is true for all x. Now define

ht) = f(t) = Pu1() — flx1... xux](t — x1) - (t — x).

Note that 2(x) =0 by (3.8) and 0 = h(xy) = --- = h(x,) because P,_| interpolates f at
these points. Between each neighboring pair of the n + 1 points x, xy, ..., x,, there must be
anew point where 42’ = 0, by Rolle’s Theorem (see Chapter 0). There are n of these points.
Between each pair of these, there must be a new point where 4” = 0; there are n — 1 of
these. Continuing in this way, there must be one point ¢ for which A" (¢) = 0, where ¢ lies
between the smallest and largest of x, x1, ..., x;,. Note that

K@) = £ (1) — nl flxy ... xpx],
because the nth derivative of the polynomial P,_;(¢) is zero. Substituting c gives

_ /M@

n!

Slx1.. . xpx]

which leads to

f‘”)()

Sx)=Pio1(x) + (x —x1)--- (x — xp),

using (3.8).

3.2.3 Runge phenomenon

Polynomials can fit any set of data points, as Theorem 3.2 shows. However, there are some
shapes that polynomials prefer over others. You can achieve a better understanding of this
point by playing with Program 3.2. Try data points that cause the function to be zero at
equally spaced points x = —3,—-2.5, -2, —1.5,...,2.5, 3, except for x = 0, where we set
a value of 1. The data points are flat along the x-axis, except for a triangular “bump” at
x = 0, as shown in Figure 3.5.

The polynomial that goes through points situated like this refuses to stay between O
and 1, unlike the data points. This is an illustration of the so-called Runge phenomenon.
It is usually used to describe extreme “polynomial wiggle” associated with high-degree
polynomial interpolation at evenly spaced points.

Interpolate f'(x) = 1/(1 + 12x?) at evenly spaced points in [—1, 1].

This is called the Runge example. The function has the same general shape as the
triangular bump in Figure 3.5. Figure 3.6 shows the result of the interpolation, behavior

156 | CHAPTER 3 Interpolation

3.2 Exercises

3
b

il

T\

Figure 3.5 Interpolation of Triangular Bump Function. The interpolating polynomial
wiggles much more than the input data points.

that is characteristic of the Runge phenomenon: polynomial wiggle near the ends of the
interpolation interval. <

As we have seen, examples with the Runge phenomenon characteristically have large
error near the outside of the interval of data points. The cure for this problem is intuitive:
Move some of the interpolation points toward the outside of the interval, where the function
producing the data can be better fit. We will see how to accomplish this in the next section
on Chebyshev interpolation.

(a) Find the degree 2 interpolating polynomial P> (x) through the points (0, 0), (7 /2, 1), and
(1, 0). (b) Calculate P»(;r/4), an approximation for sin(;r/4). (c) Use Theorem 3.3 to give an
error bound for the approximation in part (b). (d) Using a calculator or MATLAB, compare the
actual error to your error bound.

(a) Given the data points (1, 0), (2,1n2), (4,In4), find the degree 2 interpolating polynomial.
(b) Use the result of (a) to approximate In 3. (¢) Use Theorem 3.3 to give an error bound for the
approximation in part (b). (d) Compare the actual error to your error bound.

Assume that the polynomial Py (x) interpolates the function f(x) = e~2* at the 10 evenly

spaced points x =0,1/9,2/9,3/9,...,8/9, 1. (a) Find an upper bound for the error
| f(1/2) — Py(1/2)|. (b) How many decimal places can you guarantee to be correct if Py(1/2)
is used to approximate e?

Consider the interpolating polynomial for f(x) = 1/(x + 5) with interpolation nodes
x =0,2,4,6,8, 10. Find an upper bound for the interpolation error at (a) x = 1 and
(b)x =5.

Assume that a function f(x) has been approximated by the degree 5 interpolating polynomial
P(x), using the data points (x;, f(x;)), where x; = .1, xp = .2, x3=.3, x4 = .4, x5 = .5,
x6 = .6. Do you expect the interpolation error | f(x) — P(x)| to be smaller for x = .35 or for
x = .557 Quantify your answer.

Assume that the polynomial Ps(x) interpolates a function f(x) at the six data points (x;, f(x;))
with x-coordinates x; = 0,x2 = .2,x3 = .4, x4 = .6,x5 = .8, and xg = 1. Assume that the
interpolation error at x = .3 is | f(.3) — Ps(.3)| = .01. Estimate the new interpolation error

3.2 Interpolation Error | 157

y y
2 - =
1k 1k
2k -2
(@) (b)

Figure 3.6 Runge Example. Polynomial interpolation of the Runge function of Exam-
ple 3.9 at evenly spaced base points causes extreme variation near the ends of the

interval, similar to Figure 3.5 (a) 15 base points (b) 25 base points.

| f(.3) — P7(.3)] that would result if two additional interpolation points (x¢,) = (.1, f(.1))
and (x7, y7) = (.5, f(.5)) are added. What assumptions have you made to produce this
estimate?

3.2 Computer Problems

1.

4.

(a) Use the method of divided differences to find the degree 4 interpolating polynomial Py(x)
for the data (0.6, 1.433329), (0.7, 1.632316), (0.8, 1.896481), (0.9, 2.247908), and
(1.0,2.718282). (b) Calculate P4(0.82) and P4(0.98). (c) The preceding data come from the
function f(x) = & Use the interpolation error formula to find upper bounds for the error at
x = 0.82 and x = 0.98, and compare the bounds with the actual error. (d) Plot the actual
interpolation error P(x) — ¢*” on the intervals [.5,1] and [0, 2].

Plot the interpolation error of the sinl key from Program 3.3 on the interval [—27, 27].

The total world oil production in millions of barrels per day is shown in the table that follows.
Determine and plot the degree 9 polynomial through the data. Use it to estimate 2010 oil
production. Does the Runge phenomenon occur in this example? In your opinion, is the
interpolating polynomial a good model of the data? Explain.

year | bbl/day (x10°)
1994 67.052
1995 68.008
1996 69.803
1997 72.024
1998 73.400
1999 72.063
2000 74.669
2001 74.487
2002 74.065
2003 76.777

Use the degree 3 polynomial through the first four data points in Computer Problem 3 to
estimate the 1998 world oil production. Is the Runge phenomenon present?

158 | CHAPTER 3 Interpolation

3.3 CHEBYSHEV INTERPOLATION

It is common to choose the base points x; for interpolation to be evenly spaced. In many
cases, the data to be interpolated are available only in that form—for example, when the
data consist of instrument readings separated by a constant time interval. In other cases—
for instance, the sine key—we are free to choose the base points as we see fit. It turns out
that the choice of base point spacing can have a significant effect on the interpolation error.
Chebyshev interpolation refers to a particular optimal way of spacing the points.

3.3.1 Chebyshev’s theorem

The motivation for Chebyshev interpolation is to improve control of the maximum value
of the interpolation error

(x —xp)(x —x2) - (x — xp)
n!

7™ ()

on the interpolation interval. Let’s fix the interval to be [—1, 1] for now.
The numerator

(x —x)x —x2)--- (x — xp) (3.9

of the interpolation error formula is itself a degree » polynomial in x and has some maximum
valueon [—1, 1]. Isitpossible to find particular x1, ..., x, in[—1, 1] that cause the maximum
value of (3.9) to be as small as possible? This is called the minimax problem of interpolation.

For example, Figure 3.7(a) shows a plot of the degree 9 polynomial (3.9) when
X1,...,x9 are evenly spaced. The tendency for this polynomial to be large near the ends
of the interval [—1, 1] is a manifestation of the Runge phenomenon. Figure 3.7(b) shows
the same polynomial (3.9), but where the points xp,...,x9 have been chosen in a way
that equalizes the size of the polynomial throughout [—1, 1]. The points have been chosen
according to Theorem 3.8, presented shortly.

y y
0.02+ 0.02
0.01+ 0.01F
X %%—»x
1 _

-0.01 - -0.01
-0.02 - -0.02
(a) (b)

Figure 3.7 Part of the Interpolation Error Formula. Plots of (x-x1)---(x-xg) for (a)

nine evenly spaced base points x; (b) nine Chebyshev roots x;.

In fact, this precise positioning, in which the base points x; are chosen to be
CcoS 1”—8, [31—7§, ...,CO08 117—;, makes the maximum absolute value of (3.9) equal to 1/256,
the minimum possible for nine points on the interval [—1, 1]. Such positioning, due to

Chebyshev, is summarized in the following theorem:

THEOREM 3.6

» EXAMPLE 3.10

3.3 Chebyshev Interpolation | 159

The choice of real numbers —1 < x1,...,x, < 1 that makes the value of
max [(x — xp)-(x — xp)|
—1<x<l
as small as possible is

i — DHrm)
x;i=cos—— fori=1,...,n,
2n

and the minimum value is 1/ 271 In fact, the minimum is achieved by

1
@ = x) O = xn) = S T (x),

where 7, (x) denotes the degree n Chebyshev polynomial. |

The proof of this theorem is given later, after we establish a few properties of Chebyshev
polynomials. We conclude from the theorem that interpolation error can be minimized if the
n interpolation base points in [—1, 1] are chosen to be the roots of the degree n Chebyshev
interpolating polynomial 7;,(x). These roots are

odd &

2n
where “odd” stands for the odd numbers from 1 to 2n — 1. Then we are guaranteed that the
absolute value of (3.9) is less than 1/2"_1 forall x in [—1, 1].

Choosing the Chebyshev roots as the base points for interpolation distributes the inter-
polation error as evenly as possible across the interval [—1, 1]. We will call the interpolat-
ing polynomial that uses the Chebyshev roots as base points the Chebyshev interpolating
polynomial.

X; = COS

(3.10)

Find a worst-case error bound for the difference on [—1, 1] between f(x) = ¢e* and the
degree 4 Chebyshev interpolating polynomial.

The interpolation error formula (3.6) gives
(x —xp)(x —x2)(x — x3)(x — x4)(x — X5)

J@) = Pyx) = S),
where
T 3 Sm T 9
X] =COS—, X)=0CO0S—, X3=0COS—, X4=0COS—, X5=COS—
10 10 10 10 10

are the Chebyshev roots and where —1 < ¢ < 1. According to the Chebyshev Theorem 3.6,
for—1<x<1,
| = x1)-e(x = x5)| = -

In addition, | f° (5)| <elon[—1,1]. The interpolation error is

" — Py(x)| < 24%' ~0.00142
for all x in the interval [—1, 1].

Compare this result with Example 3.8. The error bound for Chebyshev interpolation
for the entire interval is only slightly larger than the bound for a point near the center of
the interval, when evenly spaced interpolation is used. Near the ends of the interval, the
Chebyshev error is much smaller. <

Returning to the Runge Example 3.9, we can eliminate the Runge phenomenon by
choosing the interpolation points according to Chebyshev’s idea. Figure 3.8 shows that the
interpolation error is made small throughout the interval [—1, 1].

160 | CHAPTER 3 Interpolation

FACT1

FACT 2

(a) (b)

Figure 3.8 Interpolation of Runge Example with Chebyshev nodes. The Runge
function f(x)=1/(1+12x2) is graphed along with its Chebyshev interpolation polynomial
for (a) 15 points (b) 25 points. The error on [-1, 1] is negligible at this resolution. The
polynomial wiggle of Figure 3.6 has vanished, at least between -1 and 1.

3.3.2 Chebyshev polynomials

Define the nth Chebyshev polynomial by 7}, (x) = cos(n arccosx). Despite its appearance,
it is a polynomial in the variable x for each n. For example, for n = 0 it gives the degree 0
polynomial 1, and for n = 1 we get 71 (x) = cos(arccosx) = x. Forn = 2, recall the cosine
addition formula cos(a + b) = cosacosbh — sinasinb. Set y = arccosx, so that cos y = x.
Then 75 (x) = cos2y = cos’ y — sinzy =2cos?y — 1 = 2x% — 1, a degree 2 polynomial.
In general, note that

Th+1(x) =cos(n 4+ 1)y = cos(ny + y) = cosnycosy — sinnysin y
T,—1(x) =cos(n — 1)y =cos(ny — y) =cosnycos y — sinnysin(—y). (3.11)

Because sin(—y) = —sin y, we can add the preceding equations to get
Ths1(x) + T—1(x) = 2cosnycosy = 2x T, (x). (3.12)
The resulting relation,
Trt1(x) = 2x T (x) — Th—1(x), (3.13)

is called the recursion relation for the Chebyshev polynomials. Several facts follow
from (3.13):

The T,,’s are polynomials. We showed this explicitly for 7p, 71, and 75. Since 73 is a
polynomial combination of 77 and 7>, T3 is also a polynomial. The same argument goes
for all 7. The first few Chebyshev polynomials (see Figure 3.9) are

To(x) =1

Ti(x)=x

Th(x) =2x> — 1

T3()c)=4x3 — 3x. O

deg(7,) = n, and the leading coefficient is 27— This is clear for n = 1 and 2, and the
recursion relation extends the fact to all n. a

FACT 3

FACT 4

FACT5

FACT6

3.3 Chebyshev Interpolation | 161

Figure 3.9 Plot of the Degree 1 through 5 Chebyshev Polynomials. Note that
Th(1) =1 and the maximum absolute value taken on by Tj(x) inside [—1,1] is 1.

T,(1) =1 and T,,(—1) = (—1)". Both are clear for » = 1 and 2. In general,
L1 (D) =27, (1) — T (1) =2(1) = 1=1
and

Tp1(=1) = 2(=1) T (=1) = T_1(—=1)
=-2(=1)" = (="'
=-D"'e- =D = (=t 0

The maximum absolute value of 7, (x) for —1 < x < 1 is 1. This follows immediately from
the fact that 7, (x) = cos y for some y.)

All zeros of T, (x) are located between —1 and 1. See Figure 3.10. In fact, the zeros are the
solution of 0 = cos(n arccosx). Since cos y = 0 if and only if y = odd integer - (7/2), we
find that

narccosx = odd - /2

dd -
x=cos0 n.)
2n

y

X 0-0—© 0—0—0-0 X 00-0-0 0000 X

() (b) (©

Figure 3.10 Location of Zeros of the Chebyshev Polynomial. The roots are the
x-coordinates of evenly spaced points around the circle (a) degree 5 (b) degree 15
(c) degree 25.

T,(x) alternates between —1 and 1 a total of n + 1 times. In fact, this happens at
cos0,cosm/m,...,cos(n — 1) /n,cosm. 0

It follows from Fact 2 that the polynomial 7}, (x)/2"~! is monic (has leading coeffi-
cient 1). Since, according to Fact 5, all roots of 7,,(x) are real, we can write 7, (x)/ 2=l in

162 | CHAPTER 3 Interpolation

» EXAMPLE 3.11

factored form as (x — x1)--- (x — x,,) where the x; are the Chebyshev nodes as described
in Theorem 3.8.
Chebyshev’s theorem follows directly from these facts.

Proof of Theorem 3.6. Let P, (x) be a monic polynomial with an even smaller absolute
maximum on [—1, 1]; in other words, | P, (x)| < 1/2”_1 for —1 < x < 1. This assumption
leads to a contradiction. Since T, (x) alternates between —1 and 1 a total of n + 1 times
(Fact 6), at these n + 1 points the difference P, — 7,,/2" ! is alternately positive and
negative. Therefore, P, — 7,,/2"~! must cross zero at least n times; that is, it must have
at least n roots. This contradicts the fact that, because P, and 7,,/2"~! are monic, their
difference is of degree <n — 1.

3.3.3 Change of interval

So far our discussion of Chebyshev interpolation has been restricted to the interval [—1, 1],
because Theorem 3.6 is most easily stated for this interval. Next, we will move the whole
methodology to a general interval [a, b].

The base points are moved so that they have the same relative positions in [a, b] that
they had in [—1, 1]. It is best to think of doing this in two steps: (1) Stretch the points by the
factor (b — a)/2 (the ratio of the two interval lengths), and (2) Translate the points by
(b + a)/2 to move the center of mass from O to the midpoint of [a, b]. In other words,
move from the original points

odd 7
2n

Ccos

to

b—a odd b+a
cos + .
2 2n 2

With the new Chebyshev base points xy,...,x, in [a, b], the corresponding upper
bound on the numerator of the interpolation error formula is changed due to the stretch by
(b — a)/2 on each factor x — x;. As a result, the minimax value 1/2”~! must be replaced
by [(6 —a)/21"/2"~".

Chebyshev interpolation nodes
On the interval [a,b],

b+a b—a i — DHrm
X, = + Ccos
2 2 2n

fori =1,...,n. The inequality

b—a\"
() (3.14)

O

holds on [a, b].
The next example illustrates the use of Chebyshev interpolation in a general interval.

Find the four Chebyshev base points for interpolation on the interval [0, /2], and find an
upper bound for the Chebyshev interpolation error for f(x) = sinx on the interval.

3.3 Chebyshev Interpolation | 163

SPOTLIGHT ON Compression As shown in this section, Chebyshev interpolation is a good way to
turn general functions into a small number of floating point operations, for ease of computa-
tion. An upper bound for the error made is easily available, is usually smaller than for evenly
spaced interpolation, and can be made as small as desired.

Although we have used the sine function to demonstrate this process, a different
approach is taken to construct the actual “sine key” on most calculators and canned software.
Special properties of the sine function allow it to be approximated by a simple Taylor expan-
sion, slightly altered to take rounding effects into account.Because sine is an odd function, the
even-numbered terms in its Taylor series around zero are missing, making it especially efficient

to calculate.

This is a second attempt. We used evenly spaced base points in Example 3.7. The
Chebyshev base points are

2 2(4) 2 7
or
T ox T T 3 T oW S T 7 T
X1 = Z + ZCOS§’X2 = Z + Zcos?,m = Z + ZCOS?’M: Z + ZCOS?'

From (3.14), the worst-case interpolation error for 0 < x < 7 /2 is

[(x —x)(x — x2)(x — x3)(x — x4)]
41

|sinx — P3(x)| =
T_o\4
2
_(5)
- 4123

The Chebyshev interpolating polynomial for this example is evaluated at several
points in the following table:

FAN®G]

1~ 0.00198.

X sin x P3(x) error
1 0.8415 0.8408 | 0.0007
2 0.9093 0.9097 | 0.0004
3 0.1411 0.1420 | 0.0009

4 | —0.7568 | —0.7555 | 0.0013
14 0.9906 0.9917 | 0.0011
1000 0.8269 0.8261 | 0.0008

The interpolation errors are well below the worst-case estimate. Figure 3.11 plots the inter-
polation error as a function of x on the interval [0, 7 /2], compared with the same for evenly
spaced interpolation. The Chebyshev error (dashed curve) is a bit smaller and is distributed
more evenly throughout the interpolation interval. |

> EXAMPLE 3.12 Design a sine key that will give output correct to 10 decimal places.

Thanks to our work earlier on setting up a fundamental domain for the sine function,
we can continue to concentrate on the interval [0, 7 /2]. Repeat the previous calculation,
but leave n, the number of base points, as an unknown to be determined. The maximum
interpolation error for the polynomial P,_(x) on the interval [0, 7 /2] is

164 | CHAPTER 3 Interpolation

0.003

5x 1071
\

-0.003 -5 % 1071}

(a) (b)

Figure 3.11 Interpolation error for approximating f(x) = sinx. (a) Interpolation error
for degree 3 interpolating polynomial with evenly spaced base points (solid curve) and
Chebyshev base points (dashed curve). (b) Same as (a), but degree 9

sinx — Py (x)| = |(x — x1)~n-'- (x — xp)l |7 ()]

()
2
R

- p2n-l

This equation is not simple to solve for #, but a little trial and error finds that for n = 9 the
error bound is ~ 0.1224 x 1078, and for n = 10 it is ~ 0.4807 x 1070, The latter meets
our criterion for 10 correct decimal places. Figure 3.11(b) compares the actual error of
the Chebyshev interpolation polynomial with the error of the evenly spaced interpolation
polynomial.

The 10 Chebyshev base points on [0, /2] are 7 /4 4 (7 /4) cos(odd 7 /20). The
key can be designed by storing the 10 y-values for sine at the base points and doing a nested
multiplication evaluation for each key press. <

The following MATLAB code sin2 .m carries out the preceding task. The code is a bit
awkward as written: We have to do 10 sin evaluations, at the 10 Chebyshev nodes, in order
to set up the interpolating polynomial to approximate sin at one point. Of course, in a real
implementation, these numbers would be computed once and stored.

$Program 3.4 Building a sin calculator key, attempt #2
$Approximates sin curve with degree 9 polynomial

$Input: x

$Output: approximation for sin(x), correct to 10 decimal places
function y=sin2 (x)

$First calculate the interpolating polynomial and

°

% store coefficients

n=10;
b=pi/4+(pi/4)*cos((1:2:2*n-1)*pi/ (2*n)) ;
yb=sin (b) ; % b holds Chebyshev base points

c=newtdd (b, yb,n) ;
$For each input x, move x to the fundamental domain and evaluate
% the interpolating polynomial

s=1; % Correct the sign of sin
x1l=mod (x,2*pi) ;
if x1s>pi

x1 = 2*pi-x1;
s = -1;

3.3 Exercises

3.3 Chebyshev Interpolation | 165

end
if x1 > pi/2
x1 = pi-x1;
end
y = s*nest(n-1,c,x1l,b);

In this chapter, we have often illustrated polynomial interpolation, either evenly spaced
or using Chebyshev nodes, for the purpose of approximating the trigonometric functions.
Although polynomial interpolation can be used to approximate sine and cosine to arbitrarily
high accuracy, most calculators use a slightly more efficient approach called the CORDIC
(Coordinate Rotation Digital Computer) algorithm (Volder [1959]). CORDIC is an elegant
iterative method, based on complex arithmetic, that can be applied to several special func-
tions. Polynomial interpolation remains a simple and useful technique for approximating
general functions and for representing and compressing data.

List the Chebyshev interpolation nodes x1, ..., x, in the given interval. (a) [—1,1],n =6
®)[-2,2],n =4 (c)[4,12],n =6 (d)[-0.3,0.7],n =5

Find the upper bound for [(x — x1)...(x — x,)| on the intervals and Chebyshev nodes in
Exercise 1.

Assume that Chebyshev interpolation is used to find a fifth degree interpolating polynomial
QOs(x) on the interval [—1, 1] for the function f(x) = e*. Use the interpolation error formula
to find a worst-case estimate for the error |[e* — Qs(x)| that is valid for x throughout the
interval [—1, 1]. How many digits after the decimal point will be correct when Q5(x) is used to
approximate e*?

Answer the same questions as in Exercise 3, but for the interval [0.6, 1.0].

Find an upper bound for the error on [0, 2] when the degree 3 Chebyshev interpolating
polynomial is used to approximate f(x) = sinx.

Assume that you are to use Chebyshev interpolation to find a degree 3 interpolating
polynomial Q3(x) that approximates the function f(x) = x> on the interval [3,4]. (a) Write
down the (x, y) points that will serve as interpolation nodes for Q3. (b) Find a worst-case
estimate for the error |x‘3 — Q3(x)] that is valid for all x in the interval [3, 4]. How many
digits after the decimal point will be correct when Q3(x) is used to approximate x 32

Suppose you are designing the In key for a calculator whose display shows six digits to the
right of the decimal point. Find the least degree d for which Chebyshev interpolation on the
interval [1, e] will approximate within this accuracy.

Let 7, (x) denote the degree n Chebyshev polynomial. Find a formula for 7}, (0).

Determine the following values: (a) Tog9(—1) (b) T1000(—1) (¢) T999(0) (d) T1000(0)
() Togg(—1/2) (f) T1000(—1/2).

3.3 Computer Problems

Rebuild Program 3.3 to implement the Chebyshev interpolating polynomial with four nodes on
the interval [0, r/2]. (Only one line of code needs to be changed.) Then plot the polynomial
and the sine function on the interval [—2, 2].

166 | CHAPTER 3 Interpolation

2. Build a MATLAB program to evaluate the cosine function correct to 10 decimal places using
Chebyshev interpolation. Start by interpolating on a fundamental domain [0, 7 /2], and extend
your answer to inputs between —10* and 10*. You may want to use some of the MATLAB code
written in this chapter.

3. Carry out the steps of Computer Problem 2 for In x, for inputs x between 10~* and 10*. Use
[1, e] as the fundamental domain. What is the degree of the interpolation polynomial that
guarantees 10 correct digits? Your program should begin by finding the integer £ such that
ek < x < eFtl

program by comparing it with MATLAB’s 1og command.

. Then xe~* lies in the fundamental domain. Demonstrate the accuracy of your

4, Let f(x) = el*l. Compare evenly spaced interpolation with Chebyshev interpolation by
plotting degree n polynomials of both types on the interval [—1, 1], for » = 10 and 20. For
evenly spaced interpolation, the left and right interpolation base points should be —1 and 1. By
sampling at a 0.01 step size, create the empirical interpolation errors for each type, and plot a
comparison. Can the Runge phenomenon be observed in this problem?

2

5. Carry out the steps of Computer Problem 4 for f(x) =e™*".

3.4 CUBIC SPLINES

Splines represent an alternative approach to data interpolation. In polynomial interpola-
tion, a single formula, given by a polynomial, is used to meet all data points. The idea of
splines is to use several formulas, each a low-degree polynomial, to pass through the data

points.
The simplest example of a spline is a linear spline, in which one “connects the dots” with
straight-line segments. Assume that we are given a set of data points (x1, y1), ..., (Xn, ¥n)

with x; < --- < x,. A linear spline consists of the » — 1 line segments that are drawn
between neighboring pairs of points. Figure 3.12(a) shows a linear spline where, between
each neighboring pair of points (x;,), (X;+1, ¥i+1), the linear function y = a; + b;x is
drawn through the two points. The given data points in the figure are (1, 2), (2, 1), (4,4),
and (5, 3), and the linear spline is given by

y y

4+ 4+

3+ 3L

2+ 2k

1+ 1+
I I I I Ly I I I I Ly
1 2 3 4 5 1 2 3 4 5

(a) (b)

Figure 3.12 Splines through four data points. (a) Linear spline through (1,2), (2,1),
(4,4), and (5,3) consists of three linear polynomials given by (3.15). (b) Cubic spline
through the same points, given by (3.16).

Property 1
Property 2

Property 3

3.4 Cubic Splines | 167

Si(x)=2—(x —1)on][l,2]
SH(x)=1+ %(x —2)on[2,4]
S3(x) =4 — (x —4)on[4,5]. (3.15)

The linear spline successfully interpolates an arbitrary set of n data points. However,
linear splines lack smoothness. Cubic splines are meant to address this shortcoming of linear
splines. A cubic spline replaces linear functions between the data points by degree 3 (cubic)
polynomials.

An example of a cubic spline that interpolates the same points (1, 2), (2, 1), (4,4), and
(5, 3) is shown in Figure 3.12(b). The equations defining the spline are

Si(x)=2— %(x —D+0x—-1>+ g(x —1D>on[l,2]

SH(x)=1+ %(x —-2)+ g(x -2 = g(x — 2} on[2,4]

S30) =4+ 20 =4 = =@ = H+ 2x —H’ on[4.5]. (3.16)

Note in particular the smooth transition from one S; to the next at the base points, or “knots,”
x =2 and x = 4. This is achieved by arranging for the neighboring pieces S; and ;1 of
the spline to have the same zeroth, first, and second derivatives when evaluated at the knots.
Just how to do this is the topic of the next section.

Given n points (x1, 1), ..., (X», Ju), there is obviously one and only one linear spline
through the data points. This will not be true for cubic splines. We will find that there are
infinitely many through any set of data points. Extra conditions will be added when it is
necessary to nail down a particular spline of interest.

3.4.1 Properties of splines

To be a little more precise about the properties of a cubic spline, we make the follow-

ing definition: Assume that we are given the »n data points (x1, y1),..., (X5,), Where
the x; are distinct and in increasing order. A cubic spline S(x) through the data points
(x1, 1) ..., (xn, ¥n) is a set of cubic polynomials

S1(x) = y1 + bi(x — x1) + c1(x — x1)* +di(x — x1)° on [x1, x2]
Sh(x) = y2 + ba(x — x2) + c2(x — x2)* 4 da(x — x2)° on [x2, x3] (3.17)

Sn—1(X) = Yu—1 +bp_1(x = xp—1) + o1 (x — xn—l)z +dy_1(x — xn—l)30n [xn—1,xn]

with the following properties:
Si(x;) =y and S;(xj41) = yig1 fori=1,....,n — 1.
Si_ () =Sj(x;) fori =2,....,n — 1.

S () =8"(x;) fori =2,....n — 1.

Property 1 guarantees that the spline S(x) interpolates the data points. Property 2 forces
the slopes of neighboring parts of the spline to agree where they meet, and Property 3 does
the same for the curvature, represented by the second derivative.

168 | CHAPTER 3 Interpolation

> EXAMPLE 3.13 Check that {S], S5, S5} in (3.16) satisfies all cubic spline properties for the data points (1, 2),
(2,1), (4,4), and (5, 3).

We will check all three properties.

Property 1. There are n = 4 data points. We must check

S (1)=2 and $;(2) =1
$2) =1 and S$(4) =4
S3(4) =4 and S3(5) = 3.

These follow easily from the defining equations (3.16).

Property 2. The first derivatives of the spline functions are

13 15
Sl =—2 + 5 6—1?

LBy By
PR g
S =1 - Py D gy
X)=—-——W— —(x = .
3 4 4 8
We must check S (2) = 5(2) and S, (4) = S;(4). The first is

13 n 15 B 1
8 g8 4’

and the second is
1 n 15(4 %) 15(4 2)2_ 1
4 4 8 Ty

both of which check out.

Property 3. The second derivatives are

S{(x) = %(x -1

Sy =2 15 (x —2) (3.18)
2= n .
15 15
SU(x) = —— 4+ —(x — 4.
3 (x) 1 + 1 (x)
We must check S{(2) = S (2) and) (4) = S5 (4), both of which are true. Therefore, (3.16)
is a cubic spline. <

Constructing a spline from a set of data points means finding the coefficients b;, ¢;, d;
that make Properties 1-3 hold. Before we discuss how to determine the unknown coefficients
b;i, c;, d; of the spline, let us count the number of conditions imposed by the definition. The
first half of Property 1 is already reflected in the form (3.17); it says that the constant
term of the cubic S; must be y;. The second half of Property 1 consists of n — 1 separate
equations that must be satisfied by the coefficients, which we consider as unknowns. Each of
Properties 2 and 3 add » — 2 additional equations, foratotalofn — 1 4+ 2(n —2) =3n — 5
independent equations to be satisfied.

Property 4a

3.4 Cubic Splines | 169

How many unknown coefficients are there? For each part S; of the spline, three
coefficients b;, c;, d; are needed, for a total of 3(n — 1) = 3n — 3. Therefore, solving for
the coefficients is a problem of solving 3n — 5 linear equations in 3n — 3 unknowns. Unless
there are inconsistent equations in the system (and there are not), the system of equations
is underdetermined and so has infinitely many solutions. In other words, there are infinitely
many cubic splines passing through the arbitrary set of data points (xg, y1), ..., (Xz, Yn)-

Users of splines normally exploit the shortage of equations by adding two extra to the
3n — 5 equations to arrive at a system of m equations in m unknowns, where m = 3n — 3.
Aside from allowing the user to constrain the spline to given specifications, narrowing the
field to a single solution simplifies computing and describing the result.

The simplest way of adding two more constraints is to require, in addition to the previous
3n — 5 constraints, that the spline S(x) have an inflection point at each end of the defining
interval [x1, x,]. The constraints added to Properties 1-3 are

Natural spline. S{(x;) =0and S/ | (x,) = 0.

A cubic spline that satifies these two additional conditions is called a natural cubic
spline. Note that (3.16) is a natural cubic spline, since it is easily verified from (3.18) that
S/(1) =0and $5(5) = 0.

There are several other ways to add two more conditions. Usually, as in the case of the
natural spline, they determine extra properties of the left and right ends of the spline, so
they are called end conditions. We will take up this topic in the next section, but for now
we concentrate on natural cubic splines.

Now that we have the right number of equations, 3n — 3 equationsin 3#n — 3 unknowns,
we can write a MATLAB function to solve them for the spline coefficients. First we write
out the equations in the unknowns b;, ¢;, d;. Part 2 of Property 1 then implies the n — 1
equations:

= 81(x2) = y1 4+ b1(xa — x1) + c1(x2 — x1)> + d1(x2 — x1)°

Y =8p—100) = Y1+ bu1(xn — Xp—1) + o1 (X — xrlfl)2
+dy_1(xy — xn—l)3~ (3.19)

Property 2 generates the n — 2 equations,

0=S5](x2) — Sh(x2) = by + 2¢1(x2 — x1) + 3di (x2 — x1)> — by

0= Sy/,_z(xn—l) - S;;_](xn—l) =bp-2 + 2cp-2(xXp—1 — Xp-2)
+3dy—2(xp—1 — xn—Z)z — bp-1, (3.20)

and Property 3 implies the n — 2 equations:

0= Si/(xz) — Sé/(xz) =2c1 + 6di(x3 — x1) — 2¢2

0= S;,/_z(xn—l) - S;,/_l(xn—l) =2¢yp2 +6dy 2(xp—1 — xp-2) — 2¢c,—1. (3.21)

Instead of solving the equations in this form, the system can be simplified drastically by
decoupling the equations. With a little algebra, a much smaller system of equations in the ¢;
can be solved first, followed by explicit formulas for the b; and d; in terms of the known ¢;.

170 | CHAPTER 3 Interpolation

It is conceptually simpler if an extra unknown ¢, =S, (x,)/2 is introduced. In addi-
tion, we introduce the shorthand notation §; =x;4+1 — x; and A; =y;41 — y;. Then (3.21)
can be solved for the coefficients

di = Ci+1 — Ci

fori=1,...,n — 1. (3.22)
36;
Solving (3.19) for b; yields
A.
b,’ = < _ C,’Si — d,(Slz
i
B - 2)
=— —¢é — = (cit] — ¢
81‘ i0j 3 i+1 i
Ap 4
=— — 57 Q¢ +cit1) (3.23)
Si 3
fori=1,....,n — 1.
Substituting (3.22) and (3.23) into (3.20) results in the following » — 2 equations in
Cly...,Cp.

A> Aq
Sicr +2(81 +82)cr + Sz =3 — — —
%) 81

Sn—1 Sn—2

Two more equations are given by the natural spline conditions (Property 4a):

AV | Ap_2
Sp—2¢n—2 + 2082 + 8—1)cp—1 + p—1cy =3 - .

Si/(xl) =0—2c1 =0
S;L](xn) =0— 2¢, =0.

This gives a total of n equations in » unknowns ¢;, which can be written in the matrix form

1 0 0 1 e T
81 261 + 26, 5o
0 &2 282 + 263 83
Sn—2 28,2+ 28i—1 Su—1
i 0 0 L L&
_ 0 -

= : . (3.24)

Ap—1 _ Ap—
3 (dn—1 dn—2

3.4 Cubic Splines | 171

After cy,...,c, are obtained from (3.24), by,...,b,—1 and di,...,d,_; are found
from (3.22) and (3.23).

Note that (3.24) is always solvable for the ¢;. The coefficient matrix is strictly diagonally
dominant, so by Theorem 2.10, there is a unique solution for the ¢; and therefore also for
the b; and d;. We have thus proved the following theorem:

THEOREM 3.7 Let n > 2. For a set of data points (x1, y1), ..., (x,, ¥,) with distinct x;, there is a unique
natural cubic spline fitting the points. |

Natural cubic spline

Givenx = [x1,...,x,] where x; < --- < x,, y=1[¥1, ..., ¥ul
fori=1,....,n—1
aip =i
8i =Xit1 — X
Ai=Yiv1 — Vi
end
Solve (3.24) for ¢y, ..., ¢y
fori=1,....n—1
e
36;
b= 20 % e ke
e A N G VT
i 31’ 3 i i+1
end

The natural cubic spline is
Si(x) =a; + bi(x — x;) +ci(x —x;))> +di(x —x;)> on [x;,x;p1]fori=1,...,n — 1.

> EXAMPLE 3.14 Find the natural cubic spline through (0, 3), (1, —2), and (2, 1).

The x-coordinates are x; =0, xp = 1, and x3 = 2. The y-coordinates are a; =
y1 =3,a2 = y»» = —2, and a3 = y3 = 1, and the differences are §; =8, =1, A} = -5,
and A, = 3. The tridiagonal matrix equation (3.24) is

1 00 cl 0
0 0 1 3 0
The solution is [c1, 2, 3] = [0, 6, 0]. Now, (3.22) and (3.23) yield
g=2- 5 _
381 3
— —6
dr = Ga—-a_ 5 _)
38, 3
A 8 1
=3, 3 (2c1 + ¢2) 3()
Ay & 1
by=—— =2 =3—--(12)=—1.
2= 5, 3(Cz+03) 3()

Therefore, the cubic spline is
S1(x) =3 — 7x 4+ 0x> + 2x> on [0, 1]
S(x)=-2—1(x — 1) +6(x —1)>—2(x — D3on[l,2].

172 | CHAPTER 3 Interpolation

MATLAB code for this calculation follows. For different (not natural) endpoint condi-
tions, discussed in the next section, the top and bottom rows of (3.24) are replaced by other
appropriate rows.

$Program 3.5 Calculation of spline coefficients
$Calculates coefficients of cubic spline

$Input: x,y vectors of data points

% plus two optional extra data vl, vn

$Output: matrix of coefficients bl,cl,dl;b2,c2,d2;...
function coeff=splinecoeff (x,y)

n=length (x) ;v1l=0;vn=0;

A=zeros (n,n) ; % matrix A is nxn

r=zeros (n,1) ;

for i=1:n-1 % define the deltas
dx(i)= x(i+1)-x(i); dy(i)=y(i+1)-y(i);

end

for i=2:n-1 % load the A matrix

A(d,1-1:i+41)=[dx(i-1) 2*(dx(i-1)+dx(i)) dx(i)]1;
r(i)=3*(dy(i)/dx(i)-dy(i-1)/dx(i-1)); % right-hand side
nd
Set endpoint conditions
Use only one of following 5 pairs:

o° (D

o\°

A(1,1) = 1; % natural spline conditions

A(n,n) = 1;

$A(1,1)=2;r(1)=vl; % curvature-adj conditions
%$A(n,n)=2;r(n)=vn;

$A(1,1:2)=[2*dx (1) dx(1)];r(1l)=3*(dy(1)/dx(1)-vl); %clamped
$A(n,n-1:n)=[dx(n-1) 2*dx(n-1)];r(n)=3*(vn-dy (n-1)/dx(n-1)) ;
$A(1,1:2)=[1 -171; % parabol-term conditions, for n>=3
$A(n,n-1:n)=[1 -1];

$A(1,1:3)=[dx(2) -(dx(1l)+dx(2)) dx(1)]; % not-a-knot, for n>=4
%$A(n,n-2:n)=[dx(n-1) -(dx(n-2)+dx(n-1)) dx(n-2)]1;
coeff=zeros(n,3) ;

coeff (:,2)=A\r; % solve for c coefficients

for i=1:n-1 % solve for b and d

coeff (i,3)=(coeff (i+1,2)-coeff (i,2))/(3*dx (1)) ;

coeff (i,1)=dy(i)/dx(i)-dx(i)* (2*coeff (i,2)+coeff(i+1,2))/3;
end
coeff=coeff(1l:n-1,1:3);

We have taken the liberty of listing other choices for end conditions, although they are
commented out for now. The alternative conditions will be discussed in the next section.
Another MATLAB function, titled splineplot.m, calls splinecoeff.m to get the coefficients
and then plots the cubic spline:

$Program 3.6 Cubic spline plot
$Computes and plots spline from data points
$Input: x,y vectors of data points, number k of plotted points
% per segment
$Output: x1, yl spline values at plotted points
function [x1,yl]l=splineplot (x,vy, k)
n=length (x) ;
coeff=splinecoeff (x,y);
x1=[1; yi=I[1;
for i=1:n-1
xs=linspace (x (i) ,x(i+1) ,k+1);
dx=xs-x (1) ;

3.4 Cubic Splines | 173

ys=coeff (i,3)*dx; % evaluate using nested multiplication
ys=(ys+coeff (i,2)) .*dx;
ys=(ys+coeff(i,1)) .*dx+y (i) ;
x1=[x1; xs(l:k)’']; yl=I[yl;ys(1:k)'];
end
x1=[x1; x(end)];yl=[yl;y(end)];
plot (x,y, ‘o’ ,x1,y1)

Figure 3.13(a) shows a natural cubic spline generated by splineplot.m.

y y
4 4+
39 3¢
2F 2
1r- 1+
| | | | %5 | | | |) g
1 2 3 4 5 1 2 3 4 5
(a) (b)
y y
4+ 4=
34 3¢
2 2k
1F 1+
| | | | 4,y | | | | 4>y
1 2 3 4 5 1 2 3 4 5
() (d

Figure 3.13 Cubic splines through six points. The plots are generated by
splineplot (x,y,10) with input vectors x=[0 1 2 3 4 5] and y=[3 14 1

2 0]. (a) Natural cubic spline (notice inflection points at ends) (b) Not-a-knot cubic
spline (single cubic equation on [0,2] and on [3,5]) (c) Parabolically terminated spline
(d) Clamped cubic spline (clamped at slope 0 at both ends).

3.4.2 Endpoint conditions

The two extra conditions specified in Property 4a are called the “endpoint conditions” for a
natural spline. Requiring that these be satisfied along with Properties 1 through 3 narrows the
field to exactly one cubic spline, according to Theorem 3.9. It turns out that there are many
different versions of Property 4, meaning many other pairs of endpoint conditions, for which
an analogous theorem holds. In this section, we present a few of the more popular ones.

Property 4b Curvature-adjusted cubic spline. The first alternative to a natural cubic spline requires
setting S7(x1) and S, (x,) to arbitrary values, chosen by the user, instead of zero. This

174 | CHAPTER 3 Interpolation

Property 4c

Property 4d

choice corresponds to setting the desired curvatures at the left and right endpoints of the
spline. In terms of (3.23), it translates to the two extra conditions

201 =1

2¢, = vy,
where v1, v, denote the desired values. The equations turn into the two tableau rows

20000 - -+ 00 | v
00 0O0O0 -+ -+ 0 2 | vy

to replace the top and bottom rows of (3.24), which were added for the natural spline. Notice
that the new coefficient matrix is again strictly diagonally dominant, so that a generalized
form of Theorem 3.9 holds for curvature-adjusted splines. (See Theorem 3.10, presented
shortly.) In splinecoeff.m, the two lines

A(l,1)=2;r(1)=vl; % curvature-adj conditions
A(n,n)=2;r(n)=vn;

must be substituted in place of the two existing lines for the natural spline.

The next alternative set of end conditions is

Clamped cubic spline. This alternative is similar to the preceding one, but it is the first
derivatives S{ (x1) and S;fl (xy,) that are set to user-specified values vy and v, respectively.
Thus, the slope at the beginning and end of the spline are under the user’s control.

Using (3.22) and (3.23), we can write the extra condition Si (x1) = vp as

Ay
261c1 + 81cp =3 5_ — V1
1

and S, | (x,) = v, as

An—l
Sp—1Cu—1 +28,—1¢cp =3 vy — .
Sn—1

The two corresponding tableau rows are

26 66 00 -+ -~ 0 O 0 | 3(A1/81 — V1)
0 0 0 0 -+ - 0 St 281 | 3(0n — Ap—1/8n-1) |

Note that strict diagonal dominance holds also for the revised coefficient matrix in (3.24),
so Theorem 3.9 also holds with the natural spline replaced with the clamped spline. In
splinecoeff.m, the two lines

A(1,1:2)=[2*dx (1) Adx(1)];r(1)=3*(dy(1)/dx(1)-v1l);
A(n,n-1:n)=[dx(n-1) 2*dx(n-1)];r(n)=3*(vn-dy(n-1) /dx(n-1)) ;

must be substituted. See Figure 3.13 for a clamped spline with vi = v, = 0.

Parabolically terminated cubic spline. The first and last parts of the spline, S1 and S,_1,
are forced to be at most degree 2, by specifying thatd; = 0 = d,,_;. Equivalently, according
to (3.22), we can require that ¢y =c and ¢,—1 =c¢,. The equations form the two tableau
rows

Property 4e

THEOREM 3.8

3.4 Cubic Splines | 175

to be used as the top and bottom rows of (3.24). Assume that the number » of data points
satisfies n > 3. (See Exercise 19 for the case n = 2.) In this case, upon replacing c| by ¢
and ¢, by ¢,—1, we find that the matrix equation reduces to a strictly diagonally dominant
n — 2 X n — 2 matrix equation in ¢, ..., ¢,—1. Therefore, a version of Theorem 3.9 holds
for parabolically terminated splines, assuming that n > 3.

In splinecoeff .m, the two lines

A(l,1:2)=[1 -1]; % parabol-term conditions
A(n,n-1:n)=[1 -1];

must be substituted.

Not-a-knot cubic spline. The two added equations are d| = d; and d,,_» = d,,_1, or equiv-
alently, S{"(x2) = 8} (x2) and S)" ,(x,—1) = S, | (x,—1). Since S1 and S are polynomials
of degree 3 or less, requiring their third derivatives to agree at x, while their zeroth, first,
and second derivatives already agree there, causes S1 and S> to be identical cubic polyno-
mials. (Cubics are defined by four coefficients, and four conditions are specified.) Thus,
X2 is not needed as a base point: The spline is given by the same formula S; = S on the
entire interval [x, x3]. The same reasoning shows that S,_ = S,,_1, so not only x», but
also x,_1, is “no longer a knot.”
Note that d; = dp implies that (c; — ¢1)/81 = (¢3 — ¢2) /82, or

drc1 — (81 + 82)cz + 813 =0,
and similarly, d,,_, = d,_| implies that
Sp_1cn—2 — (bn—2 + 8y—1)cn—1 + 8—2¢, = 0.

It follows that the two tableau rows are

6 —(1+6) 664 0 - -~ 0 O 0 0 | O
0 0 0 0 - - 0 -1 —@uo2+-1) 2 | 0)°

In splinecoeff .m, the two lines

% not-a-knot conditions

A(1,1:3)=[dx(2) -(dx(1)+dx(2)) dx(1)]1;
)) dx(n-2)1;

A(n,n-2:n)=[dx(n-1) -(dx(n-2)+dx(n-1

are used. Figure 3.13(b) shows an example of a not-a-knot cubic spline, compared with the
natural spline through the same data points in part (a) of the figure.

As mentioned earlier, a theorem analogous to Theorem 3.7 exists for each of the pre-
ceding choices of end conditions:

Assume that n > 2. Then, for a set of data points (x1, y1), ..., (x5, »») and for any one of
the end conditions given by Properties 4a—4c, there is a unique cubic spline satisfying the
end conditions and fitting the points. The same is true assuming that n» > 3 for Property 4d
and n > 4 for Property 4e. |

MATLAB’s default spline command constructs a not-a-knot spline when given four
or more points. Let x and y be vectors containing the x; and y; data values, respectively.
Then the y-coordinate of the not-a-knot spline at another input x0 is calculated by the
MATLAB command

>> y0 = spline(x,y,x0);

176 | CHAPTER 3 Interpolation

3.4 Exercises

If x0 is a vector of x-coordinates, then the output y0 will be a corresponding vector of
y-coordinates, suitable for plotting, etc. Alternatively, if the vector input y has exactly two
more inputs than x, the clamped cubic spline is calculated, with clamps vy and v, equal to
the first and last entries of y.

Decide whether the equations form a cubic spline.

B4+x—1 on [0,1]
(@ Skx)= 3 5
—(x—=-1)4+3x—-D"+3x—-1D+1 on[l,2]
3,2
b SG) = 2x° +x“+4x +5 on [0,1]
x—D3+7x—D2+12x — 1)+ 12 on[l2]

(a) Check the spline conditions for

S$H(x)=104+20(x — 1)+ 15(x = D2 +4x —1)® on[l,2]

’

{ S1(x) = 1 4 2x + 3x2 + 4x3 on [0, 1]

(b) Regardless of your answer to (a), decide whether any of the following extra conditions are
satisfied for this example: natural, parabolically terminated, not-a-knot.

Find c in the following cubic splines. Which of the three end conditions—natural,
parabolically terminated, or not-a-knot—if any, are satisfied?

— Uy 4343
@ S = 4 14x + 3x o % on [0,1]
2—5x—=D+clx—-1D"—=3(x—-1)° on[l2]
_ 2
® SCo) = 3 —9x +4x i on [0,1]
—2—x—=-D+cx—-1 on [1,2]
2 = 3x 4+ Ix? = 53 on [0,1]
© SO =1-l+cx—D+ix-D>=@x-1> on[l2]
I+l -2 -3 -22-(x-23 on[23]

Find k1, k2, k3 in the following cubic spline. Which of the three end conditions—natural,
parabolically terminated, or not-a-knot—if any, are satisfied?

4+ kx +2x2 — L3 on [0, 1]
Sx)=1 1 -3 - D+hkx-D>-Ltx-D> on[l2]
l+hkx -2+ @x—-22—1x—-2°> on[23]

How many natural cubic splines on [0, 2] are there for the given data (0, 0), (1, 1), (2,2)?
Exhibit one such spline.

Find the parabolically terminated cubic spline through the data points (0,1), (1,1), (2,1), (3,1),
(4,1). Is this spline also not-a-knot? natural?

Solve equations (3.24) to find the natural cubic spline through the three points (a) (0,0), (1,1),
(2.4) (b) (=L,1), (1,1), (2,4).

Solve equations (3.24) to find the natural cubic spline through the three points (a) (0,1), (2,3),
(3,2) (b) (0,0), (1,1), (2,6).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

3.4 Cubic Splines | 177

Find $'(0) and S’ (3) for the cubic spline

S1(x)=3+b1x +x3 on [0, 1]
SxX)=14+by(x —1)+3x—-D*=2(x— 1> on[l,3] "

True or false: Given n = 3 data points, the parabolically terminated cubic spline through the
points must be not-a-knot.

(a) How many parabolically terminated cubic splines on [0, 2] are there for the given data
(0,2), (1,0), (2,2)? Exhibit one such spline. (b) Answer the same question for not-a-knot.

How many not-a-knot cubic splines are there for the given data (1, 3), (3, 3), (4,2), (5,0)?
Exhibit one such spline.

(a) Find b; and c3 in the cubic spline

—1+b1x—8x2~|—8x3 on [0, 1]
S =1 HYa-D+Ye -1 -2 -1)3 on[1,2]
24 B -2 +ea3(x =22 - Fx =2 on[2.3]

(b) Is this spline natural? (c) This spline satisfies “clamped’ endpoint conditions. What are the
values of the two clamps?

Consider the cubic spline

Si(x) =6 — 2x + 3x3 on [0,2]
SH(xX)=6+4(x —2)+clx —2)2 +d(x —2)° on[2,3]

(a) Find c. (b) Does there exist a number d such that the spline is natural? If so, find d.

Can a cubic spline be both natural and parabolically terminated? If so, what else can you say
about such a spline?

Does there exist a (simultaneously) natural, parabolically terminated, not-a-knot cubic spline
through each set of data points (x1, y1), ..., (X100, ¥100) With distinct x;? If so, give a reason. If
not, explain what conditions must hold on the 100 points in order for such a spline to

exist.

Assume that the leftmost piece of a given natural cubic spline is the constant function
S1(x) = 1 on the interval [—1, 0]. Find three different possibilities for the neighboring piece
S>(x) of the spline on [0, 1].

Assume that a car travels along a straight road from one point to another from a standing start
at time ¢ = 0 to a standing stop at time ¢ = 1. The distance along the road is sampled at certain
times between 0 and 1. Which cubic spline (in terms of end conditions) will be most
appropriate for describing distance versus time?

The case n = 2 for parabolically terminated cubic splines is not covered by Theorem 3.8.
Discuss existence and uniqueness for the cubic spline in this case.

Discuss the existence and uniqueness of a not-a-knot cubic spline when n = 2 and n = 3.

Theorem 3.8 says that there is exactly one not-a-knot spline through any given four points with
distinct x;. (a) How many not-a-knot splines go through any given 3 points with distinct x; ?
(b) Find a not-a-knot spline through (0, 0), (1, 1), (2,4) that is not parabolically

terminated.

178 | CHAPTER 3 Interpolation

3.4 Computer Problems

1.

10.

11.

12.

13.

14.

Find the equations and plot the natural cubic spline that interpolates the data points (a) (0, 3),
(1,5),(2,4),3,1) (b) (-1,3),(0,5),3, 1), (4, 1), 5, D).

Find and plot the not-a-knot cubic spline that interpolates the data points (a) (0, 3), (1, 5),
(2,4),3,1) (b) (—1,3),(0,5), (3, 1), (4, 1), (5,).

Find and plot the cubic spline S satisfying S(0) =1, S(1) =3,52) =3,S3)=4,54) =2
and with §”(0) = S”(4) = 0.

Find and plot the cubic spline S satisfying S(0) =1, S(1) =3,512) =3,53) =4,54) =2
and with S”(0) = 3 and S"(4) = 2.

Find and plot the cubic spline S satisfying S(0) =1, S(1) =3,52) =3,5S3)=4,54) =2
and with §'(0) =0 and §'(4) = 1.

Find and plot the cubic spline S satisfying S(0) =1, S(1) =3,5(2) =3,53)=4,54) =2
and with §'(0) = —2 and §'(4) = 1.

Find the clamped cubic spline that interpolates f'(x) = cosx at five evenly spaced points in
[0, r /2], including the endpoints. What is the best choice for S'(0) and S’ (7 /2) to minimize
interpolation error? Plot the spline and cosx on [0, 2].

Carry out the steps of Computer Problem 7 for the function f(x) = sinx.

Find the clamped cubic spline that interpolates f(x) = Inx at five evenly spaced points in
[1, 3], including the endpoints. Empirically find the maximum interpolation error on [1, 3].

Find the number of interpolation nodes in Computer Problem 9 required to make the maximum
interpolation error at most 0.5 x 1077,

(a) Consider the natural cubic spline through the world population data points in Computer
Problem 3.1.1. Evaluate the year 1980 and compare with the correct population. (b) Using a
linear spline, estimate the slopes at 1960 and 2000, and use these slopes to find the clamped
cubic spline through the data. Plot the spline and estimate the 1980 population. Which
estimates better, natural or clamped?

Recall the carbon dioxide data of Exercise 3.1.17. (a) Find and plot the natural cubic spline
through the data, and compute the spline estimate for the CO; concentration in 1950. (b) Carry
out the same analysis for the parabolically terminated spline. (c) How does the not-a-knot
spline differ from the solution to Exercise 3.1.17?

In a single plot, show the natural, not-a-knot, and parabolically terminated cubic splines
through the world oil production data from Computer Problem 3.2.3.

Compile a list of 101 consecutive daily close prices of an exchange-traded stock from a
financial data website. (a) Plot the interpolating polynomial through every fifth point. That is,
let x0=0:5:100 and y0 denote the stock prices on days 0, 5, 10, ..., 100. Plot the degree 20
interpolating polynomial at points x=0:1:100 and compare with the daily price data. What is
the maximum interpolation error? Is the Runge phenomenon evident in your plot? (b) Plot the
natural cubic spline with interpolating nodes 0:5:100 instead of the interpolating
polynomial, along with the daily data. Answer the same two questions. (c) Compare the two
approaches of representing the data.

3.5 Bézier Curves | 179
15. Compile a list of 121 hourly temperatures over five consecutive days from a weather data

website. Let x0=0:6:120 denote hours, and y0 denote the temperatures at hours
0,6,12,...,120. Carry out steps (a)—(c) of Computer Problem 14, suitably adapted.

3.5 BEZIER CURVES

Bézier curves are splines that allow the user to control the slopes at the knots. In return for
the extra freedom, the smoothness of the first and second derivatives across the knot, which
are automatic features of the cubic splines of the previous section, are no longer guaranteed.
Bézier splines are appropriate for cases where corners (discontinuous first derivatives) and
abrupt changes in curvature (discontinuous second derivatives) are occasionally needed.

Pierre Bézier developed the idea during his work for the Renault automobile com-
pany. The same idea was discovered independently by Paul de Casteljau, working for
Citroen, a rival automobile company. It was considered an industrial secret by both com-
panies, and the fact that both had developed the idea came to light only after Bézier pub-
lished his research. Today the Bézier curve is a cornerstone of computer-aided design and
manufacturing.

Each piece of a planar Bézier spline is determined by four points (xi, y1),
(x2, 1), (x3,33), (x4, y1). The first and last of the points are endpoints of the spline
curve, and the middle two are control points, as shown in Figure 3.14. The curve leaves
(x1, y1) along the tangent direction (x — x1, y» — y1) and ends at (x4, y4) along the tangent
direction (x4 — x3, y4 —)3). The equations that accomplish this are expressed as a para-
metric curve (x(z), y(¢)) for0 <¢ < 1.

(x3, y3/),0

Figure 3.14 Bézier curve of Example 3.15. The points (x7,y7) and (xa,ys) are spline
points, while (x2,y>) and (x3,y3) are control points.

Bézier curve

Given endpoints (x1, 1), (x4, 1)
control points (x2, 1), (x3, 13)

Set
by =3(x2 — x1)
cx = 3(x3 — x2) — by
de =x4 — x1 — by —
by =30 —n)
¢y =303 — ») — by
dy=ys—y1 — b, —cy.

180 | CHAPTER 3 Interpolation

» EXAMPLE 3.15

» EXAMPLE 3.16

The Bézier curve is defined for 0 <7 < 1 by
x(t) = x1 + byt + cxt? + dyt>
Y(t) = y1 + byt + ¢yt +dyt°.

It is easy to check the claims of the previous paragraph from the equations. In fact,
according to Exercise 11,

x(0) = xq

x'(0) =3(x2 — x1)

x(1) =x4

x'(1) = 3(x4 — x3), (3.25)

and the analogous facts hold for y(¢).

Find the Bézier curve (x(¢), y(¢)) through the points (x, y) = (1, 1) and (2, 2) with control
points (1, 3) and (3, 3).

The four points are (xi,y1) = (1,1), (x2,») = (1,3),(x3,13) =(3,3), and
(x4, y4) = (2,2). The Bézier formulas yield by =0,cy =6,dy = —5 and b, =6,c, =
—6,d, = 1. The Bézier spline
x(t) =1+ 6> — 53
y(t) =1+ 6t — 612 + 13

is shown in Figure 3.14 along with the control points. <

Bézier curves are building blocks that can be stacked to fit arbitrary function values
and slopes. They are an improvement over cubic splines, in the sense that the slopes at the
nodes can be specified as the user wants them. However, this freedom comes at the expense
of smoothness: The second derivatives from the two different directions generally disagree
at the nodes. In some applications, this disagreement is an advantage.

As a special case, when the control points equal the endpoints, the spline is a simple
line segment, as shown next.

Prove that the Bézier spline with (x1, y1) = (x2, »») and (x3, 33) = (x4, y4) isaline segment.
The Bézier formulas show that the equations are
xX(0) = x1 430 — 2117 = 2004 — x> = x1 + (x4 — x)1°(3 = 20)
YO =1+ 30u = yr* = 20 = y)r* =y + (a = 1’3 = 20)
for 0 <t < 1. Every point in the spline has the form
(x (1), (1)) = (x1 + r(xa — x1), y1 +7r(a — 31))
= ((I = r)x1 +rxa, (1 = r)y1 +ry),
where r = t2(3 — 2¢). Since 0 < r < 1, each point lies on the line segment connecting

(x1, 1) and (x4, y4). <

Bézier curves are simple to program and are often used in drawing software. A freehand
curve in the plane can be viewed as a parametric curve (x(¢), y(¢)) and represented by a
Bézier spline. The equations are implemented in the following MATLAB freehand drawing
program. The user clicks the mouse once to fix a starting point (xo,)p) in the plane, and

3.5 Bézier Curves | 181

three more clicks to mark the first control point, second control point, and endpoint. A
Bézier spline is drawn between the start and end points. Each subsequent triple of mouse
clicks extends the curve further, using the previous endpoint as the starting point for the
next piece. The MATLAB command ginput is used to read the mouse location. Figure 3.15
shows a screenshot of bezierdraw.m.

1.0
0.8

0.6 L»

0.4 Ooi;Z
0.2
0 \
{_
©

-0.2
-04
-0.6
-0.8

-1.0
-1 06 -02 0 02 0.6 1

Figure 3.15 Program 3.7 built from Bézier curves. Screenshot of MATLAB code
bezierdraw.m, including direction vectors drawn at each control point.

$Program 3.7 Freehand Draw Program Using Bezier Splines

$Click in Matlab figure window to locate first point, and click
three more times to specify 2 control points and the next
spline point. Continue with groups of 3 points to add more
to the curve. Press return to terminate program.

function bezierdraw

plot([-1 11,[0,0],"k’, [0 0], [-1 1],’k’) ;hold on

o° o°

o°

t=0:.02:1;
[x,y]=ginput (1) ; % get one mouse click
while (0 == 0)
[xnew, ynew] = ginput(3); % get three mouse clicks
if length(xnew) < 3
break % if return pressed, terminate
end

x=[x;xnew] ;y=[y;ynew] ; % plot spline points and control pts
plot ([x(1) x(2)1,[y(1) y(2)1,'r:",x(2),y(2),'rs");

plot ([x(3) x(4)],[y(3) v(4)],'xr:",x(3),y(3),'rs");

plot (x(1),y(1),'bo’,x(4),y(4),'bo’) ;

bx=3* (x(2)-x(1)); by=3*(y(2)-y(1)); % spline equations

cx=3%* (x(3)-x(2)) -bx;cy=3*(y(3)-y(2)) -by;

dx=x(4) -x (1) -bx-cx;dy=y (4) -y (1) -by-cy;

xp=x (1) +t.* (bx+t.* (cx+t*dx)) ; % Horner’s method

yp=y (1) +t.* (by+t.* (cy+t*dy)) ;

plot (xp, yp) % plot spline curve

x=x(4) ;y=y(4); % promote last to first and repeat
end
hold off

Although our discussion has been restricted to two-dimensional Bézier curves, the
defining equations are easily extended to three dimensions, in which they are called Bézier
space curves. Each piece of the spline requires four (x, y, z) points—two endpoints and two
control points—just as in the two-dimensional case. Examples of Bézier space curves are
explored in the exercises.

182 | CHAPTER 3 Interpolation

3.5 Exercises

10.

11.

12.

Find the one-piece Bézier curve (x(¢), y(¢)) defined by the given four points.
(@) (0,0), (0,2), (2,0), (1,0) (b) (1,1), (0,0), (-2,0), (-2,1) (¢) (1,2), (1,3), (2,3), (2,2)

Find the first endpoint, two control points, and last endpoint for the following one-piece Bézier
curves.

@ x(t) =1+ 6t2 4 2¢3) x(1) =3 +4t — 12 23
yty=1—t+1 y&)=2—1t+12+33
x()=2+12 -1

(© 3
yt)=1—1t+2¢

Find the three-piece Bézier curve forming the triangle with vertices (1, 2), (3,4), and (5, 1).
Build a four-piece Bézier spline that forms a square with sides of length 5.

Describe the character drawn by the following two-piece Bezier curve:
(0,2) (1,2) (1,1) (0,1)
(0,1) (1,1) (1,0) (0,0)

Describe the character drawn by the following three-piece Bezier curve:
(0,1) (0,1) (0,0) (0,0)
(0,0) (0,1) (1,1) (1,0)
(1,0) (1,1) (2,1) (2,0)

Find a one-piece Bézier spline that has vertical tangents at its endpoints (—1,0) and (1, 0) and
that passes through (0, 1).

Find a one-piece Bézier spline that has a horizontal tangent at endpoint (0, 1) and a vertical
tangent at endpoint (1, 0) and that passes through (1/3,2/3) atz = 1/3.

Find the one-piece Bézier space curve (x(¢), y(¢), z(¢)) defined by the four points.
(@) (1,0,0),(2,0,0),(0,2,1),(0,1,0) (b) (1,1,2),(1,2,3),(-1,0,0),(1,1,1)
(©(2,1,1),3,1,1),(0,1,3),(3, 1,3)

Find the knots and control points for the following Bézier space curves.

x() =1+ 66+ 213 X(6) =3 + 4t — 12 + 24
(a) y)y=1—t+1 (b) W) =2 — 1+ 12438
Z(f):1+l‘+6t2 Z(If)=3+t+t2—t3

x(t)=2+1>-1
(c) y(t)=1—1t+ 213
z(t) = 213

Prove the facts in (3.25), and explain how they justify the Bézier formulas.
Given (x1, y1), (x2, »2), (x3, 13), and (x4, 1), show that the equations
x(0) =x1(1 = 0% 4+ 300 — 0% + 3x3(1 — 01> + x4
y(t) = (1 =0 +3n0 = 0% +3p3(1 —)2 + yt®

give the Bézier curve with endpoints (x1, y1), (x4, y4) and control points (x2, 32), (x3, }3).

3.5 Bézier Curves | 183

3.5 Computer Problems

1.
2.
3.

Reality
Check A

Plot the curve in Exercise 7.
Plot the curve in Exercise 8.

Plot the letter from Bézier curves. (a) W (b) B (¢) C (d) D.

Fonts from Bézier curves

In this project, we explain how to draw letters and numerals by using two-dimensional
Bézier curves. They can be implemented by modifying the MATLAB code in Program 3.7

or by writing a PDF file.

Modern fonts are built directly from Bézier curves, in order to be independent of the
printer or imaging device. Bézier curves were a fundamental part of the PostScript language
from its start in the 1980s, and the PostScript commands for drawing curves have migrated
in slightly altered form to the PDF format. Here is a complete PDF file that illustrates the
curve we discussed in Example 3.15.

%PDF-1.7
1 0 obj

<<

/Length 2 0 R

>>

stream

100 100 m

100 300 300 300 200 200 c
S

endstream

endobj

2 0 obj

1000

endobj

4 0 obj

<<

/Type /Page

/Parent 5 0 R

/Contents 1 0 R

>>

endobj

5 0 obj

<<

/Kids [4 0 RI]

/Count 1

/Type /Pages

/MediaBox [0 0 612 792]
>>

endobj

3 0 obj

<<

/Pages 5 0 R
/Type /Catalog
>>

endobj

xref

0 6

0000000000 65535
0000000100 00000
0000000200 00000
0000000500 00000
0000000300 00000
0000000400 00000
trailer

<<

/Size 6

/Root 3 0 R

>>

startxref

1000

$%EOF

BB BBB M

184 | CHAPTER 3 Interpolation

= o

Figure 3.16 Times-Roman T made with Bézier splines. Blue circles are spline endpoints, and black
circles are control points.

Most of the lines in this template file do various housekeeping chores. For example,
the first line identifies the file as a PDF. We will focus on the lines between st ream and
endstream, which are the ones that identify the Bézier curve. The move command (m) sets
the current plot point to be the (x, y) point specified by the two preceding numbers—in this
case, the point (100, 100). The curve command (c) accepts three (x, y) points and constructs
the Bézier spline starting at the current plot point, treating the three (x, y) pairs as the two
control points and the endpoint, respectively. The stroke command (S) draws the curve.

This text file sample.pdf can be downloaded from the textbook website. If it is
opened with a PDF viewer, the Bézier curve of Figure 3.14 will be displayed. The coordinates
have been multiplied by 100 to match the default conventions of PDF, which are 72 units
to the inch. A sheet of letter-sized paper is 612 units wide and 792 high.

At present, characters from hundreds of fonts are drawn on computer screens and
printers using Bézier curves. Of course, since PDF files often contain many characters,
there are shortcuts for predefined fonts. The Bézier curve information for common fonts is
usually stored in the PDF reader rather than the PDF file. We will choose to ignore this fact
for now in order to see what we can do on our own.

Let’s begin with a typical example. The upper case T character in the Times Roman
font is constructed out of the following 16 Bézier curves. Each line consists of the numbers
X1 Y1 X2 2 X3 3 X4 y4 that define one piece of the Bézier spline.

237 620 237 620 237 120 237 120;
237 120 237 35 226 24 143 19;
143 19 143 19 143 0 143 0;
143 0 143 0 435 0 435 0;
435 0 435 0 435 19 435 19;
435 19 353 23 339 36 339 109;
339 109 339 108 339 620 339 620;
339 620 339 620 393 620 393 620;
393 620 507 620 529 602 552 492;
552 492 552 492 576 492 576 492;
576 492 576 492 570 662 570 662;
570 662 570 662 6 662 6 662;
6 662 6 662 0 492 0 492;

0 492 0 492 24 492 24 492;
24 492 48 602 71 620 183 620;
183 620 183 620 237 620 237 620;

To create a PDF file that writes the letter T, one needs to add commands within
the stream/endstream area of the above template file. First, move to the initial endpoint
(237, 620)

237 620 m

3.5 Bézier Curves | 185

Figure 3.17 Times-Roman 5 made with Bézier splines. Blue circles are spline endpoints, and black

circles are control points.

after which the first curve is drawn by the command
237 620 237 120 237 120 c¢

followed by fifteen more ¢ commands, and the stroke command (S) to finish the letter T,
shown in Figure 3.16. Note that the move command is necessary only at the first step; after
that the next curve command takes the current plot point as the first point in the next Bézier
curve, and needs only three more points to complete the curve command. The next curve
command is completed in the same way, and so on. As an alternative to the stroke command
S, the £ command will fill in the outline if the figure is closed. The command b will both
stroke and fill.

The number 5 is drawn by the following 21-piece Bézier curve and is shown in
Figure 3.17:

149 597 149 597 149 597 345 597;
345 597 361 597 365 599 368 606;
368 606 406 695 368 606 406 695;
406 695 397 702 406 695 397 702;
397 702 382 681 372 676 351 676;
351 676 351 676 351 676 142 676;
142 676 33 439 142 676 33 439;
33 439 32 438 32 436 32 434;
32 434 32 428 35 426 44 42¢6;
44 426 74 426 109 420 149 408;
149 408 269 372 324 310 324 208;
324 208 324 112 264 37 185 37;
185 37 165 37 149 44 119 66;
119 66 86 90 65 99 42 99;
42 99 14 99 0 87 0 62;

0 62 0 24 46 0 121 0;
121 0 205 0 282 27 333 78;
333 78 378 123 399 180 399 256;
399 256 399 327 381 372 333 422;
333 422 288 468 232 491 112 512;
112 512 112 512 149 597 149 597;

1. Use the bezierdraw.m program of Section 3.5 to sketch the upper case initial of your
first name.
2. Revise the draw program to accept an # x 8 matrix of numbers, each row representing a

piece of a Bézier spline. Have the program draw the lower case letter £ in the Times-Roman
font, using the following 21-piece Bézier curve:

186 | CHAPTER 3 Interpolation

289 452 289 452 166 452 166 452;
166 452 166 452 166 568 166 568;
166 568 166 627 185 657 223 657;
223 657 245 657 258 647 276 618;
276 618 292 589 304 580 321 580;
321 580 345 580 363 598 363 621;
363 621 363 657 319 683 259 683;
259 683 196 683 144 656 118 611;
118 611 92 566 84 530 83 450;
83 450 83 450 1 450 1 450;
1 450 1 450 1 418 1 418;
1 418 1 418 83 418 83 418;
83 418 83 418 83 104 83 104;
83 104 83 31 72 19 0 15;
0 15 0 15 0 0 0 0;
0 0 0 0 260 0 260 0;
260 0 260 0 260 15 260 15;
260 15 178 18 167 29 167 104;
167 104 167 104 167 418 167 418;
167 418 167 418 289 418 289 418;
289 418 289 418 289 452 289 452;

3. Using the template above and your favorite text editor, write a PDF file that draws the lower
case letter £. The program should begin with an m command to move to the first point,
followed by 21 ¢ commands and a stroke or fill command. These commands should lie
between the st ream and endstream commands. Test your file by opening it in a PDF
viewer.

4, Here are some other PDF commands:

0 0.0 RG

.0 0. set stroke color to red
.0 1.0 0.0 rg
w

set fill color to green

set stroke width to 2

both stroke and fill (S is stroke, £ ig fill,
b both)

o° o° o° o°

o N o R

Colors are represented according to the RGB convention, by three numbers between 0 and
1 embodying the relative contributions of red, green, and blue. Linear transformations may
be used to change the size of the Bézier curves, and rotate and skew the results. Such
coordinate changes are accomplished with the cm command. Preceding the curve
commands with

abcdefcm

for real numbers a, b, ¢, d, e, f will transform the underlying planar coordinate system by

x'=ax +by+e
YV =cx+dy+ f.

For example, using the cm command witha =d = 0.5, b = ¢ = e = f = 0 reduces the
size by a factorof 2, anda =d = —0.5,b = ¢ =0, and e = f = 400 turns the result upside
down and translates by 400 units in the x and y directions. Other choices can perform
rotations, reflections, or skews of the original Bézier curves. Coordinate changes are
cumulative. In this step, use the coordinate system commands to present a resized, colored,
and skewed version of the lower case f or other characters.

Software and Further Reading | 187

5. Although font information was a closely guarded secret for many years, much of it is now
freely available on the Web. Search for other fonts, and find Bézier curve data that will
draw letters of your choice in PDF or with bezierdraw.m.

6. Design your own letter or numeral. You should begin by drawing the figure on graph paper,
respecting any symmetries that might be present. Estimate control points, and be prepared
to revise them later as needed.

Software and Further Reading

Interpolation software usually consists of separate codes for determining and evaluating
the interpolating polynomial. MATLAB provides the polyfit and polyval commands
for this purpose. The MATLAB spline command calculates not-a-knot splines by default,
but has options for several other common end conditions. The command interpl com-
bines several one-dimensional interpolation options. The NAG library contains subroutines
e0laef and e01baf for polynomial and spline interpolation, and the IMSL has a number
of spline routines based on various end conditions.

A classical reference for basic interpolation facts is Davis [1975], and the references
Rivlin [1981] and Rivlin [1990] cover function approximation and Chebyshev interpola-
tion. DeBoor [2001] on splines is also a classic; see also Schultz [1973] and Schumaker
[1981]. Applications to computer-aided modelling and design are treated in Farin [1990]
and Yamaguchi [1988]. The CORDIC Method for approximation of special functions was
introduced in Volder [1959]. For more information on PDF files, see the PDF' Reference,
6th Ed., published by Adobe Systems Inc. [2006].

Least Squares

The global positioning system (GPS) is a satellite-based
location technology that provides accurate position-
ing at any time, from any point on earth. In just a few
years, GPS has gone from a special-purpose navigation
technology used by pilots, ship captains, and hikers to
everyday use in automobiles, cellphones, and PDAs.
The system consists of 24 satellites following pre-
cisely regulated orbits, emitting synchronized signals.

An earth-based receiver picks up the satellite signals,
finds its distance from all visible satellites, and uses the
data to triangulate its position.

Reality
Check Reality Check 4 on page 238 shows the

use of equation solvers and least squares calculations
to do the location estimation.

he concept of least squares dates from the pioneering work of Gauss and Legendre in
the early 19th century. Its use permeates modern statistics and mathematical modeling.
The key techniques of regression and parameter estimation have become fundamental tools

in the sciences and engineering.

In this chapter, the normal equations are introduced and applied to a variety of data-

fitting problems. Later, a more sophisticated approach, using the QR factorization, is
explored, followed by a discussion of nonlinear least squares problems.

4.1 LEAST SQUARES AND THE NORMAL EQUATIONS

The need for least squares methods comes from two different directions, one each from
our studies of Chapters 2 and 3. In Chapter 2, we learned how to find the solution of
Ax = b when a solution exists. In this chapter, we find out what to do when there is no
solution. When the equations are inconsistent, which is likely if the number of equations
exceeds the number of unknowns, the answer is to find the next best thing: the least squares
approximation.

4.1 Least Squares and the Normal Equations | 189

Chapter 3 addressed finding polynomials that exactly fit data points. However, if the
data points are numerous, or the data points are collected only within some margin of error,
fitting a high-degree polynomial exactly is rarely the best approach. In such cases, it is more
reasonable to fit a simpler model that may only approximate the data points. Both problems,
solving inconsistent systems of equations and fitting data approximately, are driving forces
behind least squares.

4.1.1 Inconsistent systems of equations

It is not hard to write down a system of equations that has no solutions. Consider the
following three equations in two unknowns:

X1 +x2=2
xl—X2:l
X1+ x2 =3. “.1)

Any solution must satisfy the first and third equations, which cannot both be true. A system
of equations with no solution is called inconsistent.

What is the meaning of a system with no solutions? Perhaps the coefficients are slightly
inaccurate. In many cases, the number of equations is greater than the number of unknown
variables, making it unlikely that a solution can satisfy all the equations. In fact, m equations
in n unknowns typically have no solution when m > n. Even though Gaussian elimination
will not give us a solution to an inconsistent system Ax = b, we should not completely give
up. An alternative in this situation is to find a vector x that comes the closest to being a
solution.

If we choose this “closeness” to mean close in Euclidean distance, there is a straight-
forward algorithm for finding the closest x. This special x will be called the least squares
solution.

We can get a better picture of the failure of system (4.1) to have a solution by writing
it in a different way. The matrix form of the system is Ax = b, or

11 2
1 -1 [;” }: 1. 4.2)
11 2 3

The alternative view of matrix/vector multiplication is to write the equivalent equation

1 1 2
x| 1 | +x| =1 |=]1]. (4.3)
1 1 3

In fact, any m x n system Ax = b can be viewed as a vector equation
X1v1 + xov2 + -+ + X0, = b, 4.4)

which expresses b as a linear combination of the columns v; of A, with coefficients
X1,...,Xp. In our case, we are trying to hit the target vector » as a linear combination
of two other three-dimensional vectors. Since the combinations of two three-dimensional
vectors form a plane inside R>, equation (4.3) has a solution only if the vector b lies in
that plane. This will always be the situation when we are trying to solve m equations in
n unknowns, with m > n. Too many equations make the problem overspecified and the
equations inconsistent.

Figure 4.1(b) shows a direction for us to go when a solution does not exist. There is no
pair x1, x, that solves (4.1), but there is a point in the plane Ax of all possible candidates that

190 | CHAPTER 4 Least Squares

SPOTLIGHT ON

%

r- T T T T T T T T T T T
I —
/ I/b =x,v, +X,p,
I
] vz
! I
! 0
/
Y1

———

"1

(a) (b)

Figure 4.1 Geometric solution of a system of three equations in two unknowns.
(@) Equation (4.3) requires that the vector b, the right-hand side of the equation, is a
linear combination of the columns vectors vy and v;. (b) If b lies outside of the plane
defined by vi and vy, there will be no solution. The least squares solution X makes the
combination vector Ax the one in the plane Ax that is nearest to b in the sense of
Euclidean distance.

is closest to . This special vector 4X is distinguished by the following fact: The residual
vector b — Ax is perpendicular to the plane {Ax|x € R"}. We will exploit this fact to find
a formula for X, the least squares “solution.”

First we establish some notation. Recall the concept of the transpose 47 of them x n
matrix 4, which is the n x m matrix whose rows are the columns of 4 and whose columns
are the rows of 4, in the same order. The transpose of the sum of two matrices is the sum of
the transposes, (4 + B)T = AT + BT. The transpose of a product of two matrices is the
product of the transposes in the reverse order—that is, (4B)” = BT 4T

To work with perpendicularity, recall that two vectors are at right angles to one another
if their dot product is zero. For two m-dimensional column vectors # and v, we can write
the dot product solely in terms of matrix multiplication by

V1
uTvz[ul,...,um] . 4.5)

Um

The vectors u and v are perpendicular, or orthogonal, if u” - v = 0, using ordinary matrix
multiplication.
Now we return to our search for a formula for X. We have established that

(b — AX) L {Ax|x € R"}.
Expressing the perpendicularity in terms of matrix multiplication, we find that
(A4x)T (b — AX) = 0 for all x in R".
Using the preceding fact about transposes, we can rewrite this expression as

xTAT (b — Ax) = 0 for all x in R",

Orthogonality Least squares is based on orthogonality. The shortest distance from

a point to a plane is carried by a line segment orthogonal to the plane.The normal equations

are a computational way to locate the line segment, which represents the least squares error.

» EXAMPLE 4.1

4.1 Least Squares and the Normal Equations | 191

meaning that the n-dimensional vector 47 (b — AX) is perpendicular to every vector x in
R", including itself. There is only one way for that to happen:

AT (b — 4%) =0.
This gives a system of equations that defines the least squares solution,
AT 4x = ATb. (4.6)

The system of equations (4.6) is known as the normal equations. Its solution X is the
so-called least squares solution of the system Ax = b.

Normal equations for least squares

Given the inconsistent system

solve
AT A4x = 4Tb

for the least squares solution X that minimizes the Euclidean length of the residual » =
b — Ax.

Use the normal equations to find the least squares solution of the inconsistent system (4.1).

The problem in matrix form 4Ax = b has
A= 1 =1 |, b=| 1
The components of the normal equations are
1 1
1 11 3
AT4= [] 1 -1 |= [
1 -1 1 1 | 1

and

'y
~
S
I
1
—
|
—_
—
| I |
W == N
I
1

The normal equations

e L)L

can now be solved by Gaussian elimination. The tableau form is
31] 6 . 3 1 | 6
1 3 | 4 0 8/3 | 2|

which can be solved to get X = (x1,x2) = (7/4,3/4). |

David Tran

192 | CHAPTER 4 Least Squares

» EXAMPLE 4.2

Substituting the least squares solution into the original problem yields

11 2.5 2
1 -1 [} =1 |#|1
11

2.5 3
To measure our success at fitting the data, we calculate the residual of the least squares
solution X as

ENISSEENEN|

2 2.5 —0.5
r=b—Ax=| 1 | —| 1 = 0.0
3 2.5 0.5

If the residual is the zero vector, then we have solved the original system Ax = b exactly.
If not, the Euclidean length of the residual vector is a backward error measure of how far
X is from being a solution.

There are at least three ways to express the size of the residual. The Euclidean length
of a vector,

Il = \Jrf + - + 72, 47
is a norm in the sense of Chapter 2, called the 2-norm. The squared error
SE:rl2 + - —i—r,%l,

and the root mean squared error (the root of the mean of the squared error)

RMSE = /SE/m = /(2 + -+ + 1) /m. 4.8)

are also used to measure the error of the least squares solution. The three expressions are
closely related; namely

E
Rvise = YSE _ Il
NZEN

so finding the ¥ that minimizes one, minimizes all. For Example 4.1, the SE = (.5)2 +
0% + (—.5)2 = 0.5, the 2-norm of the error is ||7||2 = +/0.5 ~ 0.707, and the RMSE =
0.5/3 = 1/+/6 ~ 0.408.

1 —4 -3
Solve the least squares problem | 2 3 |: Yl] = 15
2 2 L 9

The normal equations A7 A4x = AT b are

o][0)%]

The solution of the normal equations are X; = 3.8 and X, = 1.8. The residual vector is

-3 1 -4
r=b—Ax=| 15 |-| 2 3 ‘:’2]
9 2 2 '
-3 —3.4 0.4
= 15 |- 13 | = 2 |,
9 11.2 22

which has Euclidean norm ||e||> = v/(0.4)% + 22 4+ (—2.2)2 = 3. This problem is solved
in an alternative way in Example 4.14. <

» EXAMPLE 4.3

4.1 Least Squares and the Normal Equations | 193

4.1.2 Fitting models to data

Let (t1, y1), ..., (tm, ym) be a set of points in the plane, which we will often refer to as the
“data points.” Given a fixed class of models, such as all lines y = ¢ + c»¢, we can seek
to locate the specific instance of the model that best fits the data points in the 2-norm. The
core of the least squares idea consists of measuring the residual of the fit by the squared
errors of the model at the data points and finding the model parameters that minimize this
quantity. This criterion is displayed in Figure 4.2.

Figure 4.2 Least squares fitting of a line to data. The best line is the one for which

2, 52 2

the squared error ef+e5+--- +eg is as small as possible among all lines y = ¢1 + cat.

Find the line that best fits the three data points (¢, y) = (1,2),(—1,1), and (1,3) in
Figure 4.3.

Figure 4.3 Best line in Example 4.3. One each of the data points lies above, on, and below the
best line.

The model is y = ¢ + c»t, and the goal is to find the best ¢; and ¢». Substitution
of the data points into the model yields

cr+e(l)y=2
c1+c(—1)=1
¢ +ca(l) =3,

or, in matrix form,

194 | CHAPTER 4 Least Squares

» EXAMPLE 4.4

SPOTLIGHT ON

We know this system has no solution (cy, ¢3) for two separate reasons. First, if there is a
solution, then the y = ¢; + c»f would be a line containing the three data points. However,
it is easily seen that the points are not collinear. Second, this is the system of equation (4.2)
that we discussed at the beginning of this chapter. We noticed then that the first and third
equations are inconsistent, and we found that the best solution in terms of least squares is
(c1,¢2) = (7/4,3/4). Therefore, the best line is y = 7/4 4 3/4t¢. <

We can evaluate the fit by using the statistics defined earlier. The residuals at the data
points are

t ‘ y ‘ line ‘ error
21 25|05

— 1] 1.0 0.0
3125 0.5

and the RMSE is 1/+/6, as seen earlier.
The previous example suggests a three-step program for solving least squares data-
fitting problems.

Fitting data by least squares
Given a set of m data points (¢1, ¥1), ..., (tm, Ym)-

STEP 1. Choose a model. Identify a parameterized model, such as y = ¢ + ct, which
will be used to fit the data.

STEP 2. Force the model to fit the data. Substitute the data points into the model. Each
data point creates an equation whose unknowns are the parameters, such as c¢; and ¢; in the
line model. This results in a system Ax = b, where the unknown x represents the unknown
parameters.

STEP 3. Solve the normal equations. The least squares solution for the parameters will
be found as the solution to the system of normal equations 47 Ax = ATb.

These steps are demonstrated in the following example:
Find the best line and best parabola for the four data points (—1, 1), (0,0), (1,0), (2, —2)
in Figure 4.4.

In accordance with the preceding program, we will follow three steps:
(1) Choose the model y = ¢1 + c»t as before. (2) Forcing the model to fit the data yields

Compression Least squares is a classic example of data compression. The input
consists of a set of data points,and the output is a model that, with a relatively few parameters,
fits the data as well as possible. Usually, the reason for using least squares is to replace noisy
data with a plausible underlying model. The model is then often used for signal prediction or
classification purposes.

In Section 4.2, various models are used to fit data, including polynomials, exponentials,
and trigonometric functions. The trigonometric approach will be pursued further in Chap-
ters 10 and 11, where elementary Fourier analysis is discussed as an introduction to signal

processing.

4.1 Least Squares and the Normal Equations | 195

Yy Yy
2+ oL
- /0\1—
I I o Ly 1 1 o Ly
-2 -1 1 2 -2 -1 1 2
1k 1k
2+ ° -2
(a) (b)

Figure 4.4 Least Squares Fits to Data Points in Example 4.4. (a) Best line
y =0.2-0.9t. RMSE is 0.418. (b) Best parabola y = 0.45-0.65t—-0.25t2. RMSE is
0.335.

e t+a=hH=1
c1 +c(0)=0
c1+c(l)=0
c1 + a(2) = -2,

or, in matrix form,

—
N = O =

(3) The normal equations are

4 2 ca | _| -1
2 6 o || =5
Solving for the coefficients ¢ and ¢, results in the best line y = ¢; + ¢2t = 0.2 — 0.9¢.
The residuals are

t ‘ y ‘ line ‘ error
-1 1 1.1 | —0.1
0 0 02| —-0.2
1 0] —0.7 0.7
2| -2 —-16| —04

The error statistics are squared error SE = (—. D%+ (=22 + (D*+ (—4)?>=0.7 and
RMSE = /.7 /4/4 = 0.418.

Next, we extend this example by keeping the same four data points, but changing
the model. Set y = ¢1 + ot + ¢3t% and substitute the data points to yield

e+ (=) +a(=)?=1
c1 + ¢2(0) + ¢3(0)* =0
c1 + () + c3()* =0
¢l +) + 3(2)F = -2,

196 | CHAPTER 4 Least Squares

SPOTLIGHT ON Conditioning Since input data is assumed to be subject to errors in least squares
problems, it is especially important to reduce error magnification. We have presented the
normal equations as the most straightforward approach to solving the least squares problem,
and it is fine for small problems. However, the condition number cond(47 4) is approximately
the square of the original cond(A4), which will greatly increase the possibility that the problem
is ill-conditioned. More sophisticated methods allow computing the least squares solution

directly from A without forming A7 4. These methods are based on the QR-factorization,

introduced in Section 4.3, and the singular value decomposition of Chapter 12.

or, in matrix form,

1 -1 1 1
1 0 0 ‘1 0
111 201=1 o
1 2 4 “)

This time, the normal equations are three equations in three unknowns:

4 2 6 cl —1
2 6 8 c |=| =5
6 8 18 c3 =7

Solving for the coefficients results in the best parabola y = ¢1 + ¢at + 312 = 0.45 — 0.65¢
— 0.25¢2. The residual errors are given in the following table:

t ‘ y ‘ parabola | error

—1 1 0.85 0.15
0 0 045 | —0.45
1 0| —045 0.45
21 -2| —-18 | —0.15

The error statistics are squared error SE = (.15)2 + (—.45)2 + (45)2 + (—.15)% = 0.45
and RMSE = /.45 /+/4 ~ 0.335. <

The MATLAB commands polyfit and polyval aredesigned notonly to interpolate
data, but also to fit data with polynomial models. For # input data points, polyfit used
with input degree n — 1 returns the coefficients of the interpolating polynomial of degree
n — 1. If the input degree is less than n — I, polyfit will instead find the best least
squares polynomial of that degree. For example, the commands

>> x0=[-1 0 1 2];

>> y0=[1 0 0 -2];

>> c=polyfit (x0,y0,2);
>> x=-1:.01:2;

>> y=polyval (c,x) ;

>> plot (x0,y0,’0’,x,Vy)

find the coefficients of the least squares degree-two polynomial and plot it along with the
given data from Example 4.4.

Example 4.4 shows that least squares modeling need not be restricted to finding best
lines. By expanding the definition of the model, we can fit coefficients for any model as
long as the coefficients enter the model in a linear way.

» EXAMPLE 4.5

4.1 Least Squares and the Normal Equations | 197

4.1.3 Conditioning of least squares

We have seen that the least squares problem reduces to solving the normal equations
AT Ax = ATb. How accurately can the least squares solution X be determined? This is
a question about the forward error of the normal equations. We carry out a double precision
numerical experiment to test this question, by solving the normal equations in a case where
the correct answer is known.

Let x1 =2.0,x0p =2.2,x3 =2.4,...,x11 =4.0 be equally spaced points in [2,4], and
set yy =1+ x; +xi2 +xi3 +xl4 +xi5 +xi6 +xi7 for 1 <i < 11. Use the normal equa-
tions to find the least squares polynomial P(x)=cj + cox + --- + cgx’ fitting the
(xi, yi)-

A degree 7 polynomial is being fit to 11 data points lying on the degree 7 polyno-
mial P(x) =1 4+ x + x> + x> + x* + x> + x% + x7. Obviously, the correct least squares
solution is ¢y = ¢p = --- = cg = 1. Substituting the data points into the model P(x) yields
the system Ac = b:

1 x x% xz C] Y1

1 x x% xZ &) »n
2 7

I xin oxpp o xq) cs Y11

The coefficient matrix 4 is a Van der Monde matrix, a matrix whose jth column consists
of the elements of the second column raised to the (j — 1)st power. We use MATLAB to
solve the normal equations:

= (2+(0:10)/5)";

14+x+X. " 24x.734x.74+x.754+x.76+x.77;
[x.70 x x.72 x.”3 x.74 x.”5 x.76 x.77];
(A7 *R)\ (A’ *y)

>>

~ ~ ~

>>

>>

>>

QPN
1}

.5134
.2644
L3211
.2408
.2592
.9474
.0059
.9997

oOrHr O oOoONOoO-HR

>> cond (A’ *A)

ans=
1.4359e+019

Solving the normal equations in double precision cannot deliver an accurate value for
the least squares solution. The condition number of A7 4 is too large to deal with in double
precision arithmetic, and the normal equations are ill-conditioned, even though the original
least squares problem is moderately conditioned. There is clearly room for improvement in
the normal equations approach to least squares. In Example 4.15, we revisit this problem
after developing an alternative that avoids forming A7 4. <

198 | CHAPTER 4 Least Squares

4.1 Exercises

10.

11.

12.

Solve the normal equations to find the least squares solution and 2-norm error for the following
inconsistent systems:

12 3
12 3 11 1 - ;

@ o1 |[l™M]=l1] & |21l]=|2] © AL -
21 [L*? | 31 |[L*? 0 21w 3
22 2

Find the least squares solutions and RMSE of the following systems:

110 2 10 1 2
01 1 M 2 10 2 o 3
@ 1 5 I il O L T 2070
10 1 3 4 201 1 = 2

Find the least squares solution of the inconsistent system

1 0 1
X
10 [! } =|s
X
10 2 6
Let m > n, let 4 be the m x n identity matrix (the principal submatrix of the m x m identity

matrix), and let b = [by, ..., b,,] be a vector. Find the least squares solution of 4x = b and the
2-norm error.

Prove that the 2-norm is a vector norm. You will need to use the Cauchy—Schwarz inequality
- v < [lull2v]]2.

Let 4 be an n x n nonsingular matrix. (a) Prove that (47)~! = (47T (b) Let b be an
n-vector; then Ax = b has exactly one solution. Prove that this solution satisfies the normal
equations.

Find the best line through the set of data points, and find the RMSE:
(@) (=3,3),(=1,2),(0,1),(1,=1),(3,—-4) (b) (1, 1), (1,2),(2,2),(2,3), (4,3).

Find the best line through each set of data points, and find the RMSE:
() (0,0),(1,3),(2,3),(5,6) (b) (1,2),3,2), (4, 1),(6,3) (¢) (0,5),(1,3),(2,3), 3, D).

Find the best parabola through each data point set in Exercise 8, and compare the RMSE with
the best-line fit.

Find the best degree 3 polynomial through each set in Exercise 8. Also, find the degree 3
interpolating polynomial, and compare.

Assume that the height of a model rocket is measured at four times, and the measured times
and heights are (¢, #) = (1, 135), (2, 265), (3, 385), (4, 485), in seconds and meters. Fit the
model & = a + bt — 4.905¢% to estimate the eventual maximum height of the object and when
it will return to earth.

Given data points (x, y,z) = (0,0, 3),(0,1,2),(1,0,3), (1, 1,5), (1,2, 6), find the plane in
three dimensions (model z = ¢o + c1x + ¢ y) that best fits the data.

4.1 Least Squares and the Normal Equations | 199

4.1 Computer Problems

1.

Form the normal equations, and compute the least squares solution and 2-norm error for the
following inconsistent systems:

3 -1 2 10 42 3 0 10
4 10 |[x 10 23 -1 1| ™ 0
@ | =3 21| xm|=|=5]| m 3 4 2| |=] 2
115 || x 15 1o 1 -1 || 0
2 0 3 0 31 3 —2 |L™ 5

. Consider the world oil production data of Computer Problem 3.2.3. Find the best least squares

(a) line, (b) parabola, and (c) cubic curve through the 10 data points and the RMSE of the fits.
Use each to estimate the 2010 production level. Which fit best represents the data in terms of
RMSE?

. Consider the world population data of Computer Problem 3.1.1. Find the best least squares

(a) line, (b) parabola through the data points, and the RMSE of the fit. In each case, estimate
the 1980 population. Which fit gives the best estimate?

. Consider the carbon dioxide concentration data of Exercise 3.1.13. Find the best least squares

(a) line, (b) parabola, and (c) cubic curve through the data points and the RMSE of the fit. In
each case, estimate the 1950 CO, concentration.

. A company test-markets a new soft drink in 22 cities of approximately equal size. The selling

price (in dollars) and the number sold per week in the cities are listed as follows:

city | price | sales/week city | price | sales/week
1 | 059 3980 12 | 049 6000
2 | 0.80 2200 13 1.09 1190
3 | 095 1850 14 | 095 1960
4 | 045 6100 15 | 0.79 2760
5 1079 2100 16 | 0.65 4330
6 | 0.99 1700 17 | 0.45 6960
7 | 0.90 2000 18 | 0.60 4160
8 | 0.65 4200 19 | 0.89 1990
9 | 0.79 2440 20 | 0.79 2860
10 | 0.69 3300 21 | 0.99 1920
11 | 0.79 2300 22 | 0.85 2160

(a) First, the company wants to find the “demand curve”: how many it will sell at each potential
price. Let P denote price and S denote sales per week. Find the line S = c¢| + ¢, P that best
fits the data from the table in the sense of least squares. Find the normal equations and the
coefficients ¢y and ¢, of the least squares line. Plot the least squares line along with the data,
and calculate the root mean square error.

(b) After studying the results of the test marketing, the company will set a single selling price P
throughout the country. Given a manufacturing cost of $0.23 per unit, the total profit (per city,
per week) is S(P — 0.23) dollars. Use the results of the preceding least squares approximation
to find the selling price for which the company’s profit will be maximized.

. What is the “slope”” of the parabola y = x2 on [0, 1]? Find the best least squares line that fits

the parabola at n evenly spaced points in the interval for (a) » = 10 and (b) n = 20. Plot the

200 | CHAPTER 4 Least Squares

10.

parabola and the lines. What do you expect the result to be as n — 00? (c¢) Find the minimum
of the function F(cy,) = fol (x2 — ¢] — cpx)? dx, and explain its relation to the
problem.

. Find the least squares (a) line (b) parabola through the 13 data points of Figure 3.5 and the

RMSE of each fit.

. Let 4 be the 10 x n matrix formed by the first # columns of the 10 x 10 Hilbert matrix.

Let ¢ be the n-vector [1,..., 1], and set b = Ac. Use the normal equations to solve the least
squares problem Ax = b for (a) n = 6 (b) n = 8, and compare with the correct least squares
solution X = ¢. How many correct decimal places can be computed? Use condition number to
explain the results. (This least squares problem is revisited in Computer

Problem 4.3.7.)

. Letxy,...,x11 be 11 evenly spaced points in [2,4] and ; = 1 + x; + xl.2 + -+ xl.d. Use the

normal equations to compute the best degree d polynomial, where (a) d =5 (b)d =6

(c) d = 8. Compare with Example 4.5. How many correct decimal places of the coefficients
can be computed? Use condition number to explain the results. (This least squares problem is
revisited in Computer Problem 4.3.8.)

The following data, collected by US Bureau of Economic Analysis, lists the year-over-year
percent change in mean disposable personal income in the United States during 15 election
years. Also, the proportion of the U.S. electorate that voted for the incumbent party’s
presidential candidate is listed. The first line of the table says that income increased by 1.49%
from 1951 to 1952, and that 44.6% of the electorate voted for Adlai Stevenson, the incumbent
Democratic party’s candidate for president. Find the best least squares linear model for
incumbent party vote as a function of income change. Plot this line along with the 15 data
points. How many percentage points of vote can the incumbent party expect for each
additional percent of change in personal income?

year | % income change | % incumbent vote
1952 1.49 44.6
1956 3.03 57.8
1960 0.57 49.9
1964 5.74 61.3
1968 3.51 49.6
1972 3.73 61.8
1976 2.98 49.0
1980 —0.18 44.7
1984 6.23 59.2
1988 3.38 53.9
1992 2.15 46.5
1996 2.10 54.7
2000 3.93 50.3
2004 247 51.2
2008 —0.41 45.7

4.2 ASurvey of Models | 201

4.2 A SURVEY OF MODELS

» EXAMPLE 4.6

The previous linear and polynomial models illustrate the use of least squares to fit data.
The art of data modeling includes a wide variety of models, some derived from physical
principles underlying the source of the data and others based on empirical factors.

4.2.1 Periodic data

Periodic data calls for periodic models. Outside air temperatures, for example, obey cycles
on numerous timescales, including daily and yearly cycles governed by the rotation of the
earth and the revolution of the earth around the sun. As a first example, hourly temperature
data are fit to sines and cosines.

Fit the recorded temperatures in Washington, D.C., on January 1, 2001, as listed in the
following table, to a periodic model:

time of day | ¢ | temp (C)
12 mid. 0 2.2
3 am % —2.8
6 am o-6a
9 am % -39
12 noon % 0.0
3 pm 3 1.1
6 pm 21 -06
9 pm % —1.1

We choose the model y = ¢; + ¢ cos2mt + c3sin2mt to match the fact that tem-
perature is roughly periodic with a period of 24 hours, at least in the absence of longer-term
temperature movements. The model uses this information by fixing the period to be exactly
one day, where we are using days for the # units. The variable ¢ is listed in these units in the
table.

Substituting the data into the model results in the following overdetermined system
of linear equations:

c1 4+ c2c082m(0) + c3sin27(0) = —2.2
c1 + cpcos2m <—> + ¢38in27 (—) =-2.8

Il

|
o
=

c1 +cpcos2m | — | + e3sin2m | =

Il

[
et
N

c1 + cpcos2m

+
(o}
(98]
w
]
5
[N}
=)
1
o
=

c1 + cpcos2m

c1 + cpcos2m

|

|
o
)

c1 + cpcos2mw

+
o
w
2
=
[\®]
)

~— — - — - — - — -
+
(oY
(%)
=
NS
)
TN T N T N T N T N T

Il

[
—_
—

c1 + cpcos2m + c3sin2mw

XN AW ol N = 0|W A= O
O AW ol N = 0O|W ~|— O
N—— N N N N N

I

—_

—_

TN T N T N T N T N T

202 | CHAPTER 4 Least Squares

SPOTLIGHT ON

» EXAMPLE 4.7

Orthogonality The least squares problem can be simplified considerably by special
choices of basis functions. The choices in Examples 4.6 and 4.7, for instance, yield normal
equations already in diagonal form.This property of orthogonal basis functions is explored in

detail in Chapter 10.Model (4.9) is a Fourier expansion.

The corresponding inconsistent matrix equation is Ax = b, where

T 1 cosO sin0] 1 1 0] m 22 7
1 cosi sing 1 V22 V22 -2.8
1 cosZ sin% 1 0 1 —6.1
1 cos3 sind 1 =22 V22 -3.9
4= 1 cosm sinm |1 —1 0 and b= 0.0
1 cosST” sinST” 1 =272 =22 1.1
1 cos%” sin%” 1 0 —1 -0.6
i 1 00577” sin7T” | 1 V2/2 =22 i 11]
The normal equations AT 4c = AT b are
8 0 0 cl —15.6
0 4 0 o | = —2.9778 ,
0 0 4 c3 —10.2376

which are easily solved as ¢; = —1.95, c; = —0.7445, and c3 = —2.5594. The best ver-
sion of the model, in the sense of least squares, is y = —1.9500 — 0.7445cos2nt —
2.5594sin27¢, with RMSE =~ 1.063. Figure 4.5(a) compares the least squares fit model
with the actual hourly recorded temperatures. <

Fit the temperature data to the improved model

y=rc1 + c2c082mt + c3sin2mwt + cqcosdmt. 4.9)
y y
5+ sk
0 ok
L [
5k 5k
| | _ 1 |
~10 05 o 100 0.5 [
(2) (b)

Figure 4.5 Least Squares Fits to Periodic Data in Example 4.6. (a) Sinusoid model
y=-1.95-0.7445cos 2 t-2.5594sin 2t shown in bold, along with recorded
temperature trace on Jan 1, 2001. (b) Improved sinusoid y=-1.95-0.7445cos 2t
—-2.5594sin2wt+1.125cos4xt fits the data more closely.

4.2 ASurvey of Models | 203

The system of equations is now

c1 + cpc082m(0) + ¢3sin27 (0) + c4cosdm (0) = —2.2

1 1 1
¢l + carcos22m <§) + c3sin2w <§> + cqcosdm <§) =-2.8

¢l + crcos22mw

|

I
*
—

+ c¢3sin 2w 7 + c4cosdm

N
—_—
N———"

Il

I
et
N

¢l + carcos22m + c3sin 2w + cqcosdm

+
)
N
(@]
o
7
~
S
Il
e
S

¢l + carcos22mw

c1 + cpcos2m

+
o
N
(@]
o
)
~
S

Il

|
e
)}

c1 + cpcos2m + ¢3s8in 27

TN TN TN TN N

Ol h|lW 0|l N = oW

AN
——— N N N N
+
(oY
W
<1
=
NS
S|
Ol AW 0l N—= 0w KA|—
e N N N N N
Il

RN B~|lW ool N = oo W

Il

|
—_
—

+ c4cosdm

+
o
(98]
z. .
5
)
S
e N N N N
~— — — ~— ~—
+
o
N
)
o]
w2
&~
N
e Y e Y e

c1 + cz0052n<) + ¢3sin 2w

leading to the following normal equations:

8§ 00 O c —15.6
0 4 00 o | —2.9778
0 0 40 ¢z | | —10.2376
0 0 0 4 c4 4.5

The solutions are c¢; = —1.95, ¢ = —0.7445,¢c3 = —2.5594, and ¢4 = 1.125, with
RMSE = 0.705. Figure 4.5(b) shows that the extended model y = —1.95—
0.7445cos2mt — 2.5594sin 2t + 1.125cos4m¢t substantially improves the fit. <

4.2.2 Data linearization

Exponential growth of a population is implied when its rate of change is proportional to
its size. Under perfect conditions, when the growth environment is unchanging and when
the population is well below the carrying capacity of the environment, the model is a good
representation.

The exponential model

y=cre? (4.10)

cannot be directly fit by least squares because cy does not appear linearly in the model
equation. Once the data points are substituted into the model, the difficulty is clear: The set
of equations to solve for the coefficients are nonlinear and cannot be expressed as a linear
system Ax = b. Therefore, our derivation of the normal equations is irrelevant.

There are two ways to deal with the problem of nonlinear coefficients. The more
difficult way is to directly minimize the least square error, that is, solve the nonlinear least
squares problem. We return to this problem in Section 4.5. The simpler way is to change
the problem. Instead of solving the original least squares problem, we can solve a different
problem, which is related to the original, by “linearizing” the model.

204 | CHAPTER 4 Least Squares

» EXAMPLE 4.8

In the case of the exponential model (4.10), the model is linearized by applying the
natural logarithm:

Iny =In(c1e®') =Incy + cat. (4.11)

Note that for an exponential model, the graph of In y is a linear plot in ¢. At first glance, it
appears that we have only traded one problem for another. The ¢; coefficient is now linear
in the model, but ¢ no longer is. However, by renaming & = Inc, we can write

Iny=k+ oot (4.12)

Now both coefficients k and ¢; are linear in the model. After solving the normal equations
for the best k and ¢», we can find the corresponding ¢; = € if we wish.

It should be noted that our way out of the difficulty of nonlinear coefficients was
to change the problem. The original least squares problem we posed was to fit the data
to (4.10)—that is, to find ¢y, ¢cp that minimize

(1€ = y1) + o 4 (12 = y)?, (4.13)
the sum of squares of the residuals of the equations cje®?’ = y; fori = 1, ..., m. For now,
we solve the revised problem minimizing least squares error in “log space”—that is, by
finding c1, c> that minimizes

(Iney + eaty — Iny)? + -+ (ncy + eaty — Inyp)?, (4.14)
the sum of squares of the residuals of the equations Inc) + caf; =1ny; fori =1,...,m.

These are two different minimizations and have different solutions, meaning that they
generally result in different values of the coefficients ¢y, c».

Which method is correct for this problem, the nonlinear least squares of (4.13) or the
model-linearized version (4.14)? The former is least squares, as we have defined it. The
latter is not. However, depending on the context of the data, either may be the more natural
choice. To answer the question, the user needs to decide which errors are most important to
minimize, the errors in the original sense or the errors in “log space.” In fact, the log model
is linear, and it may be argued that only after log-transforming the data to a linear relation
is it natural to evaluate the fitness of the model.

Use model linearization to find the best least squares exponential fit y = cje?’ to the
following world automobile supply data:

year | cars (x 106)
1950 53.05
1955 73.04
1960 98.31
1965 139.78
1970 193.48
1975 260.20
1980 320.39

The data describe the number of automobiles operating throughout the world in the given
year. Define the time variable 7 in terms of years since 1950. Solving the linear least squares
problem yields k1 ~ 3.9896, ¢; & 0.06152. Since ¢; ~ >89 ~ 54.03, the model

» EXAMPLE 4.9

300

200

4.2 ASurvey of Models | 205

1950

1960 1970

1980

Figure 4.6 Exponential fit of world automobile supply data, using linearization.

The best least squares fit is y = 54.03e9-06152t Compare with Figure 4.14.

is y = 54.03¢%-06152 The RMSE of the log-linearized model in log space is &~ 0.0357,
while RMSE of the original exponential model is & 9.56. The best model and data are

plotted in Figure 4.6.

|

The number of transistors on Intel central processing units since the early 1970s is given in
the table that follows. Fit the model y = c1e’ to the data.

CPU year transistors
4004 1971 2,250
8008 1972 2,500
8080 1974 5,000
8086 1978 29,000
286 1982 120,000
386 1985 275,000
486 1989 1,180,000
Pentium 1993 3,100,000
Pentium II 1997 7,500,000
Pentium III | 1999 24,000,000
Pentium 4 2000 | 42,000,000
Itanium 2002 | 220,000,000
Itanium 2 2003 | 410,000,000

Parameters will be fit by using model linearization (4.11). Linearizing the model

gives

Iny =k + cot.

We will let# = 0 correspond to the year 1970. Substituting the data into the linearized model

yields

and so forth. The matrix equation is Ax = b, where x = (k, c2),

k + c2(1) = In2250
k + c2(2) = In2500
k + ¢2(4) = In 5000
k + ¢2(8) = In 29000,

(4.15)

206 | CHAPTER 4 Least Squares

1 1] In2250
1 2 12500
1 4 1n5000
Ad=11 g |,and b= In29000 |- (4.16)
133 | 10410000000 |

The normal equations A7 Ax = AT b are
13 235 k| 176.90
235 5927 ca || 379323 |°
which has solution k£ & 7.197 and ¢, ~ 0.3546, leading to ¢ = ek ~1335.3. The exponen-
tial curve y = 1335.3¢03546" is shown in Figure 4.7 along with the data. The doubling time
for the law is In2/c¢, ~ 1.95 years. Gordon C. Moore, cofounder of Intel, predicted in 1965
that over the ensuing decade, computing power would double every 2 years. Astoundingly,

that exponential rate has continued for 40 years. There is some evidence in Figure 4.7 that
this rate has accelerated since 2000.

y

108 -
106 -

104_

I I I I
1970 1980 1990 2000 2010 *

Figure 4.7 Semilog Plot of Moore’s Law. Number of transistors on CPU chip versus year.

L |

Another important example with nonlinear coefficients is the power law model
y = c1t2. This model also can be simplified with linearization by taking logs of both
sides:

Iny=lInc; + c2Int
=k + coInt. 4.17)

Substitution of data into the model will give

k+ calnty =1nyy (4.18)
k + calnt, =Inyy, (4.19)
resulting in the matrix form
1 Infx In y;
A= : : and b= : . (4.20)
1 Ing, In y,
k

The normal equations allow determination of £ and ¢, and ¢ = €*.

4.2 ASurvey of Models | 207

> EXAMPLE 4.10 Use linearization to fit the given height—weight data with a power law model.

The mean height and weight of boys ages 2—11 were collected in the U.S. National
Health and Nutrition Examination Survey by the Centers for Disease Control (CDC) in
2002, resulting in the following table:

age (yrs.) | height (m) | weight (kg)
2 0.9120 13.7
3 0.9860 15.9
4 1.0600 18.5
5 1.1300 21.3
6 1.1900 23.5
7 1.2600 27.2
8 1.3200 32.7
9 1.3800 36.0
10 1.4100 38.6
11 1.4900 43.7

Following the preceding strategy, the resulting power law for weight versus height is
W = 16.3H**?. The relationship is graphed in Figure 4.8. Since weight is a proxy for
volume, the coefficient ¢y &~ 2.42 can be viewed as the “effective dimension’’ of the human
body.

Figure 4.8 Power law of weight versus height for 2-11-year-olds. The best fit formula is
W =16.3H242,

The time course of drug concentration y in the bloodstream is well described by
y=cire?, 4.21)

where ¢ denotes time after the drug was administered. The characteristics of the model are
a quick rise as the drug enters the bloodstream, followed by slow exponential decay. The
half-life of the drug is the time from the peak concentration to the time it drops to half
that level. The model can be linearized by applying the natural logarithm to both sides,
producing

Iny=1Inc) + Int + cpt
k + cat =Iny — Int,

208 | CHAPTER 4 Least Squares

where we have set k£ = Inc;. This leads to the matrix equation Ax = b, where

1 1 Iny; —Intg
A=| and b= : . (4.22)
1 t, In y, — Inty,
k

The normal equations are solved for & and ¢, and ¢ = €.

> EXAMPLE 4.11 Fit the model (4.21) with the measured level of the drug norfluoxetine in a patient’s blood-
stream, given in the following table:

hour | concentration (ng/ml)

8.0
12.3
15.5
16.8
17.1
15.8
15.2
14.0

0NN W

Solving the normal equations yields £ &~ 2.28 and ¢, ~ —0.215, and ¢| ~ > ~9.77.
The best version of the model is y = 9.77¢te~%2!% plotted in Figure 4.9. From the model,
the timing of the peak concentration and the half-life can be estimated. (See Computer
Problem 5.)

10~

Figure 4.9 Plot of drug concentration in blood. Model (4.21) shows exponential decay after initial
peak.
<

It is important to realize that model linearization changes the least squares problem.
The solution obtained will minimize the RMSE with respect to the linearized problem,
not necessarily the original problem, which in general will have a different set of optimal
parameters. If they enter the model nonlinearly, they cannot be computed from the normal
equations, and we need nonlinear techniques to solve the original least squares problem.
This is done in the Gauss—Newton Method in Section 4.5, where we revisit the automobile
supply data and compare fitting the exponential model in linearized and nonlinearized
forms.

4.2 A Survey of Models | 209

4.2 Exercises

1. Fit data to the periodic model y = F3(¢) = c¢1 + ca2cos2nt + c3sin2xt. Find the 2-norm error

and the RMSE.
t]y t |y t |y
0 1 0 1 0 3
(a) 1/4 | 3 (b) 1/4 | 3) 172 | 1
172 | 2 172 | 2 1 3
3/4 10 3/4 |1 3212

2. Fit the data to the periodic models F3(t) = c¢1 + cpcos2nwt 4 c3sin2n¢t and
Fy(t) = c1 + cacos2mt + c3sin2mwt + c4cos4dmt. Find the 2-norm errors ||e||2 and compare
the fits of F3 and Fj.

t y t y
0 0 0 4
1/6 2 1/6 2
(a) 173 0 (b) 173 0
172 | -1 172 | =5
2/3 1 2/3 | —1
5/6 1 5/6 3

3. Fit data to the exponential model by using linearization. Find the 2-norm of the difference
between the data points y; and the best model cje’ .

t ‘ y t ‘ y
211 011
@ 012 b 1|1
1|2 1|2
2|5 2| 4

4. Fit data to the exponential model by using linearization. Find the 2-norm of the difference
between the data points y; and the best model e’ .

t ‘ v t ‘ y

-2 4 01 10

(a) —1 2 b 1 5
1 1 2 2
2112 3 1

. o

116 ! 2

@22 o ; ;‘
311

4 |1 3 6

51 10

210 | CHAPTER 4 Least Squares

6.

Fit data to the drug concentration model (4.21). Find the RMSE of the fit.

t |y tly
13 1|2
@214 ® 2]y
3]s 3|3
415 42

4.2 Computer Problems

1.

Fit the monthly data for Japan 2003 oil consumption, shown in the following table, with the
periodic model (4.9), and calculate the RMSE:

month | oil use (10° bbl/day)

Jan 6.224
Feb 6.665
Mar 6.241
Apr 5.302
May 5.073
Jun 5.127
Jul 4.994
Aug 5.012
Sep 5.108
Oct 5.377
Nov 5.510
Dec 6.372

The temperature data in Example 4.6 was taken from the Weather Underground website
www . wunderground . com. Find a similar selection of hourly temperature data from a
location and date of your choice, and fit it with the two sinusoidal models of the
example.

Consider the world population data of Computer Problem 3.1.1. Find the best exponential fit of
the data points by using linearization. Estimate the 1980 population, and find the estimation
error.

Consider the carbon dioxide concentration data of Exercise 3.1.17. Find the best exponential fit
of the difference between the CO; level and the background (279 ppm) by using linearization.
Estimate the 1950 CO; concentration, and find the estimation error.

(a) Find the time at which the maximum concentration is reached in model (4.21). (b) Use an
equation solver to estimate the half-life from the model in Example 4.11.

The bloodstream concentration of a drug, measured hourly after administration, is given in the
accompanying table. Fit the model (4.21). Find the estimated maximum and the half-life.
Suppose that the therapeutic range for the drug is 4—15 ng/ml. Use the equation solver of your
choice to estimate the time the drug concentration stays within therapeutic

levels.

www.wunderground.com

4.2 ASurvey of Models | 211

hour | concentration (ng/ml)
1 6.2
2 9.5
3 12.3
4 13.9
5 14.6
6 13.5
7 13.3
8 12.7
9 12.4
10 11.9

The file windmill . txt, available from the textbook website, is a list of 60 numbers which
represent the monthly megawatt-hours generated from Jan. 2005 to Dec. 2009 by a wind
turbine owned by the Minnkota Power Cooperative near Valley City, ND. The data is currently
available at http://www.minnkota.com. For reference, a typical home uses around 1 MWh per
month.

(a) Find a rough model of power output as a yearly periodic function. Fit the data to

equation (4.9),

f(t) =c1 + crcos2mt + c3sin2wt + cqcosdmt
where the units of # are years, thatis 0 < ¢ < 5, and write down the resulting function.

(b) Plot the data and the model function for years 0 < ¢ < 5. What features of the data are
captured by the model?

The file scrippsy . txt, available from the textbook website, is a list of 50 numbers which
represent the concentration of atmospheric carbon dioxide, in parts per million by volume
(ppv), recorded at Mauna Loa, Hawaii, each May 15 of the years 1961 to 2010. The data is part
of a data collection effort initiated by Charles Keeling of the Scripps Oceanographic Institute
(Keeling et al. [2001]). Subtract the background level 279 ppm as in Computer Problem 4, and
fit the data to an exponential model. Plot the data along with the best fit exponential function,
and report the RMSE.

The file scrippsm. txt, available from the textbook website, is a list of 180 numbers which
represent the concentration of atmospheric carbon dioxide, in parts per million by volume
(ppv), recorded monthly at Mauna Loa from Jan. 1996 to Dec. 2010, taken from the same
Scripps study as Computer Problem 8.

(a) Carry out a least squares fit of the CO, data using the model

f(t) =c1 + cat + c3c082mt + c4sin 2t

where ¢ is measured in months. Report the best fit coefficients ¢; and the RMSE of the fit. Plot
the continuous curve from Jan. 1989 to the end of this year, including the 180 data points in the
plot.

(b) Use your model to predict the CO; concentration in May 2004, Sept. 2004, May 2005, and
Sept. 2005. These months tend to contain the yearly maxima and minima of the CO, cycle.
The actual recorded values are 380.63, 374.06, 382.45, and 376.73 ppv, respectively. Report
the model error at these four points.

(c) Add the extra term c¢s cos4m¢ and redo parts (a) and (b). Compare the new RMSE and four
model errors.

http://www.minnkota.com

212 | CHAPTER 4 Least Squares

(d) Repeat part (c) using the extra term ¢st2. Which term leads to more improvement in the
model, part (c) or (d)?

(e) Add both terms from (c) and (d) and redo parts (a) and (b). Prepare a table summarizing
your results from all parts of the problem, and try to provide an explanation for the results.

See the website http://scrippsco2.ucsd.edu for much more data and analysis of the
Scripps carbon dioxide study.

4.3 QR FACTORIZATION

In Chapter 2, the LU factorization was used to solve matrix equations. The factorization is
useful because it encodes the steps of Gaussian elimination. In this section, we develop the
QR factorization as a way to solve least squares calculations that is superior to the normal
equations.

After introducing the factorization by way of Gram—Schmidt orthogonalization, we
return to Example 4.5, for which the normal equations turned out to be inadequate. Later in
this section, Householder reflections are introduced as a more efficient method of computing
QO and R.

4.3.1 Gram-Schmidt orthogonalization and least squares

The Gram-Schmidt method orthogonalizes a set of vectors. Given an input set of
m-dimensional vectors, the goal is to find an orthogonal coordinate system for the sub-
space spanned by the set. More precisely, given n linearly independent input vectors, it
computes » mutually perpendicular unit vectors spanning the same subspace as the input
vectors. The unit length is with respect to the Euclidean or 2-norm (4.7), which is used
throughout Chapter 4.

Let Aq,..., A, be linearly independent vectors from R™. Thus n < m. The Gram—
Schmidt method begins by dividing A4 by its length to make it a unit vector. Define

V1
Iyl

V= A] and q1 = (4.23)

To find the second unit vector, subtract away the projection of A4, in the direction of
q1, and normalize the result:

y=4>—qi(g{ 42), and ¢ = (4.24)

132112
Theng! y» = ql (42 — q1(ql 42)) = ql 42 — gl 4, = irwise orthog-
q{ 2 =q{ (42 — q1(q| A2)) = q{ A2 — q{ A2 = 0,504 and g; are pairwise orthog
onal, as shown in Figure 4.10.
At the jth step, define

Vi
1yll2

yvi=A;—qiq] 4)) —q2(q3 4)) — ... —q;-1(q)_14)) and ¢; = (4.25)

It is clear that ¢ ; is orthogonal to each of the previously produced ¢; fori =1,...,j — 1,
since (4.25) implies

al vi=al 4;j—qlqiql 4;— ... —qlq;1q4]_,4;
=q4; —qlqiq] 4, =0,

http://scrippsco2.ucsd.edu

» EXAMPLE 4.12

4.3 QR Factorization | 213

Figure 4.10 Gram-Schmidt orthogonalization. The input vectors are A7 and A;, and
the output is the orthonormal set consisting of g; and g,. The second orthogonal
vector g, is formed by subtracting the projection of Ay in the direction of g7 from A5,
followed by normalizing.

where by induction hypothesis, the g; are pairwise orthogonal for i < j. Geometri-
cally, (4.25) corresponds to subtracting from A4 ; the projections of A4 ; onto the previously
determined orthogonal vectors ¢;,i = 1,..., j — 1. What remains is orthogonal to the ¢;
and, after dividing by its length to become a unit vector, is used as ¢ ;. Therefore, the set
{q1,--.,qn} consists of mutually orthogonal vectors spanning the same subspace of R™ as
{Ay,..., 4,}.

The result of Gram—Schmidt orthogonalization can be put into matrix form by intro-
ducing new notation for the dot products in the above calculation. Define r;; = ||y;]|2 and
rij = qiT A ;. Then (4.23) and (4.24) can be written

Ay =rqi
Az = ri2q1 + 12292,

and the general case (4.25) translates to
Aj=rijq1+ - +rj-1,9;-1+7rjq;.

Therefore, the result of Gram—Schmidt orthogonalization can be written in matrix form as

rin ri2 v Tn
r2 2

(Arl-140) = @11+~ lgw) N (426)
"nn

or A = OR, where we consider A to be the matrix consisting of the columns 4 ;. We call
this the reduced QR factorization; the full version is just ahead. The assumption that the
vectors A ; are linearly independent guarantees that the main diagonal coefficients 7;; are
nonzero. Conversely, if 4 lies in the span of 4y, ..., 4,1, then the projections onto the
latter vectors make up the entire vector, and r;; = || y;|[2 = 0.

Find the reduced QR factorization by applying Gram—Schmidt orthogonalization to the
1 —4

columnsof A =] 2 3
2 2

214 | CHAPTER 4 Least Squares

1
Set y1 = A1 = | 2 |. Then r1; = [|1]]2 = /12 + 22 + 22 = 3, and the first unit
2

vector is

1
Y1)
_ _ |2
q1 = =13
112)
3
To find the second unit vector, set
1 _14
—4 3 3
T
n=Ad-qqA=| 3| -|3|2=| 3
2 2 2
3 3
and
_14 _14
3 5
g = »o_Eos |
bl 5| 3 :
3 135

Since rjp = qlTAz =2 and rpp = ||1]]2 = 5, the result written in matrix form (4.26) is

1 —4 1/3 —14/15 3 5
A=]2 3 |=]| 253 1/3 [o 5:|=QR.
2 2 2/3 2/15 P

We use the term “classical” for this version of Gram—Schmidt, since we will provide
an upgraded, or “modified,” version at the end of this section.

Classical Gram-Schmidt orthogonalization

Let 4;, j =1,...,n be linearly independent vectors.
for j=1,2,....n
y=4;
fori=1,2,...,j — 1
rij=q; 4;
Y=Y Tijqi
end
rij =1yl
q;=/rjj

end

When the method is successful, it is customary to fill out the matrix of orthogonal unit
vectors to a complete basis of R”, to achieve the “full”” QR factorization. This can be done,
for example, by adding m — n extra vectors to the 4, so that the m vectors span R™, and
carrying out the Gram—Schmidt method. In terms of the basis of R” formed by g1, ..., qm.,
the original vectors can be expressed as

DEFINITION 4.1

LEMMA 4.2

4.3 QR Factorization | 215

rno oriz o I
1 I
(A1l 14n) = (g1l 1gm) Fon |- (4.27)
0 AU 0
e AU 0 |
This matrix equation is the full QR factorization of the matrix 4 = (41| --|4,), formed

by the original input vectors. Note the matrix sizes in the full QR factorization: 4 ism X n,
Q is a square m x m matrix, and the upper triangular matrix R is m X n, the same size
as A. The matrix Q in the full QR factorization has a special place in numerical analysis
and is given a special definition.

A square matrix Q is orthogonal if 07 = Q1.)

Note that a square matrix is orthogonal if and only if its columns are pairwise orthog-
onal unit vectors (Exercise 9). Therefore, a full QR factorization is the equation 4 = OR,
where Q is an orthogonal square matrix and R is an upper triangular matrix the same
size as 4.

The key property of an orthogonal matrix is that it preserves the Euclidean norm of a
vector.

If O is an orthogonal m x m matrix and x is an m-dimensional vector, then
1Ox1l2 = [Ix]l2. [

Proof. || Ox||5 = (0x)T Ox =xT QT Ox = xTx = ||x]5. m)

The product of two orthogonal m x m matrices is again orthogonal (Exercise 10). The
QR factorization of anm x m matrix by the Gram—Schmidt method requires approximately
m3 multiplication/divisions, three times more than the LU factorization, plus about the same
number of additions (Exercise 11).

1 —4
» EXAMPLE 4.13 Find the full QR factorizationof A = | 2 3
2 2

Orthogonality In Chapter 2, we found that the LU factorization is an efficient means

SPOTLIGHT ON

of encoding the information of Gaussian elimination. In the same way, the QR factorization
records the orthogonalization of a matrix, namely, the construction of an orthogonal set that
spans the space of column vectors of A.Doing calculations with orthogonal matrices is prefer-
able because (1) they are easy to invert by definition,and (2) by Lemma 4.2, they do not magnify

errors.

216 | CHAPTER 4 Least Squares

1
3
In Example 4.12, we found the orthogonal unit vectors g = % and
2
3
14
13 1
q = % . Adding a third vector 43 = | 0 | leads to
2 0
15
¥ =43 — qiq] 43 — 295 43
1 3 -13 2
3 15
1 14 2
S H IR I I R
0 2 P 11
3 15
2z
15
andgsz = 13/||13ll = % . Putting the parts together, we obtain the full QR factorization
_u
15
1 —4 1/3 —14/15 2/15 3 2
A= 2 3 =] 2/3 1/3 2/3 0 5 |=0R.
2 2 2/3 2/15 —11/15 0 0

Note that the choice of 43 was arbitrary. Any third column vector linearly independent of
the first two columns could be used. Compare this result with the reduced QR factorization
in Example 4.12. <

The MATLAB command gr carries out the QR factorization on an m x n matrix. It
does not use Gram—Schmidt orthogonalization, but uses more efficient and stable methods
that will be introduced in a later subsection. The command

>> [Q,R]l=gr(A,0)
returns the reduced QR factorization, and
>> [Q,R]=qgr (A)

returns the full QR factorization.

There are three major applications of the QR factorization. We will describe two of them
here; the third is the QR algorithm for eigenvalue calculations, introduced in Chapter 12.

First, the QR factorization can be used to solve a system of n equations in #» unknowns
Ax = b. Just factor A = OR, and the equation 4x = b becomes QRx = b and Rx = Q7 b.
Assuming that 4 is nonsingular, the diagonal entries of the upper triangular matrix R are
nonzero, so that R is nonsingular. A triangular back substitution yields the solution x. As
mentioned before, this approach is about three times more expensive in terms of complexity
when compared with the LU approach.

The second application is to least squares. Let 4 be an m x n matrix with m > n.
To minimize ||Ax — b||», rewrite as ||QRx — b||» = ||Rx — QTb||2 by Lemma 4.2.

» EXAMPLE 4.14

SPOTLIGHT ON

4.3 QR Factorization | 217

The vector inside the Euclidean norm is

rior2

el
22 2n
X1
€n
,,é ,,,,,, — Tun _

n+l |

0 70 X,
€m)

L | 0 0 L

(4.28)

where d = QT b. Assume that r;; # 0. Then the upper part (eq, ..., e,) of the error vector e
can be made zero by back substitution. The choice of the x; makes no difference for the

lower part of the error vector; clearly, (e;+1, .-

em) = (—dpy1, ...

, —d,). Therefore, the

least squares solution is minimized by using the x from back-solving the upper part, and

the least squares error is ||e||% = d3+1 + -+ d,%.
Least squares by QR factorization

Given the m x n inconsistent system
Ax = b,

find the full QR factorization 4 = QR and set

A

R = upper n x n submatrix of R

~

d = upper n entries of d = QTh

Solve R¥ = d for least squares solution X.

1
Use the full QR factorization to solve the least squares problem | 2

We need to solve Rx = Q7 b, or

3 2 5 10 10 [-3 15
X1 1

05 [}:_ 145 2 15 |=| 9

0o | LT 2 10 -1 || 9 3T

The least squares error will be ||e||2 = |]|(0, 0, 3)||2

3 2)[x] _[15]
0 5||x|7] 9l

3. Equating the upper parts yields

whose solution is X1 = 3.8,x, = 1.8. This least squares problem was solved by the normal

equations in Example 4.2.

|

Finally, we return to the problem in Example 4.5 that led to an ill-conditioned system

of normal equations.

Conditioning

constructing AT 4.

In Chapter 2, we found that the best way to handle ill-conditioned
problems is to avoid them. Example 4.15 is a classic case of that advice. While the normal

equations of Example 4.5 are ill-conditioned, the QR approach solves least squares without

David Tran

218 | CHAPTER 4 Least Squares

> EXAMPLE 4.15 Use the full QR factorization to solve the least squares problem of Example 4.5.

The normal equations were notably unsuccessful in solving this least squares prob-
lem of 11 equations in 8 variables. We use the MATLAB gr command to carry out an
alternative approach:

>> x=(2+(0:10)/5) " ;

>> y=1l+4x+x.72+4x.73+x. T4+x."5+x."6+x.77;

>> A=[x."0 x x.72 x.73 x.74 x.75 x.76 x.771;
>> [Q,R]=qgr(A);

>> b=Q' *y;

>> c=R(1:8,1:8)\b(1:8)

~ ~

.99999991014308
.00000021004107
.99999979186557
.00000011342980
.99999996325039
.00000000708455
.99999999924685
.00000000003409

P oOoORFr OF OF O

Six decimal places of the correct solution ¢ = [1, ..., 1] are found by using QR factor-
ization. This approach finds the least squares solution without forming the normal equations,
which have a condition number of about 1017. |

4.3.2 Modified Gram-Schmidt orthogonalization

A slight modification to Gram—Schmidt turns out to enhance its accuracy in machine cal-
culations. The new algorithm called modified Gram—Schmidt is mathematically equivalent
to the original, or “classical’” Gram—Schmidt algorithm.

Modified Gram-Schmidt orthogonalization

Let 4;, j =1,...,n be linearly independent vectors.

for j=1,2,...,n

y=4;

fori=1,2,...,j—1
Vij=(],-Ty
Y=Y =Trijqi

end

rip=11yll2

qj=y/rjj

end

The only difference from classical Gram—Schmidt is that 4 ; is replaced by y in the
innermost loop. Geometrically speaking, when projecting away the part of vector 4; in
the direction of ¢;, for example, one should subtract away the projection of the remain-
der y of A4; with the g part already removed, instead of the projection of A4 itself on
q>2. Modified Gram—Schmidt is the version that will be used in the GMRES algorithm in
Section 4.4.

» EXAMPLE 4.16

4.3 QR Factorization | 219

Compare the results of classical Gram—Schmidt and modified Gram—Schmidt, computed in
double precision, on the matrix of almost-parallel vectors

1 1 1
5§ 00
0 6 O
0 0 ¢
where 8§ = 10719,
First, we apply classical Gram—Schmidt.
1 1 1
8 1 3 8
y=41= 0 and %—ﬁ ol=1] o
0 0 0

Note that 82 = 10720 is a perfectly acceptable double precision number, but 1 + 8% = 1
after rounding. Then

1 1 1 1 0 01
= Ol el = O =] 2 =] 2| ad o=| 2

) 0 1) 0) >

0 0 0 0 0 5

after dividing by || 2], = V8% + 8% = V28. Completing classical Gram—Schmidt,

1 1 01 1 1 0 01
0 8 - 0 8 _ ——
n=|o| = |o|af 43— %f A=l lol=1 ol and a=| 2
1
8 0 0 8 0 8 %

Unfortunately, due to the double precision rounding done in the first step, g» and g3 turn
out to be not orthogonal:

o 1'r o

L L |

da=| 2 =5
2 1
0 72

On the other hand, modified Gram—Schmidt does much better. While ¢; and ¢, are
calculated the same way, ¢3 is found as

1 1 0
1 0 S | r -
= 0 - 0 Q1A3= 0 s
1) 0)
0 0_ 0
L s IR
pm=n-| 2 lan=| 4 |-| 22 7
V2 V2
0 5 0

220 | CHAPTER 4 Least Squares

LEMMA 4.3

Now qZT q3 = 0 as desired. Note that for both classical and modified Gram—Schmidt, g IT q2
is on the order of §, so even modified Gram—Schmidt leaves room for improvement. Orthog-
onalization by Householder reflectors, described in the next section, is widely considered
to be more computationally stable. <

4.3.3 Householder reflectors

Although the modified Gram—Schmidt orthogonalization method is an improved way to
calculate the QR factorization of a matrix, it is not the best way. An alternative method
using Householder reflectors requires fewer operations and is more stable, in the sense of
amplification of rounding errors. In this section, we will define the reflectors and show how
they are used to factorize a matrix.

A Householder reflector is an orthogonal matrix that reflects all m-vectors through an
m — 1 dimensional plane. This means that the length of each vector is unchanged when
multiplied by the matrix, making Householder reflectors ideal for moving vectors. Given
a vector x that we would like to relocate to a vector w of equal length, the recipe for
Householder reflectors gives a matrix A such that Hx = w.

The origin of the recipe is clear in Figure 4.11. Draw the m — 1 dimensional plane
bisecting x and w, and perpendicular to the vector connecting them. Then reflect all vectors
through the plane.

Assume that x and w are vectors of the same Euclidean length, ||x||> = ||w]||2. Then w — x
and w + x are perpendicular. |

Proof. (w —x)T(w+x)=wlw —xTw+ wlx = xTx = ||w|* = ||x|?=0. O

Define the vector v = w — x, and consider the projection matrix

UUT

P=—. (4.29)
viv
A projection matrix is a matrix that satisfies P> = P. Exercise 13 asks the reader to verify
that P in (4.29) is a symmetric projection matrix and that Pv = v. Geometrically, for any
vector u, Pu is the projection of u onto v. Figure 4.11 hints that if we subtract twice the
projection Px from x, we should get w. To verify this, set H = I — 2 P. Then

Hx =x — 2Px
20vTx
R 2
wlx vl (w =)
L vTv
. vl (w + x)
T vTy
=w, (4.30)

the latter equality following from Lemma 4.3, since w + x is orthogonal to v = w — x.
The matrix H is called a Householder reflector. Note that H is a symmetric
(Exercise 14) and orthogonal matrix, since

H'H=HH=(—2P)(I —2P)
=1 —4P + 4P?
=1.

4.3 QR Factorization | 221

Figure 4.11 Householder reflector. Given equal length vectors x and w, reflection
through the bisector of the angle between them (dotted line) exchanges them.

These facts are summarized in the following theorem:

THEOREM 4.4 Householder reflectors. Let x and w be vectors with ||x||» = ||w]||» and definev = w — x.
Then H = I — 2vv” /vT v is a symmetric orthogonal matrix and Hx = w. |

> EXAMPLE 4.17 Letx =[3,4] and w = [5, 0]. Find a Householder reflector H that satisfies Hx = w.
Set

and define the projection matrix
pow 1[4 8]1_T 02 -04
T Ty 20 -8 16 | | —04 08 |
Then
10 04 —0.8 06 0.8
HZI_ZPZ[O 1]_[~0.8 1.6}:[0.8 —0.6]

Check that / moves x to w and vice versa:

g [06 087[37_[57_
YTlo8 —06 [4|07
and
[06 08757 _[3]
Aw=108 06 |[0 || a]™" <

As a first application of Householder reflectors, we will develop a new way to do the
QR factorization. In Chapter 12, we apply Householder to the eigenvalue problem, to put
matrices into upper Hessenberg form. In both applications, we will use reflectors for a single
purpose: to move a column vector x to a coordinate axis as a way of putting zeros into a
matrix.

222 | CHAPTER 4 Least Squares

» EXAMPLE 4.18

We start with a matrix 4 that we want to write in the form 4 = QR. Let x| be the
first column of 4. Let w = £(]|x1]]2,0, ..., 0) be a vector along the first coordinate axis of
identical Euclidean length. (Either sign works in theory. For numerical stability, the sign is
often chosen to be the opposite of the sign of the first component of x to avoid the possibility
of subtracting nearly equal numbers when forming v.) Create the Householder reflector H;
such that Hjx = w. In the 4 x 3 case, multiplying H; by A results in

HA=H

X X X X
X X X X
S O O X
X X X X
X X X X

X X X X
|

We have introduced some zeros into 4. We want to continue in this way until 4 becomes
upper triangular; then we will have R of the QR factorization. Find the Householder reflector
[:]2 that moves the (m — 1)-vector x; consisting of the lower m — 1 entries in column 2 of
Hi A to £(]|x2]]2,0,...,0). Since 192 isan (m — 1) x (m — 1)-matrix, define H> to be the
m X m matrix formed by putting H> into the lower part of the identity matrix. Then

1 :0 0 O XX X X I X X
To T 0 x 77777 x _ O>< 77777 X
0 i 0ix x 0:0 x
0 0 X X 0 0 x

1 0:0 0O XX X X X 1 X
0 1:0 0 0 x| x 0 x!x
00l] 0 0 >< “ 070 ><
00 A)\0 0x 0 0i0

and the result
H3HyH A =R,

an upper triangular matrix. Multiplying on the left by the inverses of the Householder
reflectors allows us to rewrite the result as

A= H HH3;R = OR,
where Q = Hj Hp H3. Note that Hl._1 = H; since H; is symmetric orthogonal. Computer

Problem 3 asks the reader to write code for the factorization via Householder reflectors.

Use Householder reflectors to find the QR factorization of

)

‘We need to find a Householder reflector that moves the first column [3, 4] onto the
x-axis. We found such a reflector H; in Example 4.17, and

06 0.8 3 1 5 3
HlA:[o.s —0.6][4 3 }:[0 -1 }
Multiplying both sides on the left by H,~ Y= H yields
31 0.6 0.8 5 3
A=[4 3]2[0.8 —0.6][0 ~1 }ZQR’

where Q = H! = Hj. <

» EXAMPLE 4.19

4.3 QR Factorization | 223

1 —4
Use Householder reflectors to find the QR factorizationof 4 = | 2 3
2 2

We need to find a Householder reflector that moves the first column x = [1, 2, 2] to
the vector w = [||x]|2,0,0].Setv =w — x =[3,0,0] — [1,2,2] =[2, -2, —2]. Referring
to Theorem 4.4, we have

1 2 2
1 0 0 24—4—4 3 3 3
H1=010——2—444=%%_%
00 1| 2|4 4 4 > 2
3 73 3
and
1 2 2
3 3 3|1 —4 3 2
HiA=|2 L _21]12 3|=|0 -3
3 3 3
> 5 1ll2 2 0 —4
3 73 3

The remaining step is to move the vector ¥ = [—3, —4] to W = [5, 0]. Calculating 1:12 from

Theorem 4.4 yields
—-0.6 —0.8||-3| |5
—0.8 06((—4| (0]
leading to
1 2 2
1 0 0 3 3 3111 —4 3 2
HyHA=|0 -0.6 -0.8 % % _% 3= 0 5 |=R
0 —-0.8 0.6 2 2 12 2 0 0
3 73 3

Multiplying both sides on the left by H,~ ! H, '—mH yields the QR factorization:

1 —4 I3 3ln oo 0 32

2 3|=HiHR=|2 L 2110 -06 —08|| 0 5

2 2 > 5 1llo —08 06| 0 0
3 73 3

1/3 —14/15 —2/15][3 2
2/3 13 —2/3 0 5 |=0R.
2/3 2/15 11/15|| 0 0

Compare this result with the factorization from Gram-Schmidt orthogonalization in
Example 4.13. <

The QR factorization is not unique for a given m x n matrix 4. For example, define
D = diag(dy, ...,dy), where each d; is either +1 or —1. Then 4 = QR = QDDR, and we
check that O D is orthogonal and DR is upper triangular.

Exercise 12 asks for an operation count of QR factorization by Householder reflections,
which comes out to (2/3)m?> multiplications and the same number of additions—lower
complexity than Gram—Schmidt orthogonalization. Moreover, the Householder method is
known to deliver better orthogonality in the unit vectors and has lower memory require-
ments. For these reasons, it is the method of choice for factoring typical matrices into O R.

224 | CHAPTER 4 Least Squares

4.3 Exercises

10.
11.

12.

13.
14.
15.

Apply classical Gram—Schmidt orthogonalization to find the full QR factorization of the
following matrices:

2 1 4 8 1
(a) |:i (1):| (b) |:i ?:| (c) I -1 (d) 0 2 -2
2 1 3 6 7

Apply classical Gram—Schmidt orthogonalization to find the full QR factorization of the
following matrices:

2 3 —4 —4
(a) -2 —6 (b) -2 7
1 0 4 -5

Apply modified Gram—Schmidt orthogonalization to find the full QR factorization of the
matrices in Exercise 1.

Apply modified Gram—Schmidt orthogonalization to find the full QR factorization of the
matrices in Exercise 2.

Apply Householder reflectors to find the full QR factorization of the matrices in Exercise 1.
Apply Householder reflectors to find the full QR factorization of the matrices in Exercise 2.

Use the QR factorization from Exercise 2, 4, or 6 to solve the least squares problem.

2 3 3 —4 -4 3
X X
@ | -2 -6 [! }: 3| ® | 2 7 { ! }: 9
1o |[L* 6 4 —s |L* 0
Find the QR factorization and use it to solve the least squares problem.

1 4] 3] 2 4 —1]

-1 1 X1 1 0 -1 X1 3

= b =

@ 1 |:x2:| T R |:x2:| 2

1 0 | | -3] |1 3 I

Prove that a square matrix is orthogonal if and only if its columns are pairwise orthogonal unit
vectors.

Prove that the product of two orthogonal m x m matrices is again orthogonal.

Show that the Gram—Schmidt orthogonalization of an m x m matrix requires approximately
m? multiplications and m? additions.

Show that the Householder reflector method for the QR factorization requires approximately
(2/3)m? multiplications and (2/3)m? additions.

Let P be the matrix defined in (4.29). Show (a) P2 = P (b) P is symmetric (c) Pv = v.
Prove that Householder reflectors are symmetric matrices.

Verify that classical and modified Gram—Schmidt are mathematically identical (in exact
arithmetic).

4.4 Generalized Minimum Residual (GMRES) Method | 225

4.3 Computer Problems

1.

Write a MATLAB program that implements classical Gram—Schmidt to find the reduced QR
factorization. Check your work by comparing factorizations of the matrices in Exercise 1 with
the MATLAB gr (A, 0) command or equivalent. The factorization is unique up to signs of the
entries of Q and R.

Repeat Computer Problem 1, but implement modified Gram—Schmidt.
Repeat Computer Problem 1, but implement Householder reflections.

Write a MATLAB program that implements (a) classical and (b) modified Gram—Schmidt to find
the full QR factorization. Check your work by comparing factorizations of the matrices in
Exercise 1 with the MATLAB gr (A) command or equivalent.

Use the MATLAB QR factorization to find the least squares solutions and 2-norm error of the
following inconsistent systems:

11 3 1 2 2 10
x1
2 1 |[x 5 2 —1 2 5
= b =
@ |, |:x2:| R e 10
0 3 5 o1 -1 | L 3

Use the MATLAB QR factorization to find the least squares solutions and 2-norm error of the
following inconsistent systems:

312 10 42 3 0 10

4 10 |[x 10 23 -1 1 || ™ 0

@ | =3 21|l xl=] =5] ® 13-4 2|7 |=]| 2
15| x 15 1o 1 -1 ||™" 0

2 03 0 31 3 2 |L™ 5

Let 4 be the 10 x »n matrix formed by the first n columns of the 10 x 10 Hilbert matrix. Let ¢
be the n-vector [1, ..., 1], and set b = Ac. Use the QR factorization to solve the least squares
problem Ax = b for (a) n = 6 (b) n = 8, and compare with the correct least squares solution
X = ¢. How many correct decimal places can be computed? See Computer Problem 4.1.8,
where the normal equations are used.

Let xq,...,x11 be 11 evenly spaced points in [2,4] and y; = 1 4+ x; + xi2 + -+ xid. Use the
QR factorization to compute the best degree d polynomial, where (a)d =5 (b)d =6

(¢) d = 8. Compare with Example 4.5 and Computer Problem 4.1.9. How many correct
decimal places of the coefficients can be computed?

4.4 Generalized Minimum Residual (GMRES) Method

In Chapter 2, we saw that the Conjugate Gradient Method can be viewed as an iterative
method specially designed to solve the matrix system Ax = b for a symmetric square
matrix 4. If 4 is not symmetric, the conjugate gradient theory fails. However, there are
several alternatives that work for the nonsymmetric problem. One of the most popular is
the Generalized Minimum Residual Method, or GMRES for short. This method is a good
choice for the solution of large, sparse, nonsymmetric linear systems Ax = b.

At first sight, it might seem strange to be discussing a method for solving linear systems
in the chapter on least squares. Why should orthogonality matter to a problem that has

226 | CHAPTER 4 Least Squares

SPOTLIGHT ON

no apparent connection with it? The answer lies in the fact, as we found in Chapter 2,
that matrices with almost-parallel column vectors tend to be ill-conditioned, which in turn
causes great magnification of error in solving Ax = b.

In fact, orthogonalization is built into GMRES in two separate ways. First, the backward
error of the system is minimized at each iteration step using a least squares formulation.
Second and more subtle, the basis of the search space is reorthogonalized at each step in
order to avoid inaccuracy from ill-conditioning. GMRES is an interesting example of a
method that exploits ideas of orthogonality in places where they are not obviously present.

4.4.1 Krylov methods

GMRES is a member of the family of Krylov methods. These methods rely on accurate
computation of the Krylov space, which is the vector space spanned by {r, Ar, ..., A*r},
where = b — Axj is the residual vector of the initial guess. Since the vectors A7 tend
toward a common direction for large £, a basis for the Krylov space must be calculated care-
fully. Finding an accurate basis for the Krylov space requires the use of orthogonalization
methods like Gram—Schmidt or Householder reflections.

The idea behind GMRES is to look for improvements to the initial guess x¢ in a
particular vector space, the Krylov space spanned by the residual » and its products under
the nonsingular matrix 4. At step k of the method, we enlarge the Krylov space by adding
AFr, reorthogonalize the basis, and then use least squares to find the best improvement to
add to xg.

Generalized Minimum Residual Method (GMRES)

Xo = initial guess
r=>b— Axg
g1 =r/llrll2
fork=1,2,....m
Y= Aqx
for j =1,2,...,k
hjk=4q]y
y=y—hjq;
end
hi+1.6 = ||yll2 (f A1k = 0O, skip next line and terminate at bottom.)
Gic+1 = Y/hi+1k
Minimize ||Hex — [||7]]200... 017 || for ¢k
Xk = QkCr + X0
end

The iterates x; are approximate solutions to the system Ax = b. In the kth step of the
pseudocode, the matrix H is a (k + 1) x k matrix. The minimization step that yields c is a
least squares problem of £ 4 1 equations in £ unknowns that can be solved using techniques

Orthogonality GMRES is our first example of a Krylov method, which depends on
accurate calculation of the Krylov space. We found in Chapter 2 that nearly parallel column
vectors of a matrix cause ill-conditioning. The defining vectors 4% of the Krylov space tend to
become more parallel as k grows, so the use of the orthogonalization techniques of Section
4.3 is essential to build stable, efficient algorithms like GMRES.

4.4 Generalized Minimum Residual (GMRES) Method | 227

of this chapter. The matrix O inthe codeisn X k, consisting of the k orthonormal columns
q1, ..., qk-If hg1.6 = 0, then step £ is the final step and the minimization will arrive at the
exact solution of Ax = b.

To approximate the space, the most direct approach is not the best. In Chapter 12,
we will exploit the fact that the vectors A¥r asymptotically tend toward the same direc-
tion to compute eigenvalues. In order to generate an efficient basis for the Krylov space
{r,Ar,..., Ak r}, we rely on the power of Gram—Schmidt orthogonalization as the simplest
approach.

The application of modified Gram—Schmidt to {r, 4r,..., Akr}, beginning with
q1 = r/l||r]|2, is carried out in the inner loop of the pseudocode. It results in the matrix
equality 4 Oy = Q1 Hy, or

[hu hi2 hie]

hat hoo hoy,

Al ¢ ar | = @i i ak | e h3 &
i hit1k |

Here Aisn x n, Qxisn X k,and Hy is (k + 1) x k. In most cases, £ will be much smaller
than n.

The columns of Oy span the k-dimensional Krylov space that will be searched for
additions x,q4q to the original approximation xg. Vectors in this space are written as x,qq =
Qrc. To minimize the residual

b — A(xo + Xaad) = r — AXadd,
of the original problem Ax = b means finding ¢ that minimizes
| 4xada — rll2 = 114 Qke — rlla = | Qkr1 Hye — rll2 = || Hye = Of 712,
where the last equality follows from the norm-preserving property of orthonormal columns.

Note that QF = [||7||200...0]", since g = r/||7||2 as noted above, and all but the first
column of Q1 is orthogonal to r. The least squares problem is now

_ “leal T[]
hiy hip hik o 0
hat ha hoy

h3s h3k _
h
i kb 0

Using the least squares solution ¢ gives the kth step approximate solution x;y = xo + Xadd =
x0 + QOpc to the original problem Ax = b.

It is important to note the respective sizes of the subproblems in GMRES. The part of
the algorithm with the highest computational complexity is the least squares computation,
which minimizes the error of k + 1 equations in k& unknowns. The size k£ will be small
compared to the total problem size » in most applications. In the special case /41 = 0,
the least squares problem becomes square, and the approximate solution xj is exact.

A convenient feature of GMRES is that the backward error ||[b — Axy||» decreases
monotonically with k. The reason is clear from the fact that the least squares problem in
step k£ minimizes ||rr — Ax,qq||2 for x,qq in the k-dimensional Krylov space. As GMRES
proceeds, the Krylov space is enlarged, so the next approximation cannot do worse.

228 | CHAPTER 4 Least Squares

» EXAMPLE 4.20

Concerning the above GMRES pseudocode, several other implementation details are
worth mentioning. First, note that the least squares minimization step is only warranted when
an approximate solution x is needed. Therefore it may be done only intermittently, in order
to monitor progress toward the solution, or at the extreme, the least squares computation
can be taken out of the loop and done only at the end, since x,9¢ = Qc does not depend
on previous least squares calculations. This corresponds to moving the final end statement
above the previous two lines. Second, the Gram—Schmidt orthogonalization step carried out
in the inner loop can be substituted with Householder orthogonalization at slightly increased
computational complexity, if conditioning is a significant issue.

The typical use of GMRES is for a large and sparse n x n matrix 4. In theory, the
algorithm terminates after n steps at the correct solution x as long as A is nonsingular. In
most cases, however, the goal is to run the method for & steps, where & is much smaller
than n. Note that the matrix Qy is n x k and not guaranteed to be sparse. Thus memory
considerations may also limit the number & of GMRES steps.

These conditions lead to a variation of the algorithm known as Restarted GMRES. If
not enough progress is made toward the solution after £ iterations, and if the n x k matrix
Oy is becoming too large to handle, the idea is simple: Discard Qy and start GMRES from
the beginning, using the current best guess xj as the new x.

4.4.2 Preconditioned GMRES

The concept behind preconditioning GMRES is very similar to the conjugate gradient case.
Begin with a nonsymmetric linear system Ax = b. We again try to solve M ' Ax = M~'b,
where M is one of the preconditioners discussed in Section 2.

Very few changes need to be made to the GMRES pseudocode of the previous section.
In the preconditioned version, the starting residual is now » = M~! (b — Axg). The Krylov
space iteration step is changed to w = M ~! Ag;. Note that neither of these steps require the
explicit formation of M~!. They should be carried out by back substitution, assuming that
M is in a simple or factored form. With these changes, the resulting algorithm is as follows.

Preconditioned GMRES

Xo = initial guess
r=M"1(b— Axo)

g1 =r/llrll2
fork=1,2,....m
w=M"Aq;
for j =1,2,...,k
hje=w'4q,

w=w—hjiq;
end
hi+1.k = llw]]2
Gi+1 = w/hg+1 k
Minimize ||Hex — [|]7]]200... 017 || for ¢k
X = Qck + xo
end

Let 4 denote the matrix with diagonal entries A;; = Vifori=1,...,n and Aiiv10=
cosi, Aj+10,; =sini for i =1,...,n — 10, with all other entries zero. Set x to be the
vector of n ones, and define b = Ax. For n = 500, solve Ax = b with GMRES in three
ways: using no preconditioner, using the Jacobi preconditioner, and using the Gauss—Seidel
preconditioner.

4.4 Exercises

4.4 Generalized Minimum Residual (GMRES) Method | 229

The matrix can be defined in MATLAB by
A=diag(sgrt(l:n))+diag(cos(1l: (n-10)),10)
+diag(sin(1l: (n-10)),-10).
Figure 4.12 shows the three different results. GMRES is slow to converge without precon-
ditioning. The Jacobi preconditioner makes a significant improvement, and GMRES with
the Gauss—Seidel preconditioner requires only about 10 steps to reach machine accuracy.

10°

Error

10—10

*
105 F 0?“00“0 O;M
0 10 20 30 40
Step Number

Figure 4.12 Efficiency of preconditioned GMRES Method for the solution of
Example 4.20. Error is plotted by step number. Circles: no preconditioner. Squares:
Jacobi preconditioner. Diamonds: Gauss-Seidel preconditioner.

Solve Ax = b for the following 4 and b = [1, 0, 0]7, using GMRES with x¢ = [0,0,0]” .
Report all approximations x; up to and including the correct solution.

1 10 1 10 0 0 1
@afo 10| Bl -1 1 2] | 1 00
1 1 1 0 0 1 01 0
Repeat Exercise 1 with » = [0, 0, 1]7.
1 0 aps
LetA=1| O 1 a3 |.Prove thatforany xoand b, GMRES converges to the exact
0 0 1
solution after two steps.
1:C
Generalize Exercise 3 by showing that for 4 = 0[and any xo and b, GMRES

converges to the exact solution after two steps. Here C is an m| x m submatrix, O denotes the
my X m1 matrix of zeros, and / denotes the appropriate-sized identity matrix.

4.4 Computer Problems

Let A be the n x n matrix with » = 1000 and entries
A, i) =i, A0, i+ 1) =A>G + 1,i) =1/2, A(,i +2) = A(i 4+ 2,i) = 1/2 for all i that fit

230 | CHAPTER 4 Least Squares

within the matrix. (a) Print the nonzero structure spy (2) . (b) Let x, be the vector of n ones.
Set b = Ax,, and apply the Conjugate Gradient Method, without preconditioner, with the
Jacobi preconditioner, and with the Gauss—Seidel preconditioner. Compare errors of the three
runs in a plot versus step number.

2. Letn = 1000. Start with the n x n matrix 4 from Computer Problem 1, and add the nonzero
entries 4(i,2i) = A(2i,i) =1/2for 1 <i <n/2. Carry out steps (a) and (b) as in that
problem.

3. Letn =500, and let 4 be the n x n matrix with entries
A, i) =2, A0,i +2)=AG +2,i) =1/2,AG,i +4) = A(G + 4,i) = 1/2 for all i, and
A(500,i) = A(i,500) = —0.1 for 1 <i <495. Carry out steps (a) and (b) as in Computer
Problem 1.

4. Let 4 be the matrix from Computer Problem 3, but with the diagonal elements replaced by
AG, i) = Vi Carry out parts (a) and (b) as in that problem.

5. Let C be the 195 x 195 matrix block with C(i,i) =2,C(i,i +3) =C(i + 3,i) =
0.1,CG,i +39)=CG{ +39,i) =1/2,C(i,i +42) =C({ +42,i) = 1/2 for all i. Define 4
to be the n x n matrix with n = 780 formed by four diagonally arranged blocks C, and with
blocks %C on the super- and subdiagonal. Carry out steps (a) and (b) as in Computer Problem
1 to solve Ax = b.

4.5 NONLINEAR LEAST SQUARES

The least squares solution of a linear system of equations Ax = » minimizes the Euclidean
norm of the residual ||4x — b||>. We have learned two methods to find the solution X, one
based on the normal equations and another on the QR factorization.

Neither method can be applied if the equations are nonlinear. In this section, we develop
the Gauss—Newton Method for solving nonlinear least squares problems. In addition to illus-
trating the use of the method to solve circle intersection problems, we apply Gauss—Newton
to fitting models with nonlinear coefficients to data.

4.5.1 Gauss-Newton Method
Consider the system of m equations in # unknowns

r(x1,...,x,) =0

rm(x1,...,x,) =0. 4.31)

The sum of the squares of the errors is represented by the function

1 1
E(x1,...,xy) = —(r12 4o rr%z) — —I”Tr,
2 2
where 7 = [r1, ..., 7] . The constant 1/2 has been included in the definition to simplify

later formulas. To minimize E, we set the gradient F'(x) = V E(x) to zero:
1
0=F(x)=VEx)=V (Er(x)rr(x)> =r(x)T Dr(x). (4.32)

Observe that we have used the dot product rule for the gradient (see Appendix A).

4.5 Nonlinear Least Squares | 231

We begin by recalling Multivariate Newton’s Method, and apply it to the function
viewed as a column vector F(x)” = (#" Dr)” = (Dr) r. The matrix/vector product rule
(see Appendix A) can be applied to yield

m
DFx)" = D(Drr) = (D1 - Dr + Y r;De;,
i=1
where ¢; is the ith column of Dr. Note that Dc; = H,,, the matrix of second partial deriva-
tives, or Hessian, of 7;:

82rl- . 32ri
dx10x] dx10x,
Hy; = : :
82}’1' . 62}’1'
0x,0x] 09X, 00Xy

The application of Newton’s Method can be simplified by dropping some of the terms.
Without the above m-term summation, we have the following.

Gauss-Newton Method
To minimize
P + e r(x)2

Set x? = initial vector,

fork=0,1,2,...
A = Dr(x%) (4.33)
AT 4vF = — 4T r(x%)
XD = Xk g ok (4.34)
end

Notice that each step of the Gauss—Newton Method is reminiscent of the normal equa-
tions, where the coefficient matrix has been replaced by Dr. The Gauss—Newton Method
solves for a root of the gradient of the squared error. Although the gradient must be zero
at the minimum, the converse is not true, so it is possible for the method to converge
to a maximum or a neutral point. Caution must be used in interpreting the algorithm’s
result.

The following three examples illustrate use of the Gauss-Newton Method, as well as
Multivariate Newton’s Method of Chapter 2. Two intersecting circles intersect in one or
two points, unless the circles coincide. Three circles in the plane, however, typically have
no points of common intersection. In such a case, we can ask for the point in the plane that
comes closest to being an intersection point in the sense of least squares. For three circles,
this is a question of three nonlinear equations in the two unknowns x, y.

Example 4.21 shows how the Gauss-Newton Method solves this nonlinear least squares
problem. Example 4.22 defines the best point in a different way: Find the unique point of
intersection of the 3 circles, allowing their radii to be changed by a common amount K.
This is a question of three equations in three unknowns x, y, K, not a least squares problem,
and is solved using Multivariate Newton’s Method.

Finally, Example 4.23 adds a fourth circle. The solution of four equations in the three
unknowns x, y, K is again a least squares problem that requires Gauss-Newton. This last
formulation is relevant to calculations in GPS, as shown in Reality Check 4.

232 |

CHAPTER 4 Least Squares

Figure 4.13 Near-intersection points of three circles. (a) The least squares near-
intersection point, found by the Gauss-Newton Method. (b) Expanding the radii by

a common amount gives a different type of near-intersection point by Multivariate
Newton’s Method. (c) The four circles of Example 4.23 with least squares solution point
found by the Gauss-Newton Method.

> EXAMPLE 4.271 Consider the three circles in the plane with centers (x1, y1) = (=1, 0), (x2,) = (1, 1/2),

(x3,13) =({,—1/2) andradii Ry =1, Ry = 1/2, R3 = 1/2, respectively. Use the Gauss—
Newton Method to find the point for which the sum of the squared distances to the three
circles is minimized.

The circles are shown in Figure 4.13(a). The point (x, y) in question minimizes
the sum of the squares of the residual errors:

r1(x,) =\/(x —x)*+ (- - R

r(x,y) =\/(x —x)2+ (- »?—R

r3(r) =/ (c — 1% + (v = 19)% — Ry,

This follows from the fact that the distance from a point (x, y) to a circle with center
(x1, y1) and radius Ry is |v/(x — x1)2 4+ (y — y1)2 — Ry| (see Exercise 3). The Jacobian
of r(x,y) is

x=x| y=W
S S
X=X y=»
Dr(x,y) = 5 5 ;
X—Xx3 y—)Q
83 83

where S; = \/ (x — x)2 + (y — yi)? fori = 1,2, 3. The Gauss—Newton iteration with ini-
tial vector (x©, yo) = (0, 0) converges to (x, ¥) = (0.412891, 0) within six correct decimal
places after seven steps. <

A related problem for three circles gives a different type of answer. Instead of looking
for points that most resemble intersection points, we can expand (or contract) the circles’
radii by a common amount until they have a common intersection. This is equivalent to
solving the system

» EXAMPLE 4.22

» EXAMPLE 4.23

4.5 Nonlinear Least Squares | 233

Ry K) = (e = x1% 4 (= 1) = (R + K) =0

rz(x,y,K)z\/(x—xz)2+(y—y2)2—(R2+K)=O

F3 3 K) =/ (= 137 + (v = 32 — (Rs + K) =0. (4.35)
The point (x, y) identified in this way is in general different from the least squares solution
of Example 4.21.
Solve the system (4.35) for (x, y, K), using the circles from Example 4.21.

The system consists of three nonlinear equations in three unknowns, calling for
Multivariate Newton’s Method. The Jacobian is

X—X1 Y—n -1
S1 S
X—Xx2 y—» _
Dr(x,y,K) = 5 5 1
X—x3 Y- -1
83 83

Newton’s Method yields the solution (x, y, K) = (1/3,0, 1/3) in three steps. The inter-
section point (1/3,0) and the three circles with radii expanded by K = 1/3 appear in
Figure 4.13(b). <

Examples 4.21 and 4.22 show two different viewpoints on the meaning of the
“near-intersection point” of a group of circles. Example 4.23 combines the two different
approaches.

Consider the four circles with centers (—1,0), (1,1/2),(1,—1/2),(0,1) and radii
1,1/2,1/2,1/2, respectively. Find the point (x, y) and constant K for which the sum of
the squared distances from the point to the four circles with radii increased by K (thus
1+ K,1/2+ K,1/2 4+ K,1/2 + K, respectively) is minimized.

This is a straightforward combination of the previous two examples. There are
four equations in the three unknowns x, y, K. The least squares residual is similar to (4.35),
but with four terms, and the Jacobian is

X—X] Y= -1
5 5
xgxz ygyz —1
2 2
Dr(x,y,K) = R S e N
83 $3
X—Xxq Y—ya —1
Sy Sy

The Gauss—Newton Method provides the solution (x,) = (0.311385,0.112268) with K =
0.367164, pictured in Figure 4.13(c). <

The analogue of Example 4.23 for spheres in three dimensions forms the mathematical
foundation of the Global Positioning System (GPS). See Reality Check 4.

4.5.2 Models with nonlinear parameters

An important application of the Gauss—Newton Method is to fit models that are nonlinear
in the coefficients. Let (¢1, v1), ..., (tm, V) be data points and y = f.(x) the function to be

234 | CHAPTER 4 Least Squares

» EXAMPLE 4.24

fit, where ¢ = [c1,...,¢p] is a set of parameters to be chosen to minimize the sum of the
squares of the residuals

ri(c) = fe(t) — n

Fm(0) = feltm) — Ym-

This particular case of (4.31) is seen commonly enough to warrant special treatment here.

If the parameters c, ..., ¢, enter the model in a linear way, then this is a set of linear
equations in the ¢;, and the normal equations, or QR-factorization solution, gives the optimal
choice of parameters c. If the parameters ¢; are nonlinear in the model, the same treatment
results in a system of equations that is nonlinear in the ¢;. For example, fitting the model
y = c1t? to the data points (#;, y;) yields the nonlinear equations

Y1 =C]l‘1c2
» = city
Ym zclt;,z~

Because ¢, enters the model nonlinearly, the system of equations cannot be put in matrix
form.

In Section 4.2, we handled this difficulty by changing the problem: We “linearized
the model” by taking log of both sides of the model and minimized the error in these log-
transformed coordinates by least squares. In cases where the log-transformed coordinates
are really the proper coordinates in which to be minimizing error, this is appropriate.

To solve the original least squares problem, however, we turn to the Gauss—Newton
Method. Itis used to minimize the error function E as a function of the vector of parameters c.
The matrix Dr is the matrix of partial derivatives of the errors r; with respect to the
parameters ¢ ;, which are

al”l'
(Dr);j = B, Je; ().
With this information, the Gauss—Newton Method (4.33) can be implemented.

Use the Gauss—Newton Method to fit the world automobile supply data of Example 4.8
with a (nonlinearized) exponential model.

Finding the best least squares fit of the data to an exponential model means finding
c1, ¢y that minimize the RMSE for errors 7; = c1e? — y;, i = 1,...,m. Using model
linearization in the previous section, we minimized the RMSE for the errors of the log
model In y; — (Inc; + c2t;). The values of ¢; that minimize the RMSE in the two different
senses are different in general.

To compute the best least squares fit by the Gauss—Newton Method, define

21

cie - N

crem — yy,
and take derivatives with respect to the parameters ¢; and ¢ to get

211 2l

e cite
Dr =—

eC2lm Cltm eC2lm

SPOTLIGHT ON

4.5 Nonlinear Least Squares | 235

Convergence Nonlinearity in least squares problems causes extra challenges. The
normal equations and QR approach find the single solution as long as the coefficient matrix
A has full rank. On the other hand, Gauss—-Newton iteration applied to a nonlinear problem
may converge to one of several different relative minima of the least squares error. Using a

reasonable approximation for the initial vector, if available, aids convergence to the absolute

minimum.

300

200

0 I I I
1950 1960 1970 1980

Figure 4.14 Exponential fit of world automobile supply data, without using lin-
0.05772t

earization. The best least squares fit is y = 58.51¢
This model is fit with the world automobile supply data, where ¢ is measured in years since
1970, and cars in millions. Five steps of the Gauss—Newton Method (4.33) from initial
guess (c1,c2) = (50,0.1) yields (c1, c2) ~ (58.51,0.05772) with four digits of precision.
The best least squares exponential model for the data is

y =58.51£00577% (4.36)

The RMSE is 7.68, meaning an average modeling error, in the least squares sense, of 7.68
million cars (see Figure 4.14).
The best model (4.36) can be compared with the best linearized exponential model

y= 54.036006152[

calculated in Example 4.8. This was obtained from the normal equations applied to the
linearized model In y = Incy + cat. The RMSE of the errors r; of the linearized model
is 9.56, greater than the RMSE of (4.36), as necessary. However, the linearized model
minimizes the RMSE of the errors In y; — (Inc; + ¢2t;), giving a value of 0.0357, lower
than the corresponding value 0.0568 for model (4.36), also as required. Each of the models
is the optimal fit in its data space.

The moral is that there are computational algorithms for solving either problem.
Minimizing the 7; is the standard least squares problem, but the user must decide on the
basis of the data context whether it is more appropriate to minimize errors or log errors. <

4.5.3 The Levenberg—Marquardt Method.

Least squares minimization is especially challenging when the coefficient matrix turns out to
beill-conditioned. In Example 4.5, large errors were encountered in the least squares solution
of Ax = b when using the normal equations, since 47 4 had large condition number.

236 | CHAPTER 4 Least Squares

» EXAMPLE 4.25

The problem is often worse for nonlinear least squares minimization. Many plausible
model definitions yield poorly conditioned Dr matrices. The Levenberg—Marquardt Method
uses a “regularization term’’ to partially remedy the conditioning problem. It can be thought
of as a mixture of Gauss—Newton and the steepest descent method, which will be introduced
for general optimization problems in Chapter 13.

The algorithm is a simple modification of the Gauss—Newton Method.

Levenberg-Marquardt Method

To minimize
F)? + 4w (6)2

Set xY = initial vector, A = constant

fork=0,1,2,...
A= Dr(xk)
(AT 4 + 5 diag(AT ANk = —ATr(xh)
K = xk + vk
end

The A = 0 case is identical to Gauss—Newton. Increasing the regularization parameter
) accentuates the effect of the diagonal of the matrix 47 4, which improves the condition
number and generally allows the method to converge from a broader set of initial guesses
xo than Gauss—Newton.

Use Levenberg—Marquardt to fit the model y = ¢je™2¢ =% 0 the data points

(i,) =1{(1,3),(2,5),(2,7),(3,5), 4 1}.
We must find the ¢y, ¢2, ¢3 that minimize the RMSE for error vector

_ o2
cre e (t1—c3) -y

) 2
cre™2Us=a) _
The derivative of » evaluated at the five data points is the 5 x 3 matrix
e—Cz(tl—C3)2 —ci(f — 03)28—0201—63)2 2c1ea(t] — 03)e—62(t1 —c3)?
Dr = . . .
e—c2is—c3)? —ci(ts — 03)26—62(8—03)2 2c10a(ts5 — 03)6—0205—63)2

Levenberg—Marquardt with initial guess (c1, c2,¢3) = (1,1, 1) and A fixed at 50 con-
verges to the best least squares model

y= 6.301 ¢~ 0-5088(:=2.249)*

The best model is plotted along with the data points in Figure 4.15. The corresponding
Gauss—Newton Method diverges to infinity from this initial guess. <

The method originated by a suggestion in Levenberg [1944] to add A/ to AT 4 in
Gauss—Newton to improve its conditioning. Several years later, D. Marquardt, a statistician
at DuPont, improved on Levenberg’s suggestion by replacing the identity matrix with the
diagonal of 47 4 (Marquardt [1963]).

4.5 Exercises

4.5 Nonlinear Least Squares | 237

Figure 4.15 Model Fit of Example 4.25. The Levenberg-Marquardt Method is used to
find the best least squares model y = 6.301e~9-3088(t _ 2 249)2, plotted as the solid

curve.

Although we have treated A as a constant for simplicity, the method is often applied
adaptively with a varying A. A common strategy is to continue to decrease A by a factor of
10 on each iteration step as long as the residual sum of squared errors is decreased by the
step, and if the sum increases, to reject the step and increase A by a factor of 10.

The Gauss—Newton Method can be applied to find the point X, y for which the sum of the
squared distances to the three circles is minimized. Using initial vector (xg, yp) = (0, 0), carry
out the first step to find (xy, y1) (a) centers (0, 1), (1, 1), (0, —1) and all radii 1 (b) centers
(—=1,0),(1,1),(1, —1) and all radii 1. (Computer Problem 1 asks for (x,y).)

Carry out the first step of Multivariate Newton’s Method applied to the system (4.35) for the
three circles in Exercise 1. Use (xo, yo, Ko) = (0,0, 0). (Computer Problem 2 asks for the
solution (x, y, K).)

Prove that the distance from a point (x, y) to a circle (x — x1)% 4 (y— yl)2 = R% is
V@& —xD)? + (v = y)? = Ril.

Prove that the Gauss—Newton Method applied to the linear system 4x = b converges in one

step to the solution of the normal equations.

Find the matrix Dr needed for the application of Gauss—Newton iteration to the model-fitting
problem with three data points (z1, y1), (t2, 1»), (13, 13), (a) power law y = ¢t
(b) y = cte.

Find the matrix Dr needed for the application of Gauss—Newton iteration to the model-fitting
problem with three data points (¢1, y1), (f2,), (13, 3) (a) translated exponential
¥ =c3 + 1€ (b) translated power law y = ¢3 + ¢t

Prove that the number of real solutions (x, y, K) of (4.35) is either infinity or at most two.

4.5 Computer Problems

Apply the Gauss—Newton Method to find the point (¥, ¥) for which the sum of the squared
distances to the three circles is minimized. Use initial vector (xo, o) = (0, 0). (a) Centers
0,1),(1,1),(0,—1) and all radii 1. (b) Centers (—1,0), (1, 1), (1, —1) and all radii 1.

238 | CHAPTER 4 Least Squares

10.

11.

Reality
Check A

Apply Multivariate Newton’s Method to the system (4.35) for the three circles in Computer
Problem 1. Use initial vector (xg, yp, Ko) = (0,0, 0).

Find the point (x, y) and distance K that minimizes the sum of squares distance to the circles
with radii increased by K, as in Example 4.23 (a) circles with centers (—1,0), (1, 0), (0, 1),
(0, —2) and all radii 1 (b) circles with centers (—2,0), (3,0), (0,2), (0, —2) and all radii 1.

Carry out the steps of Computer Problem 3 with the following circles and plot the results
(a) centers (—2,0), (2,0), (0,2), (0, —2), and (2, 2), with radii 1, 1, 1, 1, 2 respectively
(b) centers (1,1), (1,—1),(—1,1),(—1,—1),(2,0) and all radii 1.

Use the Gauss—Newton Method to fit a power law to the height—weight data of Example 4.10
without linearization. Compute the RMSE.

Use the Gauss—Newton Method to fit the blood concentration model (4.21) to the data of
Example 4.11 without linearization.

Use the Levenberg—Marquardt Method with . = 1 to fit a power law to the height-weight data
of Example 4.10 without linearization. Compute the RMSE.

Use the Levenberg—Marquardt Method with A = 1 to fit the blood concentration model (4.21)
to the data of Example 4.11 without linearization.

Apply Levenberg—Marquardt to fit the model y = ¢je~c2¢ =9 (o the following data points,
with an appropriate initial guess. State the initial guess, the regularization parameter A used,
and the RMSE. Plot the best least squares curve and the data points.

(@ (@, yi) = {(=1,1),(0,5),(1,10), (3,8), (6, 1)}

(®) (i, y) ={(1,1),(2,3), (4,7, (5,12),(6,13),(8,5),(9,2)(11, 1)}

Further investigate Example 4.25 by determining the initial guesses from the grid 0 < ¢; < 10
with a grid spacing of 1, and 0 < ¢; < 1 with a grid spacing of 0.1, ¢3 = 1, for which the
Levenberg—Marquardt Method converges to the correct least squares solution. Use the
MATLAB mesh command to plot your answers, 1 for a convergent initial guess and 0
otherwise. Make plots for A = 50, 1 = 1, and the Gauss—Newton case A = (. Comment on the
differences you find.

Apply Levenberg-Marquardt to fit the model y = cje™“! cos(c3t + ¢4) to the following data
points, with an appropriate initial guess. State the initial guess, the regularization parameter A
used, and the RMSE. Plot the best least squares curve and the data points. This problem has
multiple solutions with the same RMSE, since ¢4 is only determined modulo 2.

(a) (ti, yi) = {(0,3), (2, =5), (3, -2),(5,2), (6, 1), (8, —1), (10,0)}

(®) (1, y1) ={(1,2),3,6),(4,4),(5.2), (6, —1), (8, =3)}

GPS, Conditioning, and Nonlinear Least Squares

The global positioning system (GPS) consists of 24 satellites carrying atomic clocks, orbit-
ing the earth at an altitude of 20,200 km. Four satellites in each of six planes, slanted at
55° with respect to the poles, make two revolutions per day. At any time, from any point
on earth, five to eight satellites are in the direct line of sight. Each satellite has a simple
mission: to transmit carefully synchronized signals from predetermined positions in space,
to be picked up by GPS receivers on earth. The receivers use the information, with some
mathematics (described shortly), to determine accurate (x, y, z) coordinates of the receiver.

4.5 Nonlinear Least Squares | 239

At a given instant, the receiver collects the synchronized signal from the ith satellite
and determines its transmission time ¢#;, the difference between the times the signal
was transmitted and received. The nominal speed of the signal is the speed of light,
¢~ 299792.458 km/sec. Multiplying transmission time by c¢ gives the distance of the
satellite from the receiver, putting the receiver on the surface of a sphere centered at the
satellite position and with radius ct;. If three satellites are available, then three spheres
are known, whose intersection consists of two points, as shown in Figure 4.16. One inter-
section point is the location of the receiver. The other is normally far from the earth’s
surface and can be safely disregarded. In theory, the problem is reduced to computing this
intersection, the common solution of three sphere equations.

Figure 4.16 Three Intersecting Spheres. Generically, only two points lie on all three spheres.

However, there is a major problem with this analysis. First, although the transmissions
from the satellites are timed nearly to the nanosecond by onboard atomic clocks, the clock
in the typical low-cost receiver on earth has relatively poor accuracy. If we solve the three
equations with slightly inaccurate timing, the calculated position could be wrong by several
kilometers. Fortunately, there is a way to fix this problem. The price to pay is one extra
satellite. Define d to be the difference between the synchronized time on the (now four)
satellite clocks and the earth-bound receiver clock. Denote the location of satellite i by
(A4;, B;i, C;). Then the true intersection point (x, y, z) satisfies

PG yzd) = (= 412+ (7 = BI)? 4+ (2= C1)? = ety — d) =0

r(x,y,z,d) = \/(x —)2+ (= B+ (z—C)? —clta —d) =0

r3(x, y,z.d) = \/(x — A3+ (=B +(z-C3)? —cllz —d) =0

ra(x, y,z,d) = \/(x —A)?+ (= B)?+ (2= C)? —cta —d) =0 (4.37)

to be solved for the unknowns x, y, z, d. Solving the system reveals not only the receiver
location, but also the correct time from the satellite clocks, due to knowing d. Therefore,
the inaccuracy in the GPS receiver clock can be fixed by using one extra satellite.
Geometrically speaking, four spheres may not have a common intersection point,
but they will if the radii are expanded or contracted by the right common amount. The

240 | CHAPTER 4 Least Squares

system (4.37) representing the intersection of four spheres is the three-dimensional ana-
logue of (4.35), representing the intersection point of three circles in the plane.

The system (4.37) can be seen to have two solutions (x, v, z, d). The equations can be
equivalently written

x—AD*+ (=B + - C)? =[ct) — D)
(x =4+ (=B + (- C)? =[clr — D)
(x — 43)> + (y — B3)> + (z — C3)> =[c(t3 — d)]?
(x —A)* + (v — B)* + (2 — C)* = [c(ts — D). (4.38)

Note that by subtracting the last three equations from the first, three /inear equations are
obtained. Each linear equation can be used to eliminate a variable x, y, z, and by substituting
into any of the original equations, a quadratic equation in the single variable d results.
Therefore, system (4.37) has at most two real solutions, and they can be found by the
quadratic formula.

Two further problems emerge when GPS is deployed. First is the conditioning of the
system of equations (4.37). We will find that solving for (x, y, z, d) is ill-conditioned when
the satellites are bunched closely in the sky.

The second difficulty is that the transmission speed of the signals is not precisely c. The
signals pass through 100 km of ionosphere and 10 km of troposphere, whose electromag-
netic properties may affect the transmission speed. Furthermore, the signals may encounter
obstacles on earth before reaching the receiver, an effect called multipath interference. To
the extent that these obstacles have an equal impact on each satellite path, introducing the
time correction d on the right side of (4.37) helps. In general, however, this assumption is
not viable and will lead us to add information from more satellites and consider applying
Gauss—Newton to solve a least squares problem.

Consider a three-dimensional coordinate system whose origin is the center of the
earth (radius ~ 6370 km). GPS receivers convert these coordinates into latitude, longi-
tude, and elevation data for readout and more sophisticated mapping applications using
global information systems (GIS), a process we will not consider here.

1. Solve the system (4.37) by using Multivariate Newtons Method. Find the receiver position
(x, y, z) near earth and time correction d for known, simultaneous satellite positions
(15600, 7540, 20140), (18760, 2750, 18610), (17610, 14630, 13480), (19170, 610, 18390)
in km, and measured time intervals 0.07074, 0.07220, 0.07690, 0.07242 in seconds,
respectively. Set the initial vector to be (xg, v, 20, do) = (0,0, 6370, 0). As a check, the
answers are approximately (x, y, z) = (—41.77271, —16.78919, 6370.0596), and
d = —3.201566 x 1073 seconds.

2. Write a MATLAB program to carry out the solution via the quadratic formula. Hint:
Subtracting the last three equations of (4.37) from the first yields three linear equations in
the four unknowns xii, + yiiy, + zii- + dilg + w = 0, expressed in vector form. A formula
for x in terms of d can be obtained from

0 = det[ii)it |xiiy + yily + zii; + dilg + W],

noting that the determinant is linear in its columns and that a matrix with a repeated column
has determinant zero. Similarly, we can arrive at formulas for y and z, respectively, in terms
of d, that can be substituted in the first quadratic equation of (4.37), to make it an equation
in one variable.

4.5 Nonlinear Least Squares | 241

3. If the MATLAB Symbolic Toolbox is available (or a symbolic package such as Maple
or Mathematica), an alternative to Step 2 is possible. Define symbolic variables by using the
syms command and solve the simultaneous equations with the Symbolic Toolbox command
solve. Use subs to evaluate the symbolic result as a floating point number.

4. Now set up a test of the conditioning of the GPS problem. Define satellite positions
(A4;, B;, C;) from spherical coordinates (p, ¢;,6;) as
A; = pcose;cosb;
B; = pcosg;sinb;
Ci = psing;,

where p = 26570 km is fixed, while 0 < ¢; < 7w /2and 0 <0; <2m fori =1,...,4 are
chosen arbitrarily. The ¢ coordinate is restricted so that the four satellites are in the upper
hemisphere. Set x =0, y =0,z = 6370,d = 0.0001, and calculate the corresponding
satellite ranges R; = \/A? + Bi2 + (C; — 6370)2 and travel times t;, = d + R;/c.

We will define an error magnification factor specially tailored to the situation. The

atomic clocks aboard the satellites are correct up to about 10 nanoseconds, or 10~ 8 second.
Therefore, it is important to study the effect of changes in the transmission time of this
magnitude. Let the backward, or input error be the input change in meters. At the speed of
light, At; = 1078 second corresponds to 10~8¢ ~ 3 meters. Let the forward, or output error
be the change in position ||(Ax, Ay, Az)||~, caused by such a change in #;, also in meters.
Then we can define the dimensionless

[[(Ax, Ay, A2)|loo
cll(Atry ey Aty)lloo

error magnification factor =

and the condition number of the problem to be the maximum error magnification factor for
all small A¢; (say, 1078 or less).

Change each ¢; defined in the foregoing by At; = +1078 or —1073, not all the same.
Denote the new solution of the equations (4.37) by (¥, 7, Z, d), and compute the difference
in position ||(Ax, Ay, Az)||~ and the error magnification factor. Try different variations of
the At;’s. What is the maximum position error found, in meters? Estimate the
condition number of the problem, on the basis of the error magnification factors you have
computed.

5. Now repeat Step 4 with a more tightly grouped set of satellites. Choose all ¢; within
5 percent of one another and all 6; within 5 percent of one another. Solve with and without
the same input error as in Step 4. Find the maximum position error and error magnification
factor. Compare the conditioning of the GPS problem when the satellites are tightly or
loosely bunched.

6. Decide whether the GPS error and condition number can be reduced by adding satellites.
Return to the unbunched satellite configuration of Step 4, and add four more. (At all times
and at every position on earth, 5 to 12 GPS satellites are visible.) Design a Gauss—Newton
iteration to solve the least squares system of eight equations in four variables (x, y, z, d).
What is a good initial vector? Find the maximum GPS position error, and estimate the
condition number. Summarize your results from four unbunched, four bunched, and eight
unbunched satellites. What configuration is best, and what is the maximum GPS error, in
meters, that you should expect solely on the basis of satellite signals?

242 | CHAPTER 4 Least Squares

Software and Further Reading

Least squares approximation dates from the early 19th century. Like polynomial interpola-
tion, it can be viewed as a form of lossy data compression, finding a simple representation
for a complicated or noisy data set. Lines, polynomials, exponential functions, and power
laws are commonly implemented models. Periodic data call for trigonometric representa-
tions, which, taken to the extreme, lead to trigonometric interpolation and trigonometric
least squares fits, pursued in Chapter 10.

Any function that is linear in its coefficients can be used to fit data by applying the
three-step method of Section 4.2, resulting in solution of the normal equations. For ill-
conditioned problems, the normal equations are not recommended, due to the fact that the
condition number is roughly squared in this approach. The matrix factorization preferred
in this case is the QR factorization and, in some cases, the singular value decomposition,
introduced in Chapter 12. Golub and Van Loan [1996] is an excellent reference for the
QR and other matrix factorizations. Lawson and Hanson [1995] is a good source for the
fundamentals of least squares. The statistical aspects of least squares fitting the linear and
multiple regression are covered in the more specialized texts Draper and Smith [2001], Fox
[1997], and Ryan [1997].

MATLAB’s backslash command applied to 4x = b carries out Gaussian elimination if
the system is consistent, and solves the least squares problem by QR factorization if incon-
sistent. MATLAB’s gr command is based on the LAPACK routine DGEQRF. The IMSL
provides the routine RLINE for least squares data fitting. The NAG library routine EO2ADF
carries out least squares approximation to polynomials, as does MATLAB’s polyfit. Sta-
tistical packages such as ST, SAS, SPSS, and Minitab carry out a variety of regression
analyses.

Nonlinear least squares refers to fitting coefficients that are nonlinear in the model. The
Gauss—Newton Method and its variants like Levenberg—Marquardt are the preferred tools
for this calculation, although convergence is not guaranteed, and even when convergence
occurs, no unique optimum is implied. See Strang and Borre [1997] for an introduction to
the mathematics of GPS, and Hoffman-Wellenhof et al. [2001] for general information on
the topic.

Numerical Differentiation and

Integration

Computer-aided manufacturing depends on precise
control of motion along a prescribed path. For exam-
ple, lathes or milling machines under numerical con-
trol rely on parametric curves, often given by cubic
or Bézier splines from computer-aided design soft-

ware, to describe the path of cutting or shaping tools.

Computer-generated animation in filmmaking, com-
puter games,and virtual reality applications face similar
problems.

Reality
Check Reality Check 5 on page 278 consid-

ers the problem of controlling the velocity along an
arbitrary parametric path. For the path parameter to
traverse the curve at a desired rate, the curve is
reparametrized with respect to arc length. Adaptive
quadrature applied to the arc length integral provides
an efficient way to achieve the control.

he main problem of computational calculus is to compute derivatives and integrals
of functions. There are two directions that we can take for such problems, numerical

computing and symbolic computing. We will discuss both in this chapter, but go into the
most detail on numerical computing issues. Both derivatives and integrals have clear math-
ematical definitions, but the type of answer wanted by a user often depends on the way in
which the function is specified.

The derivatives of functions like f(x) = sinx are the topic of introductory calculus.
If the function is known in terms of elementary functions, say, f(x) = sin® (x®1¥ cosh x),
its third derivative may be found more quickly by symbolic computing methods, where
the calculus rules are carried out by computer. The same is true for antiderivatives in cases
where the answer can be expressed in terms of elementary functions.

In practice, there are two other common ways for a function to be known. A function may
be specified as a tabulated list, for example, a list {(¢1, 71), ..., (¢,, T,,)} of time/temperature

244 | CHAPTER 5 Numerical Differentiation and Integration

pairs measured from an experiment, perhaps at evenly spaced times. In this case, finding
the derivative or antiderivative from the rules of freshman calculus is impossible. Finally,
a function may be specified as the output of an experiment or computer simulation whose
input is specified by the user. In the latter two cases, symbolic computing methods cannot
be applied, and numerical differentiation and integration are required to solve the problem.

5.7 NUMERICAL DIFFERENTIATION

To begin, we develop finite difference formulas for approximating derivatives. In some
cases, that is the goal of the calculation. In Chapters 7 and 8, these formulas will be used to
discretize ordinary and partial differential equations.

5.1.1 Finite difference formulas
By definition, the derivative of f(x) at a value x is

Sx+h) - f)

i 5.1)

)= Jim

provided that the limit exists. This leads to a useful formula for approximating the derivative
at x. Taylor’s Theorem says that if f is twice continuously differentiable, then

h2
f+h)y = f) +hf'x) + ffﬂ(c)’ (5.2)
where ¢ is between x and x + 4. Equation (5.2) implies the following formula:

Two-point forward-difference formula

JO+h) = f@) h
h 2

1) = 1. (5.3)

where ¢ is between x and x + 4.

In a finite calculation, we cannot take the limit in (5.1), but (5.3) implies that the
quotient will closely approximate the derivative if % is small. We use (5.3) by computing
the approximation

h) —
f’(x)% Sx+ }: S(x) (5.4)

and treating the last term in (5.3) as error. Because the error made by the approximation
is proportional to the increment /, we can make the error small by making / small. The
two-point-forward-difference formula is a first-order method for approximating the first
derivative. In general, if the error is O ("), we call the formula an order » approximation.

A subtle point about calling the formula “first order™ is that ¢ depends on /. The idea
of first order is that the error should be proportional to 4 as &7 — 0. As & — 0, ¢ is a moving
target, and as a result, the proportionality constant changes. But as long as /" is continuous,
the proportionality constant f”'(c) tends toward f”(x) as 7 — 0, making it legitimate to
call the formula first order.

David Tran

SPOTLIGHT ON

» EXAMPLE 5.1

THEOREM 5.1

5.1 Numerical Differentiation | 245

Convergence What good is the error formula —4 /" (¢) /2 of the two-point forward-
difference method? We are trying to approximate f”(x),so f”(x) is likely to be out of our reach.
There are two answers. First, when verifying code and software, a good check is to run it on a
completely solved example, where the correct answers are known and even the errors can be
compared with what is expected. In such a case we may know f”'(x) as well as f’(x).Second,
even when we can't evaluate the entire formula, it is often helpful to know how the error
scales with 4.The fact that the formula is first order means that cutting # in half should cut the

error approximately in half, even if we have no way of computing the proportionality constant

/2.

Use the two-point forward-difference formula with # = 0.1 to approximate the derivative
of f(x)=1/xatx =2.

The two-point forward-difference formula (5.4) evaluates to
SO+ h) = fx) P

h 01
The difference between this approximation and the correct derivative f'(x) = —x
x = 2 is the error

1
S~ Z ~ —0.2381.

2 at

—0.2381 — (—0.2500) = 0.0119.

Compare this to the error predicted by the formula, which is /" (c) /2 for some ¢ between
2 and 2.1. Since f"(x) = 2x 73, the error must be between

0.1)27320.0125 and (0.1)(2.1)7 ~ 0.0108,

which is consistent with our result. However, this information is usually not available. <«

A second-order formula can be developed by a more advanced strategy. According to
Taylor’s Theorem, if f is three times continuously differentiable, then

h? n
S +h) =10 +hf(x)+ Ef"(x) + gf”/(crl)

and

h2 h3
S —h)=fx) —hf'(x)+ 7f”(x) - gf’”(cz),

where x — h < ¢ < x < ¢ <Xx + h. Subtracting the two equations gives the following
three-point formula with an explicit error term:

’ _f(x+h)—f(x—h) h2 17 h2 117
S x)= 7 - Ef (c1) — ﬁf (c2). (5.5)

In order to be more precise about the error term for the new formula, we will use the
following theorem:

Generalized Intermediate Value Theorem. Let f be a continuous function on the interval

[a,b]. Let x1, ..., x, be points in [a, b], and ay, ...,a, > 0. Then there exists a number ¢
between a and b such that
(a1 + - +ap) fe) =ar f(x1) + -+ an f(xn). (5.6)

246 | CHAPTER 5 Numerical Differentiation and Integration

» EXAMPLE 5.2

SPOTLIGHT ON

Proof. Let f(x;) equal the minimum and f'(x ;) the maximum of the » function values.
Then

ar f(xi) + - Fan f(x) <ar fx) + - Fap fOon) <ar f(x)) + -+ ay f(x))
implies that

LS A+ an f () _
Sxi) = PR———— < f(x)).

By the Intermediate Value Theorem, there is a number ¢ between x; and x ; such that

L afG) + o an ()
flo) = =

and (5.6) is satisfied. O

Theorem 5.1 says that we can combine the last two terms of (5.5), yielding a second-
order formula:

Three-point centered-difference formula

h) — —) h?
LEd T 2 e, 5.7)

)=
wherex —h <c<x +h.
Use the three-point centered-difference formula with 2 = 0.1 to approximate the derivative
of f(x)=1/xatx =2.

The three-point centered-difference formula evaluates to

SO+ — fx—h) 57—
2h 02

The error is 0.0006, an improvement on the two-point forward-difference formula in
Example 5.1. <

1
L9 ~ —0.2506.

S~

Approximation formulas for higher derivatives can be obtained in the same way. For
example, the Taylor expansions

h? h3 hto
SGe+ by =f0)+hf)+ S0 + @) + ﬁf(”) (1)

and

W= 1@ = b+ e - I ey 4 1
S == f) =hf' @)+ [0 = = 100 + 7 (e,

Convergence The two- and three-point approximations converge to the derivative
as h — 0, although at different rates. The formulas break the cardinal rule of floating point
computing by subtracting nearly equal numbers, but it can’t be helped, as finding derivatives

is an inherently unstable process. For very small values of 4, roundoff error will affect the

calculation, as shown in Example 5.3.

David Tran

» EXAMPLE 5.3

5.1 Numerical Differentiation | 247

where x — h < ¢3 < x < c¢| < x + h can be added together to eliminate the first derivative
terms to get

o o
f+h)+ fx—h) —2f(x) =h*f"(x) + ﬁf“)(cl) + ﬁf(‘” ().

Using Theorem 5.1 to combine the error terms and dividing by /2 yields the following
formula:

Three-point centered-difference formula for second derivative

S =h) =2f0) + f&x+h) K
h? 12

) = F™(e) (5.8)

for some ¢ between x — & and x + A.

5.1.2 Rounding error

So far, all of this chapter’s formulas break the rule from Chapter O that advises against
subtracting nearly equal numbers. This is the greatest difficulty with numerical differenti-
ation, but it is essentially impossible to avoid. To understand the problem better, consider
the following example:

Approximate the derivative of f(x) =e* atx =0.

The two-point formula (5.4) gives

ex+h —
f(x) =~ — (5.9)
and the three-point formula (5.7) yields
ex+h _ ex—h
S~ 7 (5.10)

The results of these formulas for x = 0 and a wide range of increment size %, along with
errors compared with the correct value ¢ = 1, are given in the following table:

h formula (5.9) error formula (5.10) error
1071 | 1.05170918075648 | —0.05170918075648 | 1.00166750019844 | —0.00166750019844
1072 | 1.00501670841679 | —0.00501670841679 | 1.00001666674999 | —0.00001666674999
1073 | 1.00050016670838 | —0.00050016670838 | 1.00000016666668 | —0.00000016666668
10~* | 1.00005000166714 | —0.00005000166714 | 1.00000000166689 | —0.00000000166689
107> | 1.00000500000696 | —0.00000500000696 | 1.00000000001210 | —0.00000000001210
107¢ | 1.00000049996218 | —0.00000049996218 | 0.99999999997324 0.00000000002676
10~7 | 1.00000004943368 | —0.00000004943368 | 0.99999999947364 0.00000000052636
1078 | 0.99999999392253 0.00000000607747 | 0.99999999392253 0.00000000607747
10~2 | 1.00000008274037 | —0.00000008274037 | 1.00000002722922 | —0.00000002722922

At first, the error decreases as & decreases, following closely the expected errors
O(h) and O(h?), respectively, for the two-point forward-difference formula (5.4) and
the three-point centered-difference formula (5.7). However, notice the deterioration of the
approximations as 4 is decreased still further.

248 | CHAPTER 5 Numerical Differentiation and Integration

The reason that the approximations lose accuracy for very small /% is loss of sig-
nificance. Both formulas subtract nearly equal numbers, lose significant digits, and then, to
make matters worse, magnify the effect by dividing by a small number. <

To get a better idea of the degree to which numerical differentiation formulas are
susceptible to loss of significance, we analyze the three-point centered-difference formula
in detail. Denote the floating point version of the input f(x + /) by f (x + h), which will
differ from the correct value f(x + &) by a number on the order of machine epsilon in
relative terms. We will assume the function values are on the order of 1 for the present
discussion, so that relative and absolute errors are about equal.

Since f(x +h)= f(x +h)+ € andf(x — h) = f(x — h) + €, where |€1], |e2| &~
€mach, the difference between the correct f”(x) and the machine version of the three-point
centered-difference formula (5.7) is

A B Fer — b
S (X correct — f () machine = S (x) — Sx+h) - fx)

2h
=f,(x)_f(x+h)+61 ;h(f(x—h)—l-ez)
| S(x+h)— f(x —h) € — €]
—<f(x)— T >+ 5

= (f/(x)correct - f/(x)formula) =+ €ITOIrounding.

We can view the total error as a sum of the truncation error, the difference between the
correct derivative and the correct approximating formula, and the rounding error, which
accounts for the loss of significance of the computer-implemented formula. The rounding
error has absolute value

€ — €]
2h

26mach _ €mach
- 2h h

where €mach represents machine epsilon. Therefore, the absolute value of the error of the
machine approximation of f”(x) is bounded above by

h2 mac
Ehy==/"@+ € ; h (5.11)

where x — 4 < ¢ < x + h. Previously we had considered only the first term of the error,
the mathematical error. The preceding table forces us to consider the loss of significance
term as well.

It is instructive to plot the function £ (%), shown in Figure 5.1. The minimum of E (&)
occurs at the solution of

€ h M
0=E'(h) = ——=+ + —h, 5.12
(h) 5 + 3 (5.12)
where we have approximated | /' (¢)| ~ | /""" (x)| by M. Solving (5.12) yields

h = (36mach/ju)l/3

for the increment size 4 that gives smallest overall error, including the effects of computer

/3 ~ 1075, consistent with the

rounding. In double precision, this is approximately €__ .

table.

The main message is that the three-point centered-difference formula will improve in
accuracy as /& is decreased until 4 becomes about the size of the cube root of machine
epsilon. As 4 drops below this size, the error may begin increasing again.

Similar results on rounding analysis can be derived for other formulas. Exercise 18
asks the reader to analyze rounding effects for the two-point forward-difference formula.

David Tran

5.1 Numerical Differentiation | 249

L
Be/M)'3

Figure 5.1 The effect of rounding error on numerical differentiation. For sufficiently
small h, the error is dominated by rounding error.

5.1.3 Extrapolation

Assume that we are presented with an order n formula F(k) for approximating a given
quantity Q. The order means that

Q~ F(h) + Kh",

where K is roughly constant over the range of /# in which we are interested. A relevant
example is

St = fa =),
2h 6 ’

where we have emphasized the fact that the unknown point ¢, lies between x and x + 4,
but depends on /4. Even though ¢ is not constant, if the function f is reasonably smooth
and £ is not too large, the values of the error coefficient f””(cj)/6 should not vary far from
7"(x)/6.

In a case like this, a little bit of algebra can be used to leverage an order » formula into
one of higher order. Because we know the order of the formula F(%) is n, if we apply the
formula again with //2 instead of /4, our error should be reduced from a constant times A"
to a constant times (%/2)", or reduced by a factor of 2”. In other words, we expect

S0 =

(5.13)

1
Q — F(h/2)~ (Q — F(h)). (5.14)

We are relying on the assumption that K is roughly constant. Notice that (5.14) is readily
solved for the quantity Q in question to give the following formula:

Extrapolation for order n formula

(5.15)

0~ 2"F(h/2) — F(h)
N 1 '
This is the extrapolation formula for F(4). Extrapolation, sometimes called

Richardson extrapolation, typically gives a higher-order approximation of Q than F (k).
To understand why, assume that the nth-order formula F;, (%) can be written

0 = Fy(h) + Kh" + O(h").

250 | CHAPTER 5 Numerical Differentiation and Integration

» EXAMPLE 5.4

» EXAMPLE 5.5

Then cutting /4 in half yields
hn
0= F(h/2) + K + 00",

and the extrapolated version, which we call F,41(h), will satisfy
2"Fy(h/2) — Fu(h)

Fn+1(h) =]
_ 20 — Ki"/2" — 0("th) — (O — K" — 0(h"Hh))
- -1
—Kh" Kh" n+1
—0+ h +2nh_41r0(h) _ 0+ oam),

Therefore, F,41(h) is (at least) an order n + 1 formula for approximating the quantity Q.

Apply extrapolation to formula (5.13).

‘We start with the second-order centered-difference formula F, (&) for the derivative
f"(x). The extrapolation formula (5.15) gives a new formula for f”(x) as

2R (h/2) — B(h)

Fy(x) = 71
B [4f(x+h/2) —f&—h/2) f&x+h - fx —h)]/3
B h 2h
_ S =) =8 —h/2) +8/(x +1/2) — f(x +h) 5.16)
6h ' :

This is a five-point centered-difference formula. The previous argument guarantees that this
formula is of order at least three, but it turns out to have order four, because the order three
error terms cancel out. In fact, since Fy(h) = F4(—h) by inspection, the error must be the
same for / as for —h. Therefore, the error terms can be even powers of / only. <

Apply extrapolation to the second derivative formula (5.8).

Again, the method is second order, so the extrapolation formula (5.15) is used with
n = 2. The extrapolated formula is

2R (h/2) = B(h)

Fy(x) = 7]
_ [4f(x +h/2) = 2f() + f(x —h/2)
h2/4
B fOx+h) —2f(x)+ flx — h)]/3
h2
=S =h)+16f(x —h/2) =30 f(x) + 16 f(x + h/2) — f(x + h)
B 3h? '
The new method for approximating second derivatives is fourth order, for the same reason
as the previous example. <

5.1.4 Symbolic differentiation and integration

The MATLAB Symbolic Toolbox contains commands for obtaining the symbolic derivative
of symbolically written functions. The following commands are illustrative:

5.1 Numerical Differentiation | 251

>> Syms X;

>> f=sin(3*x) ;
>> fl=diff (f)
fil=

3*cos (3*x)

>>

The third derivative is also easily found:

>>f3=diff (f,3)
3=

-27*cos (3*x)

Integration uses the MATLAB symbolic command int:

>>syms X
>>f=sin (x)

f=

sin (x)

>>int (£)

ans=

-cos (x)

>>int (£,0,pi)

ans=

With more complicated functions, the MATLAB command pretty, to view the resulting
answer, and simple, to simplify it, are helpful, as in the following code:

>>syms X
>>f=sin(x) "7
f=

sin(x) "7
>>int (f)
ans=

-1/7*sin(x) "6*cos (x) -6/35*sin(x) "4*cos (x) -8/35*%*sin (x) "2*cos (x)
-16/35%*cos (x)

252 | CHAPTER 5 Numerical Differentiation and Integration

5.1 Exercises

>>pretty (simple (int (£)))
3 5 7
-cos(x) + cos(x) - 3/5 cos(x) + 1/7 cos(x)

Of course, for some integrands, there is no expression for the indefinite integral in
terms of elementary functions. Try the function f(x) = ¢*"¥ to see MATLAB give up. In a
case like this, there is no alternative but the numerical methods of the next section.

10.

11.

12.

13.

Use the two-point forward-difference formula to approximate f’(1), and find the
approximation error, where f(x) = Inx, for (a) 2 = 0.1 (b) 2~ = 0.01 (c) # = 0.001.

Use the three-point centered-difference formula to approximate f”(0), where f(x) = e*, for
(@) h=0.1(b) h =0.01 (¢c) h =0.001.

Use the two-point forward-difference formula to approximate f’(7r/3), where f(x) = sinx,
and find the approximation error. Also, find the bounds implied by the error term and show that
the approximation error lies between them (a) 2 = 0.1 (b) 7 = 0.01 (c) # = 0.001.

Carry out the steps of Exercise 3, using the three-point centered-difference formula.

Use the three-point centered-difference formula for the second derivative to approximate
f"(1), where f(x)=x"", for(a)h=0.1(b)h=0.01(c) h = 0.001. Find the approximation
erTor.

Use the three-point centered-difference formula for the second derivative to approximate
1"(0), where f(x) = cosx, for (a) # = 0.1 (b) £ =0.01 (c) & = 0.001. Find the
approximation error.

Develop a formula for a two-point backward-difference formula for approximating f”(x),
including error term.

Prove the second-order formula for the first derivative

—f(x+2h)+4f(x+h) —3f(x)
2h

fx) = + O(h?).

Develop a second-order formula for the first derivative f”(x) in terms of f(x), f(x — h), and
f(x —2h).

Find the error term and order for the approximation formula

4f(x+h) =3f(x)— f(x —2h)
6h '

o) =

Find a second-order formula for approximating f”(x) by applying extrapolation to the
two-point forward-difference formula.

(a) Compute the two-point forward-difference formula approximation to f”(x) for f(x) = 1/x,
where x and 4 are arbitrary. (b) Subtract the correct answer to get the error explicitly, and show
that it is approximately proportional to /. (c) Repeat parts (a) and (b), using the three-point
centered-difference formula instead. Now the error should be proportional to /2.

Develop a second-order method for approximating f”(x) that uses the data f'(x — &), f(x),
and f(x + 3/) only.

14.

15.

16.

17.

18.

19.

20.

21.

22.

5.1 Numerical Differentiation | 253

(a) Extrapolate the formula developed in Exercise 13. (b) Demonstrate the order of the new
formula by approximating f”(7r/3), where f(x) = sinx, with 4 = 0.1 and &7 = 0.01.

Develop a first-order method for approximating f”(x) that uses the data f(x — %), f(x), and
f(x + 3h) only.

(a) Apply extrapolation to the formula developed in Exercise 15 to get a second-order formula
for f”(x). (b) Demonstrate the order of the new formula by approximating /"' (0), where
f(x) =cosx, with s =0.1 and 2 = 0.01.

Develop a second-order method for approximating f”(x) that uses the data f(x — 2h), f(x),
and f(x + 3/) only.

Find E (), an upper bound for the error of the machine approximation of the two-point
forward-difference formula for the first derivative. Follow the reasoning preceding (5.11). Find
the A corresponding to the minimum of E ().

Prove the second-order formula for the third derivative

FO =20 +2f(x —h) —2f(x +h) + f(x +2h)
213

Prove the second-order formula for the third derivative
f(x —3h) —6f(x —2h) +12f(x —h) — 10f(x) +3f(x + h)

) = — + 0.

) = T + O(h?).
Prove the second-order formula for the fourth derivative
f(i”)(x) _ f(x =2h) —4f(x —h)+6f(x) —4f(x +h)+ f(x +2h) n O(hz).

X
This formula is used in Reality Check 2.

This exercise justifies the beam equations (2.33) and (2.34) in Reality Check 2. Let f(x) be a
six-times continuously differentiable function.

(a) Prove thatif f(x) = f'(x) =0, then

16 (x +h) = 9f(x +2h) + 8 f(x +3h) — L f(x + 4h)
4

(Hint: First show that if f(x) = f'(x) = 0, then
FG =) = 10f(x +h) +5£(c +2h) — 3 f(x + 3h) + L f(x + 4h) = O(hO). Then
apply Exercise 21.)

(b) Prove thatif f”(x) = f"”’(x) =0, then

—28/(x) + 721 (x + h) — 60 f(x +2h) + 16 £ (x + 3h)

1714

O 4 h) — = 0(h?).

£ 4y — = 0(h?).

(Hint: First show that if /" (x) = f”/(x) = 0, then
17f(x —h) —40f(x) +30f(x + h) = 8f(x +2h) + f(x +3h) = O(h®). Then apply
Exercise 21.)

(¢) Prove thatif /”(x) = f”(x) = 0, then

72f(x) — 156 f(x 4+ h) 4+ 96 f(x 4+ 2h) — 12f(x + 3h)
17h%

A0 () = = 0(h?).
(Hint: First show that if /" (x) = f”/(x) = 0, then

17 f(x — 2h) — 130 f(x) + 208 f(x + h) — 111 f(x + 2h) 4+ 16 f(x + 3h) = O(h®). Then
apply part (b) together with Exercise 21.)

254 | CHAPTER 5 Numerical Differentiation and Integration

23.

24,

25.

Use Taylor expansions to prove that (5.16) is a fourth-order formula.

The error term in the two-point forward-difference formula for f”(x) can be written in other
ways. Prove the alternative result

S +h) — fx) h % h? 117
Y Ef (x) — gf (©),

where ¢ is between x and x + /4. We will use this error form in the derivation of the
Crank—Nicolson Method in Chapter 8.

[=

Investigate the reason for the name extrapolation. Assume that /(%) is an nth order formula for
approximating a quantity Q, and consider the points (Kh?%, F(h)) and (K(h/2)2, F(h/2)) in
the x y-plane, where error is plotted on the x-axis and the formula output on the y-axis. Find
the line through the two points (the best functional approximation for the relationship between
error and F). The y-intercept of this line is the value of the formula when you extrapolate the
error to zero. Show that this extrapolated value is given by formula (5.15).

5.1 Computer Problems

1.

Make a table of the error of the three-point centered-difference formula for f”(0), where
f(x) =sinx — cosx, with h = 1071, ...,10712, as in the table in Section 5.1.2. Draw a plot
of the results. Does the minimum error correspond to the theoretical expectation?

Make a table and plot of the error of the three-point centered-difference formula for f7(1), as
in Computer Problem 1, where f(x) = (1 + x)~'.

Make a table and plot of the error of the two-point forward-difference formula for f7(0), as in
Computer Problem 1, where f(x) = sinx — cosx. Compare your answers with the theory
developed in Exercise 18.

Make a table and plot as in Problem 3, but approximate f’(1), where f(x) = x~!. Compare
your answers with the theory developed in Exercise 18.

Make a plot as in Problem 1 to approximate /”(0) for (a) f(x) = cosx (b) f(x) =x~!, using
the three-point centered-difference formula. Where does the minimum error appear to occur, in
terms of machine epsilon?

5.2 NEWTON-COTES FORMULAS FOR NUMERICAL INTEGRATION

The numerical calculation of definite integrals relies on many of the same tools we
have already seen. In Chapters 3 and 4, methods were developed for finding function
approximation to a set of data points, using interpolation and least squares modeling. We
will discuss methods for numerical integration, or quadrature, based on both of these
ideas.

For example, given a function f defined on an interval [a, b], we can draw an inter-
polating polynomial through some of the points of f(x). Since it is simple to evaluate the
definite integral of a polynomial, this calculation can be used to approximate the integral
of f(x). This is the Newton—Cotes approach to approximating integrals. Alternatively, we
could find a low-degree polynomial that approximates the function well in the sense of least
squares and use the integral as the approximation, in a method called Gaussian Quadrature.
Both of these approaches will be described in this chapter.

5.2 Newton-Cotes Formulas for Numerical Integration | 255

To develop the Newton—Cotes formulas, we need the values of three simple definite
integrals, pictured in Figure 5.2.

y y y
1+ 1 1+

(a) (b) ()

Figure 5.2 Three simple integrals (5.17), (5.18), and (5.19). Net positive area is (a) h/2, (b) 4h/3,
and (c) h/3.

Figure 5.2(a) shows the region under the line interpolating the data points (0, 0) and
(h,1). The region is a triangle of height 1 and base #, so the area is

hx
f—dx:h/Z. (5.17)
o &

Figure 5.2(b) shows the region under the parabola P(x) interpolating the data points
(—h,0),(0,1), and (h, 0), which has area

h x3 4
/_hP(x)dxzx—Wzgh. (5.18)

Figure 5.2(c) shows the region between the x-axis and the parabola interpolating the data
points (—#, 1), (0,0), and (%, 0), with net positive area

h 1
f P(x) dx = §h. (5.19)

—h

5.2.1 Trapezoid Rule

We begin with the simplest application of interpolation-based numerical integration. Let
f(x) be a function with a continuous second derivative, defined on the interval [xq, x1],
as shown in Figure 5.3(a). Denote the corresponding function values by yp = f(x¢) and
y1 = f(x1). Consider the degree 1 interpolating polynomial P;(x) through (xg, o) and
(x1, y1). Using the Lagrange formulation, we find that the interpolating polynomial with
error term is

X — X1 X — Xp (x —x0)(x — x1)

f(x) = + i + /" (cx) = P(x) + E(x).
X — X1 X1 — X0 2!

It can be proved that the “unknown point” ¢, depends continuously on x.
Integrating both sides on the interval of interest [xg, x1] yields

/XI f()c)a’)c:/‘x1 P(x)a’x—}—/x1 E(x) dx.
X0 X

0 X0

256 | CHAPTER 5 Numerical Differentiation and Integration

1
1
1
!

1
1
\
1
1
1 —
1

\

X
X1

(a) (b)
Figure 5.3 Newton-Cotes formulas are based on interpolation. (a) Trapezoid Rule

replaces the function with the line interpolating (xg,f(xg)) and (xq,f(x1)). (b) Simpson’s

Rule uses the parabola interpolating the function at three points (xg, f(xg)), (x1,f(x1))
and (Xz.f(Xz)).

Computing the first integral gives

dx

ox —x ox —x

/ P(x)dx—yof ldx—l-yl/ .

X0 xo X1 — X0

h h W+ n

= — —:h s
)’024-)/12 >

(5.20)

where we have defined # = x| — x¢ to be the interval length and computed the integrals
by using the fact (5.17). For example, substituting w = —x + x1 into the first integral
gives

X1 _ 0 _ h
/ Al dx:/ —w(—dw)z Ea’w:
X0 X0 — X1 h —h 0 h

and the second integral, after substituting w = x — xo, is

X1 _ h h
/ Rl dx:f Ea’w:—.
xo X1 — X0 o h 2

Formula (5.20) calculates the area of a trapezoid, which gives the rule its name

h
>

The error term is

/ E()dx = ~ / (x — x0)(x — x1) £ (c(x)) dx
X0
f”(C)

(x — x0)(x — x1) dx

f()/ u—) du

_ﬁf (o),

where we have used Theorem 0.9, the Mean Value Theorem for Integrals. We have
shown:

5.2 Newton-Cotes Formulas for Numerical Integration | 257

Trapezoid Rule

X 3
/1iixidx:ﬁiﬁ—i—i”—h—f"(c), (5.21)

5.2.2 Simpson’s Rule

Figure 5.3(b) illustrates Simpson’s Rule, which is similar to the Trapezoid Rule, except
that the degree 1 interpolant is replaced by a parabola. As before, we can write the integrand
f(x) as the sum of the interpolating parabola and the interpolation error:

£ = (x —x)(x —x2) 1 (x — x0)(x — x2)
(xo — x1)(x0 — x2) (x1 — x0)(x1 — x2)
+ (x — x0)(x — x1) n (x — x0)(x — x1)(x — x2) e
(x2 — x0)(x2 — x1) 3!
= P(x) + E(x).

Integrating gives

/Xz f(x)dx = /X2 P(x)dx + /n E(x)dx,
X0 X

0 X0

where

fxz P(x)dx =y

0

/Xz (x —x1)(x —x2) dx N 1["2 (x —xp)(x — x2) dx
xo (X0 — x1(xo — x2) x (X1 —x0)(x1 — x2)
+y2/"2 (x —x0)(x —x1) dx
v (2 —x0)(x2 —x1)
h

_ b
—)’03 J’13 J’23-

We have set # = x» — x1 = x1 — xo and used (5.18) for the middle integral and (5.19) for
the first and third. The error term can be computed (proof omitted) as

fxz By dx = - 9 o
g X)ax = 90 C

0

for some c in the interval [xg, x2], provided that f’ (iv) exists and is continuous. Concluding

X 5
[omnm——— o

David Tran

David Tran

258 | CHAPTER 5 Numerical Differentiation and Integration

» EXAMPLE 5.6 Apply the Trapezoid Rule and Simpson’s Rule to approximate

DEFINITION 5.2

2
f Inx dx,
1

and find an upper bound for the error in your approximations.

The Trapezoid Rule estimates that

2 h 1 In2
/ Inx dx~ =(p+ y1)==(nl +1n2) = 2~ 0.3466.
1 2 2 2

The error for the Trapezoid Rule is —#3 1 (c)/12, where 1 < ¢ < 2. Since f”(x) =
—1/x?, the magnitude of the error is at most

13 1
—— < — ~0.0834.
12¢2 — 12

In other words, the Trapezoid Rule says that

2
/ Inx dx = 0.3466 £ 0.0834.
1

The integral can be computed exactly by using integration by parts:

2 2
/ Inx dx:xlnxﬁ—f dx
1 1

=2In2 — 1ln1 — 1~ 0.386294. (5.23)

The Trapezoid Rule approximation and error bound are consistent with this result.
Simpson’s Rule yields the estimate

2 h 0.5 3
Inx dxwg(yo+4y1 +y2)=T 1n1+41n§+1n2 ~ 0.3858.
1

The error for Simpson’s Rule is —/4> £V (¢)/90, where 1 < ¢ < 2. Since [(x) =
—6/x4, the error is at most

6(0.5)° 6(0.5)° 1
< = — ~0.0021.
90c* 90 480

Thus, Simpson’s Rule says that

2
/ Inx dx = 0.3858 £ 0.0021,
1

which is again consistent with the correct value and more accurate than the Trapezoid Rule
approximation. <

One way of comparing numerical integration rules like the Trapezoid Rule or Simpson’s
Rule is by comparing error terms. This information is conveyed simply through the following
definition:

The degree of precision of a numerical integration method is the greatest integer k for
which all degree & or less polynomials are integrated exactly by the method.)

» EXAMPLE 5.7

5.2 Newton-Cotes Formulas for Numerical Integration | 259

For example, the error term of the Trapezoid Rule, —A3 f”(c)/12, shows that if f(x)
is a polynomial of degree 1 or less, the error will be zero, and the polynomial will be
integrated exactly. So the degree of precision of the Trapezoid Rule is 1. This is intuitively
obvious from geometry, since the area under a linear function is approximated exactly by
a trapezoid.

Itis less obvious that the degree of precision of Simpson’s Rule is three, but that is what
the error term in (5.22) shows. The geometric basis of this surprising result is the fact that
a parabola intersecting a cubic curve at three equally spaced points has the same integral as
the cubic curve over that interval (Exercise 17).

Find the degree of precision of the degree 3 Newton—Cotes formula, called the Simpson’s
3/8 Rule

x3 3h
/ f(x)dx ~ g(yo +3y1 + 33 +).
X0

It suffices to test monomials in succession. We will leave the details to the reader.
For example, when f(x) = x2, we check the identity

3h x + 3h)* — x3

§(x2 +30 + 1)+ 30 + 207 + (x + 3% = %

the latter being the correct integral of x2 on [x,x + 3/]. Equality holds for 1, x, x2,x3, but
fails for x*. Therefore, the degree of precision of the rule is 3. |

The Trapezoid Rule and Simpson’s Rule are examples of “closed” Newton—Cotes
formulas, because they include evaluations of the integrand at the interval endpoints.
The open Newton—Cotes formulas are useful for circumstances where that is not possi-
ble, for example, when approximating an improper integral. We discuss open formulas in
Section 5.2.4.

5.2.3 Composite Newton—-Cotes formulas

The Trapezoid and Simpson’s Rules are limited to operating on a single interval. Of course,
since definite integrals are additive over subintervals, we can evaluate an integral by dividing
the interval up into several subintervals, applying the rule separately on each one, and then
totaling up. This strategy is called composite numerical integration.

The composite Trapezoid Rule is simply the sum of Trapezoid Rule approximations
on adjacent subintervals, or panels. To approximate

b
/ f(x) dx,

consider an evenly spaced grid
A=X)<X| <X) <+ <Xy <Xpp_] <Xy =0>b

along the horizontal axis, where 7 = x; 1 — x; for each i as shown in Figure 5.4. On each
subinterval, we make the approximation with error term

Xit1 h 3 ,
f(x)dx = E(f(Xi) + f(xit1) — Ef/ (ci),

Xi

260 | CHAPTER 5 Numerical Differentiation and Integration

X0 X2m

(b)

Figure 5.4 Newton-Cotes composite formulas. (a) Composite Trapezoid Rule sums
the Trapezoid Rule formula (solid care) on m adjacent subintervals. (b) Composite
Simpson’s Rule does the same for Simpson’s Rule.

assuming that /” is continuous. Adding up over all subintervals (note the overlapping on
the interior subintervals) yields

b h m—1 m—1 h3
/ fG)dx =3 [f(a) + By +2) f(xn] DTG
4 i=1 i=0

The error term can be written

n3 m—1

h3
7 2 L@ =mf @),
i=0

according to Theorem 5.1, for some a < ¢ < b. Since mh = (b — a), the error term is
(b — a)h? f(c)/12. To summarize, if /" is continuous on [a, b], then the following holds:

Composite Trapezoid Rule
b h i b — a)h?
/) dx =2 (yo + ym + 22%) - %f”(c) (5.24)
a i=1

where 4 = (b — a)/m and c is between a and b.

The composite Simpson’s Rule follows the same strategy. Consider an evenly spaced
grid

a=Xx0)<X] <X2 <+ <Xom—2 <Xom—1 <Xom =Db

along the horizontal axis, where & = x;;; — x; for each i. On each length 2/ panel
[x2i, x2i42], fori =0,...,m — 1, a Simpson’s Method is carried out. In other words, the
integrand f(x) is approximated on each subinterval by the interpolating parabola fit at

X2i,X2i+1, and x2; 42, which is integrated and added to the sum. The approximation with
error term on the subinterval is

X2i42 h h5)
/ " f) dx = S 020 + 47 Cai) + f(x2142)] = %f““)(c,-).

2i
This time, the overlapping is over even-numbered x ; only. Adding up over all subintervals
yields

m—1 m—1

b h “ o
f fE)dx =3 [f(a) + D)4 [+2) f(m)} DI AR GOE
a i=1

i=1 i=0

David Tran

5.2 Newton-Cotes Formulas for Numerical Integration | 261

The error term can be written

5m1

Z e = —mf(’“)(c)
according to Theorem 5.1, for some a < c< b. Since m - 2h = (b — a), the error term is
(b — a)h* £ (c)/180. Assuming that %) is continuous on [a, b], the following holds:

Composite Simpson’s Rule

h b
/f(x)dx——[yo+yzm+42yz, 1+2Zyzl} =D iy, (525)

i=1

where c is between a and b.

» EXAMPLE 5.8 Carry out four-panel approximations of

2
/ Inx dx,
1

using the composite Trapezoid Rule and composite Simpson’s Rule.

For the composite Trapezoid Rule on [1, 2], four panels means that 7 = 1/4. The
approximation is

2 1/4 }
-/1 Inx dx ~ - |:yo + +2;)’ii|
1
= <linl 4+ 102+ 2(n5/4 + In6/4 + In7/4)]
~ (0.3837.

The error is at most

(b a)h2

/161 _ 1

= = — ~0.0052.
12 ¢~ (16)(12)(12) ~ 192

—— /"=

A four-panel Simpson’s Rule sets 2 = 1/8. The approximation is

) 1/8 4 3
/1 Inx dx ~ 5 |:yo + 3 +4Z)/2i—1 +22)’2i:|

i=1 i=l1
— %[1111 £ 102 4+ 4(n9/8 + In11/8 + In13/8 + In 15/8)
+ 2(In5/4 + In6/4 4+ In7/4)]
~ 0.386292.

This agrees within five decimal places with the correct value 0.386294 from (5.23). Indeed,
the error cannot be more than
b -
180

(1/8)* 6 _ 6

(iv) — -~
f 1= 180 ¢* ~ 84.180- 14

~ (0.000008. <

David Tran

262 | CHAPTER 5 Numerical Differentiation and Integration

» EXAMPLE 5.9 Find the number of panels m necessary for the composite Simpson’s Rule to approximate
T
/ sin’x dx
0

We require the error to satisfy

within six correct decimal places.

—0n*
%m’”)(m <0.5x 1075,

Since the fourth derivative of sin®x is —8cos 2x, we need

h4
T 8 <0.5% 1079,
180
or i < 0.0435. Therefore, m = ceil(w/(2h)) = 37 panels will be sufficient. <

5.2.4 Open Newton-Cotes Methods

The so-called closed Newton—Cotes Methods like Trapezoid and Simpson’s Rules require
input values from the ends of the integration interval. Some integrands thathave aremovable
singularity at an interval endpoint may be more easily handled with an open Newton—Cotes
Method, which does not use values from the endpoints. The following rule is applicable to
functions f whose second derivative f” is continuous on [a, b]:

Midpoint Rule
X1 h3
/ fx)dx =hf(w) + ﬂf”(C), (5.26)
X0

where & = (x1 — xp), w is the midpoint xo + /4/2, and c is between x(and x1.

The Midpoint Rule is also useful for cutting the number of function evaluations needed.
Compared with the Trapezoid Rule, the closed Newton—Cotes Method of the same order, it
requires one function evaluation rather than two. Moreover, the error term is half the size
of the Trapezoid Rule error term.

The proof of (5.26) follows the same lines as the derivation of the Trapezoid Rule. Set
h = x1 — xo. The degree 1 Taylor expansion of f(x) about the midpoint w = xo + % /2 of
the interval is

1
S = f@) + = w) f'w) + 5 = w)? 1 (ex),

where ¢, depends on x and lies between xp and x;. Integrating both sides yields

X1 X1 1 X1
/ f(x)dx = (x1 — x0) f(w) + f’(w)/ (x —w)dx + 5/ () (x — w)* dx
X X0 X

0 0

— hf(w) + 0+ fz(c) /XI(x — w)? dx
X0

h3 /!
=hf(w) + ﬁf (c),

where xg < ¢ < x1. Again, we have used the Mean Value Theorem for Integrals to pull the
second derivative outside of the integral. This completes the derivation of (5.26).

» EXAMPLE 5.10

5.2 Exercises

5.2 Newton-Cotes Formulas for Numerical Integration | 263

The proof of the composite version is left to the reader (Exercise 12).
Composite Midpoint Rule

b m N
fa) dx = h;f(wi) + %f”@, (527)

where &7 = (b — a)/m and c is between a and b. The w; are the midpoints of the m equal
subintervals of [a, b].

Approximate fol sinx /x dx by using the Composite Midpoint Rule with m = 10 panels.

First note that we cannot apply a closed method directly to the problem, without
special handling at x = 0. The midpoint method can be applied directly. The midpoints are
0.05,0.15,...,0.95, so the Composite Midpoint Rule delivers

10

1
/ f(x)dx ~0.1)" f(m;) = 0.94620858.
0 1

The correct answer to eight places is 0.94608307. <

Another useful open Newton—Cotes Rule is

X4 4h 14k @)
/ J(x)dx = ?[zf(xl) — f(x2) +2f(x3)] + ?f (c), (5.28)
X0

where h = (x4 — x0)/4,x1 =x0 + h,x2 = x0 + 2h,x3 =x9 + 3k, and where xgp <
¢ < x4. The rule has degree of precision three. Exercise 11 asks you to extend it to a
composite rule.

Apply the composite Trapezoid Rule with m = 1,2, and 4 panels to approximate the integral.
Compute the error by comparing with the exact value from calculus.

1 /2 1
(a) / x2dx (b) / cosx dx (c) / e* dx
0 0 0
Apply the Composite Midpoint Rule with m = 1, 2, and 4 panels to approximate the integrals

in Exercise 1, and report the errors.

Apply the composite Simpson’s Rule with m = 1, 2, and 4 panels to the integrals in Exercise 1,
and report the errors.

Apply the composite Simpson’s Rule with m = 1,2, and 4 panels to the integrals, and report
the errors.

1 . 1 dx T
d b d d
(a) /0 xe' dx (b) /(.) T x (c) /0 xcosx dx

Apply the Composite Midpoint Rule with m = 1,2, and 4 panels to approximate the integrals.
Compute the error by comparing with the exact value from calculus.

I ax 1 2 dx
ax “13 /
W [F» /Ox s [

264 | CHAPTER 5 Numerical Differentiation and Integration

6.

10.

11.

12.

13.
14.
15.

16.

17.

Apply the Composite Midpoint Rule with m = 1,2, and 4 panels to approximate the integrals.

/2 1= 1 x _ 1 /2
(a) / — i ® / ¢ dx (0) / 2T gy
0 X 0 X 0

37— X
Apply the open Newton-Cotes rule (5.28) to approximate the integrals of Exercise 5, and
report the errors.

Apply the open Newton-Cotes rule (5.28) to approximate the integrals of Exercise 6.

Apply Simpson’s Rule approximation to fol x* dx, and show that the approximation error
matches the error term from (5.22).

Integrate Newton’s divided-difference interpolating polynomial to prove the formula (a) (5.18)
(b) (5.19).

Find the degree of precision of the following approximation for f_ll f(x)dx:

@ /() + f(=1) 0)2/3[f(=1) + f(©0) + f(D](©) f(=1/v/3) + f(1/V/3).

Find ¢y, ¢, and ¢3 such that the rule

1
/0 Sx)dx = ¢ f(0) + 2 £(0.5) + c3 f(1)

has degree of precision greater than one. (Hint: Substitute f(x) = 1,x, and x2.) Do you
recognize the method that results?

Develop a composite version of the rule (5.28), with error term.
Prove the Composite Midpoint Rule (5.27).

Find the degree of precision of the degree four Newton—Cotes Rule (often called Boole’s Rule)
*4 2h
/ f(x)dx =~ E(UO + 32y1 4+ 12y + 323 + Ty4).
x0

Use the fact that the error term of Boole’s Rule is proportional to /© (¢) to find the exact error
term, by the following strategy: Compute Boole’s approximation for fé " x6 dx, find the

approximation error, and write it in terms of 4 and f© (¢).

Let P3(x) be a degree 3 polynomial, and let P (x) be its interpolating polynomial at the three
points x = —/, 0, and h. Prove directly that fi’h P3(x) dx = fi’h P>(x) dx. What does this fact
say about Simpson’s Rule?

5.2 Computer Problems

1.

Use the composite Trapezoid Rule with m = 16 and 32 panels to approximate the definite
integral. Compare with the correct integral and report the two errors.

4 x dx 3 dx 1 3 5
(a) [J \/_ x2 1 (©) /0 xe* dx (d) /1 x“Inx dx
4 3 x3dx 23 gy U xdx
(e / x2sinx dx (f) 2 (9 / ~ T ax () / e
0 2 x4 —1 ¢ 0 x2 4+ 4 0 Vxt+1

5.3 Romberg Integration | 265
2. Apply the composite Simpson’s Rule to the integrals in Computer Problem 1. Use m = 16 and
32, and report errors.

3. Use the composite Trapezoid Rule with m = 16 and 32 panels to approximate the definite
integral.

L Jr T 1
(a) f e dx (b) / sinx?dx (¢ / e dx (d) / In(x> + 1) dx
0 0 0 0

1 X dx b4 1 /2
(e) / — (D / cose® dx (g) / x* dx (h) / In(cosx + sinx) dx
0 0 0 0

2e% — =X

4. Apply the composite Simpson’s Rule to the integrals of Computer Problem 3, using m = 16
and 32.

5. Apply the Composite Midpoint Rule to the improper integrals of Exercise 5, using
m = 10, 100, and 1000. Compute the error by comparing with the exact value.

6. Apply the Composite Midpoint Rule to the improper integrals of Exercise 6, using m = 16
and 32.

7. Apply the Composite Midpoint Rule to the improper integrals

3 Tt -1 D arct
@) / a4) / " ux (© / A i,
o Sinx 0 sSinx 0 X

using m = 16 and 32.

8. The arc length of the curve defined by y = f(x) from x = a to x = b is given by the integral
1 + f7(x)? dx. Use the composite Simpson’s Rule with m = 32 panels to approximate
the lengths of the curves

(a) y= x> on [0,1] (b) y=tanxon[0,7/4] (c) y=arctanx on [0, 1].

9. For the integrals in Computer Problem 1, calculate the approximation error of the composite
Trapezoid Rule for h = b — a, h/2,h/4, ..., h/28, and plot. Make a log—log plot, using, for
example, MATLAB’s 1oglog command. What is the slope of the plot, and does it agree with
theory?

10. Carry out Computer Problem 9, but use the composite Simpson’s Rule instead of the
composite Trapezoid Rule.

5.3 ROMBERG INTEGRATION

In this section, we begin discussing efficient methods for calculating definite integrals that
can be extended by adding data until the required accuracy is attained. Romberg Integra-
tion is the result of applying extrapolation to the composite Trapezoid Rule. Recall from
Section 5.1 that, given a rule N (k) for approximating a quantity M, depending on a step
size h, the rule can be extrapolated if the order of the rule is known. Equation (5.24) shows
that the composite Trapezoid Rule is a second-order rule in /. Therefore, extrapolation can
be applied to achieve a new rule of (at least) third order.

Examining the error of the Trapezoid Rule (5.24) more carefully, it can be shown that,
for an infinitely differentiable function f,

266 | CHAPTER 5 Numerical Differentiation and Integration

b m—1
f f(x)dx = % (yo + Ym + ZZy,-) + oh® + eah* + ch® + -, (5.29)

a i=1
where the ¢; depend only on higher derivatives of f ata and b, and not on /. For example,
¢» = (f'(a) — f'(b))/12. The absence of odd powers in the error gives an extra bonus
when extrapolation is done. Since there are no odd-power terms, extrapolation with the
second-order formula given by the composite Trapezoid Rule yields a fourth-order formula;
extrapolation with the resulting fourth-order formula gives a sixth-order formula, and so on.
Extrapolation involves combining the formula evaluated once at / and once at //2,
half the step size. Foreshadowing where we are headed, define the following series of step

sizes:
hi=b—a
hy = 1(b)
2=5b~a
o
hj= F(b —a). (5.30)

The quantity being approximated is M = fab f(x) dx. Define the approximating for-
mulas R to be the composite Trapezoid Rule, using % ;. Thus, R ;1 1 is exactly R;; with
step size cut in half, as needed to apply extrapolation. Second, notice the overlapping of the
formulas. Some of the same function evaluations f(x) are needed in both R;j and R ;.
For example, we have

h
Ry = 71<f<a> + f(b))

h b
Ry = 72 (f(a) T f(b) + 2f(“ +))

2
1 a+b
= —R h .
3 1+ 2f<))

We prove by induction (see Exercise 5) that for j =2,3,....

2/2
1 ,
Rﬂ:ERj,l,lJrhj;f(asz — Dh)). (5.31)

Equation (5.31) gives an efficient way to calculate the composite Trapezoid Rule incre-
mentally. The second feature of Romberg Integration is extrapolation. Form the tableau

Ry
Ry Ry
R31 Ry R33
R41 R4z R4z Ruy
: (5.32)
where we define the second column R;; as the extrapolations of the first column:
2’Ry1 — Riy
R =
22 3
22R31 — Ry
Ry =
32 3
2°R41 — R
Ry = 241 — 751 (5.33)

5.3 Romberg Integration | 267

The third column consists of fourth-order approximations of M, so they can be extrapo-
lated as

2 _
Ras = 4 12322_ 1Rzz
2 _
Rus — 4 12422_ 1R32
Rs3 = 42]3—__1%, (5.34)
and so forth. The general jkth entry is given by the formula (see Exercise 6)
Rjp= AR it = Rjmte, (5.35)

4T

The tableau is a