Lab2B
Newton’s Method, Error, Newton’s Fracal and Explorations

Lab1B, Lab2B, Lab3B, Lab4B will a series of Chapters about Numerical Analysis and its appli-
cations.

1 Title, Team Members, Abstract and Introduction

See the instructions for LablB.

2 Implement Newton’s method and test your code

In this lab you will be implementing and applying Newton's method for solving nonlinear equations
of the form:

flz)=0. (1)
As you work through the lab you should use some examples which you know will work with each
of the methods.

2.1 Implement Newton’s method

Newton's method is a fixed point iteration (FPI) method, so here you use your work from Lab2A
on FPI to help implement Newton's method:

_ f(ak)
A))
Tpt1 = Tk + Axy, (3)

Note that in this Lab you will be storing values in vectors with components xj (or in Matlab
notation z(k)). The header below outlines what your code should take as input and output:

function [x,flag]=mynewton (£, £x, x0, tol, maxiter)

file: mynewton.m

Note that you should implement this incrementally, not trying to add all the conditions at once,
since this is much harder to debug. For example just start with the main loop and the maxiters
stopping condition.

2.2 Testing your code

To ensure that your function mynewton is working correctly, you should test the function on some
problems which you know the solution for. For example, the function

f(@) = (z+1)(z—1/2)
has roots at z = —1 and « = 1/2, and the derivative is
f(x)=2z+1/2.

Thus, the MATLAB code

f=0(x)(x+1) .*x(x-1/2);

df=0(x)2*xx+1/2;
[x1,fl]=mynewton(f,df,-1.2,0.001,10);
[x2,fl]l=mynewton (f,df ,0.6,0.001,10);

should give output vectors x1 and 2 of the iterates that yield 1 ~ —1 and x5 ~ 0.5.

2.3 Determine order of convergence and use log-log plot

You will also need to look at the order of convergence «, as discussed in lectures, we have

_ *
|Ik’+1 xz | _ |61€+1| ~C (4)
|z — x> Jex|*

multiplying by the denominator and taking logarithms gives,
loge |ek+1| ~ CklOge |ek| + loge (C) (5)
which is a linear model in log, |ex| with slope « and intercept log C.

For your Newton method do the following, on your example:

e Plot the logarithms of the errors against each other.
e By hand draw what you think is the line which best fits the data.

e Estimate the slope of the line (the order of convergence) and compare it to the expected
value. Do the different schemes meet expectations for their relative order of convergence?
Why or why not?

2.4 Method to approximate and exploit the order of convergence «

The analysis in the previous subsection assumes that we have the exact solution x* available in
order to determine the order of convergence «. But in practise we would like to approximate
the order of convergence from the iterates x; during the execution of Newton's method, without
knowing z*. For well-conditioned problems with no multiplicities in their roots, we know o = 2
for Newton's method and C = |f"(«*)/(2f'(x*))| when we are close to a root. In particular the

convergence is quadratric in this case. Give and justify a method based on differences between
iterates xj (or equivalently the stable digits) that approximately detects quadratic convergence
of Newton's method. lllustrate your approach with a couple of examples.

Similarly give a method based on iterates xj produced by Newton's method to detect when its
converging to a multiple root. How would you approximately determine the multiplicity m of
such a root? Finally how would you improve Newton's method to more efficiently and accurately
converge to the multiple root? Give an example to illustrate your approach.

3 Newton’s fractals
The following material comes from the excellent Text, Numerical Methods for Engineers, by
Jeffrey Chasnov.

Your task for section 3.1 is:

3.1 Find the solutions of z* = 1 as complex numbers and illustrate them
in terms of exp and the graph below following the process in 3.1
below

3.1 Roots in the Complex Plane

View this lecture on YouTube

The three cube roots of unity are the solutions of z> = 1. We can solve this equation using Eu-

ler’s formula, exp (i) = cos + isin 8. We write z> = exp (i27tn), with n an integer, and take the cube

root to find the solutionsz = exp (i2 7n/3). The three unique complexrootscorrespondton = (1
and 2, and using the trig values of special angles, we find

rn=1 rp=-5+51

These roots can be located on the unit circle in the complex plane, and are shown below.

eiQTZQ//’”Inl(Z)

Re(z)

et /3

We now define the root-finding problem to be f(z) = 0, where f(z) = z3 — 1, with derivative f'(z) =
3z2. Newton’s method for determining the three complex roots of unity is given by the iteration

f(z)

Zn+l = Zn — m
Here, we want to determine which initial values of zy in the complex plane converge to which of the
three cube roots of unity. So if for a given zg, the iteration converges to r1, say, we will color red the
point zj in the complex plane; if it converges to r,, we will color zy green; and if to r3, blue.
In the next lecture, we show you how to construct a MATLAB program that grids up a rectangle
in the complex plane, and determines the convergence of each grid point zy. By coloring these grid

points, we will compute a beautiful fractal.

https://youtu.be/vuL87WfRIQE

3.2 Implement the Matlab below for :* = 1. Discuss aspects of the
implementation. Produce the Fractal

Watching the 2 excellent videos by Chasnov will also be helpful. See Section 3.2 on the next
page.

3.2 Coding the Newton fractal

View this lecture on YouTube

Our code first defines the function f(z) and its derivative to be used in Newton’s method, and defines
the three cube roots of unity:

f = Q@(z) z.7"3-1; fp = Q@(z) 3%z."2;
rootl = 1; root2 = -1/2 + li*sqrt(3)/2; root3 = -1/2 - lixsqrt(3)/2;

We let z = x + iy. The complex plane is represented as a two-dimensional grid and we define nx and
ny to be the number of grid points in the x- and y-directions, respectively. We further define xmin and
xmax to be the minimum and maximum values of x, and similarly for ymin and ymax. Appropriate
values were determined by numerical experimentation.

nx=2000; ny=2000;

xmin=-2; xmax=2; ymin=-2; ymax=2;
The grid in x and y are defined using linspace.
x=linspace (xmin, xmax,nx); y=linspace (ymin,ymax,ny);

We then use meshgrid to construct the two-dimensional grid. Suppose that the x-y grid is defined by
x=[x1 x2 x3] and y=[y1l y2 y3]. Then [X, Y]=meshgrid (x,y) results in the matrices

xl x2 x3 vyl yl vyl
X=|x1 x2 x3|, Y= |y2 y2 vy2|,
x1l x2 x3 vy3 y3 vy3

and we can grid the complex plane using

[X,Y]=meshgrid(x,y);
Z=X+11i*Y;
We now iterate Newton’s method nit times. These lines constitute the computational engine of the
code.
nit=40;
for n=1:nit

Z=12-£(2) ./ fp(2);
end
We next test to see which roots have converged. We use the logical variables z1, z2 and z3 to mark the
grid points that converge to one of the three roots. Grid points that have not converged are marked by
z4, and our convergence criteria is set by the variable eps. The function abs returns the modulus of a
complex number.

eps=0.001;
Zz1 = abs(Z-rootl) < eps; Z2 = abs(Z-root2) < eps;

https://youtu.be/_FrpXPbP-zk

23 = abs(Z-root3) < eps; Z4 = ~(Z1+Z2+Z3);

Finally, we draw the fractal. The appropriate graphing function to use here is image, which can color
pixels directly. We first open a figure and set our desired colormap. Here, our map will be a four-
by-three matrix, where row one of the matrix corresponds with the RGB triplet (1 0 0] that specifies
red; row two of the matrix [0 1 0] specifies green; row three of the matrix [0 0 1] specifies blue;
and row four of the matrix [0 0 0] specifies black. The numbers 1-2-3-4 in our image file will then
be colored red-green-blue-black.

figure;

map = [1 0 0; 01 0; 00 1; 0 O 0]; colormap (map);

We construct the image file by combining the values of our four z matrices into a single z matrix

containing elements 1, 2, 3, or 4.
7= (Z21+2+22+3%723+4+%724) ;

The graph is created in our final lines of code. We use the limits of x and y to specify the location of our
image in the complex plane. One needs to be aware that the function image assumes that the first row
of pixels is located at the top of the image. So by default, image inverts the y-axis direction by setting
the "YDir’ property to 'reverse.” We need to undo this when plotting data from a computation because
the usual convention is for the first row of pixels to be at the bottom of the image. We therefore set the
“YDir” property to ‘normal.’

image ([xmin xmax], [ymin ymax], Z); set(gca,'YDir', 'normal');

xlabel ('x', 'Interpreter', 'latex', 'FontSize',14);
ylabel ('y', 'Interpreter', 'latex', 'FontSize',614);
title('Fractal from $f(z)=z"3-1$', 'Interpreter',K 'latex',6 'FontSize', 16)

The resulting plot looks like

Fractal from f(z) = 2% — 1

3.3 Create your own fractal and exploration

	Lab2B.pdf
	Title, Team Members, Abstract and Introduction
	Implement Newton's method and test your code
	Implement Newton's method
	Testing your code
	Determine order of convergence and use log-log plot
	Method to approximate and exploit the order of convergence

	Newton's fractals
	Find the solutions of z4 = 1 as complex numbers and illustrate them in terms of exp and the graph below following the process in 3.1 below
	Implement the Matlab below for z4 = 1. Discuss aspects of the implementation. Produce the Fractal
	Create your own fractal and exploration

