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Abstract

In the following, we explore and provide an implementation of Newton’s method for both simple
roots and roots of multiple multiplicity. We discuss how to determine the order of convergence,
as well as how to approximate the order of convergence for functions whose roots are unknown.
Also, due to differences in convergence for roots of multiple multiplicity, we show a modified ver-
sion of Newton’s method which can speed up convergence up to the expected quadratic speed for
multiplicity m > 1. In the final sections, we show how Newton’s method can be used to generate
Newton’s fractals, and generate fractals for the fourth roots of unity and the Mandelbrot set.

1 Introduction

(See References section for references used here.)
This is the second lab in a series of 4 labs exploring various numerical algorithms and analyzing

their properties. Finding roots of polynomials has been a significant area of interest throughout
the entirety of the history of mathematics. As evidence to this claim, consider the fact that entire
branches of mathematics were born out of the desire to find roots of polynomials. For example,
group theory takes its roots from Galois’ proof of the insolvability of the quintic.

In this lab, we discuss Newton’s method, an algorithm discovered by Issac Newton and Joseph
Raphson. The algorithm comes from a family of iterative root-finding algorithms: algorithms which
generate successively better approximations of the root of a function. Another type of root-finding
algorithms are bracketing methods, which successively narrow the range in which a root may be
found until a desired precision. However, many of these methods, such as the bisection method,
converges much slower than Newton’s method (e.g., only a single extra bit of precision for each
iteration in the case of the bisection method), so algorithms such as Newton’s method are often
used in practice.

Newton’s method is especially important due to the prevalance of the problem of finding roots
in numerous applications. In particular, it is useful for when only an approximate solution to
an equation is needed, especially when the exact solution would require far more computational
power. For example, consider the problem of rendering the shadows of certain voxels in the context
of computer graphics. To the naked eye (and more importantly, the resolution of the screen), only
a finite amount of precision is needed to calculate the reflection and physics of light for a realistic
image. Thus, we see Newton’s method effectively being used to calculate raytracing and pixel
shadowing for millions, sometimes billions, of voxels, which would otherwise be computationally
intractable if we desired exact solutions.
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2 Newton’s Method

2.1 Implementation

Newton’s method is a fixed-point iteration method used to approximate the roots of a real-valued
function. We implement a method that returns the iterates

1 function [x,flag] = mynewton(f,fx,x0,tol ,maxiter)

2 % Author : Spencer Kelly and David Tran

3 % Date : 2024.02.11

4 % Purpose : Compute approximate solution to f(x)=0 via Newton ’s Method

5 %

6 % Inputs :

7 % f -- A function handle for f(x) being solved

8 % fx -- A function handle for the f’(x)

9 % x0 -- Initial guess for the fixed point

10 % tol -- Tolerance of the solution .

11 % maxiter -- Maximum number of iterations .

12 %

13 % Outputs :

14 % x -- Vector containing the iterates of the Newton ’s Method

15 % flag -- Flag specifying if the solution has been obtained :

16 % = The number of iterations taken to converge .

17 % = -1 If the algorithm has not converged in maxiter iterations .

18 %

19 flag = -1; %give inital value of flag and xold

20 x(1) = x0;

21 for i = 1: maxiter %for loop do the iteration with ’

maxiter ’ given for the maximum steps

22 x(i+1) = x(i) - f(x(i))/fx(x(i)); %Newton

23 %fprintf(’%f\n’,xs);

24 if abs(x(i+1)-x(i)) <= tol %if x_new - x_old <= tol , break the

loop , let flag = # of steps

25 flag = i;

26 break

27 end %if not , do next iteration

28 end

29 end

mynewton.m

2.2 Testing

We test the method with the function:

f(x) = (x+ 1)(x− 1/2)

for which we expect the roots x = −1 and x = 1/2. The derivative is

f ′(x) = 2x+ 1/2

so we test with the code below which returns the iterates as follows

1 f = @(x)(x+1).*(x -1/2);

2 df = @(x)2*x+1/2;

3 [x1 ,fl]= mynewton(f,df , -1.2 ,0.001 ,10);

4 [x2 ,fl]= mynewton(f,df ,0.6 ,0.001 ,10);
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5 % the roots are x1 = -1 and x2 = 0.5, we expect approximately these values

6 disp(x1);

7 disp(x2);

test mynewton.m

x1 = [−1.2000,−1.0211,−1.0003,−1.000]

x2 = [0.6000, 0.5059, 0.5000, 0.5000]

which we see properly approaches −1 and 0.5.

2.3 Determining Order of Convergence

We use the code in Figure 1 to plot the logarithms of the errors against each other for x = −1 in
Figure 2 and x = 1/2 in Figure 3.

loge |ek+1| ≈ α loge |ek|+ loge(C)

Estimating a line-of-best-fit for both plots as seen in Figure 4 and Figure 5 shows an approximate
slope α = 2, corresponding to a quadratic order of convergence.

This matches the expected value of 2 that we should observe for Newton’s method, since we
expect it to have quadratic convergence. We expect this since Newton’s method approximates the
next iteration xn+1 with the solution to

0 ≈ f(xn+1) ≈ f(xn) + f ′(xn)(xn+1 − xn)

which, solving for xn+1 − xn and taking the error at iteration n as en = r − xn (where r is the
root), gives

en+1 ≈ − f(r − en)

f ′(r − en)

and thus Taylor-expanding the right-hand side demonstrates a quadratic relationship between
en+1 and en for some constant C dependent on the second derivative of f :

en+1 ≈ Ce2n.

2.4 Approximating Order of Convergence

Determining the order of convergence is only possible when we know in advance the exact roots.
However, often this is not the case. To detect quadratic convergence using only the information
provided from our iterative approximates, we can compute the ratios of consecutives differences
between iterates xn and xn+1. If the ratios are constant, then we are most likely observing quadratic
convergence. This is a result of the fact that the second derivative of a quadratic function is constant.

We use the code in Figure 6 to demonstrate the ratios for quadratic convergence of the original
function of interest f(x) = (x+ 1)(x− 1/2) in Figure 7. We use an initial guess far from the true
value, x0 = −1000 to show that the ratios are constant as we converge. Notice how the ratios are
constant around 0.5 (they fall rapidly towards 0 as we approach the exact root of −1.)

If instead our root has multiplicity greater than 1, quadratic convergence is not guaranteed,
and the method will most likely converge slower. To detect when converging to a multiple root
one can observe the convergence and see if convergence is linear, or even slower. To approximately
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determine the multiplicity m of such a root, one can use the fact that a root of multiplicity m
converges m times slower than a simple root. Thus, a root of multiplicity 2 converges linearly, a
root of multiplicity 3 converges sublinearly (square-root), etc. So, we can observe the higher-order
ratios, and observe when their behaviour (either quadratic, linear, sublinear, etc.), to approximately
determine the multiplicity.

If the multiplciity is known, say m, we can modify Newton’s method as the following to converge
to the multiple root with quadratic convergence:

xn+1 = xn −m

(
f(xn)

f ′(xn)

)
See the implementation in Figure 8 which results in the following convergence for a f(x) =

(x− 2)3, a function with root of multiplicity 3.

3 Newton’s Fractals

3.1 Fourth Roots of Unity

The solutions to z4 = 1 can be solved using Euler’s formula: since exp(iθ) = cos θ + i sin θ, z4 = 1
is equivalent to z4 = exp(i2πn) with n an integer. Taking the fourth root gives z = exp(i2πn/4),
which for n = 0, 1, 2, 3 yields the roots

r1 = 1

r2 = i

r3 = −1

r4 = −i

and can be graphed on the complex plane by the red, green, orange, and pink lines, respectively
below.
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3.2 Fractal for the Fourth Roots of Unity

1 clear

2 clc

3 f = @(z) z.^4-1; fp = @(z) 4*z.^3;

4 root1 = 1; root2 = -1; root3 = 1i; root4 = -1i;

5

6 nx =2000; ny =2000;

7 xmin=-2; xmax =2; ymin=-2; ymax =2;

8

9 x=linspace(xmin ,xmax ,nx); y=linspace(ymin ,ymax ,ny);

10 [X,Y]= meshgrid(x,y);
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11 Z=X+1i*Y;

12

13 nit =40;

14 for n=1: nit

15 Z = Z - f(Z) ./ fp(Z);

16 end

17

18 eps =0.001;

19 Z1 = abs(Z-root1) < eps; Z2 = abs(Z-root2) < eps;

20 Z3 = abs(Z-root3) < eps; Z4 = abs(Z-root4) < eps;

21 Z5 = ~(Z1+Z2+Z3+Z4);

22

23 figure;

24 map = [1 0 0 ; 0 1 0 ; 0 0 1; 1 1 0; 0 0 0]; colormap(map);

25 Z=(Z1+2*Z2+3*Z3+4*Z4+5*Z5);

26 image([xmin xmax], [ymin ymax], Z); set(gca ,’YDir’,’normal ’);

27 xlabel(’$x$’, ’Interpreter ’, ’latex ’, ’FontSize ’ ,14);

28 ylabel(’$y$’, ’Interpreter ’, ’latex ’, ’FontSize ’ ,14);

29 title(’Fractal from $f(z)=z^4-1$’, ’Interpreter ’, ’latex ’,’FontSize ’, 16)

z4.m

3.3 Mandelbrot Fractal

Using a similar approach, we demonstrate the Mandelbrot fractal, a fractal generated using the
iteration of fc(z) = z2 + c.

4 Summary

4.1 Results

In conclusion, our exploration of Newton’s method has covered its application to both simple
roots and roots of multiple multiplicity. We delved into methods for determining the order of
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convergence and outlined approaches to approximate the order when dealing with functions whose
roots are unknown. Recognizing the distinct convergence behavior for roots of multiple multiplicity,
we introduced a modified version of Newton’s method tailored to accelerate convergence up to the
anticipated quadratic speed for roots with a multiplicity m > 1.

In the final sections, we showcased the broader applications of Newton’s method, extending
beyond root finding to the realm of fractals. Specifically, we demonstrated how Newton’s method
can be harnessed to generate fractals, illustrating its significance in both mathematical exploration
and visualization.

4.2 Team Description

Our team encountered problems with the convergence of Newton’s method: we did not initially set
a tolerance for when to halt the iteration. Thus, Newton’s method would run for much longer than
needed, attempting to find the exact value of the root. While we initially believed it was due to
bad performance of the code, our profiling revealed that we were iterating much more than needed.
Adding tolerance to the function let us specify the desired precision of the iteration method.

4.3 Future Explorations

Our team would like to further explore different fractals that can be generated using Newton’s
method. It would be interesting to see fractals of not just polynomial functions, but also of tran-
scendental functions. We would like to see if there are any discernible differneces between the
fractal images of functions according to their properties, such as if they are analytic, holomorphic,
etc.
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Appendix

1 clear

2 clc

3 f = @(x)(x+1).*(x -1/2);

4 df = @(x)2*x+1/2;

5 profile on

6 [x1 , fl1] = mynewton (f ,df , -1.2 ,0.001 ,10)

7 [x2 , fl2] = mynewton (f ,df ,0.6 ,0.001 ,10)

8 profile off

9 profile viewer

10 for i = 1: fl1

11 ex(i) = abs(x1(i)+1); %error for |x_n -x|

12 ex1(i) = abs(x1(i+1) +1); %error for |x_(n+1)-x|

13 logex(i) = log(abs(x1(i)+1)); %error after log for |x_n -x|

14 logex1(i) = log(abs(x1(i+1) +1)); %error after log for |x_x(n+1)-

x|

15 end

16

17 % Compute errors for the second set of iterations (x2)

18 for i = 1:fl2

19 ex2(i) = abs(x2(i) - 0.5); % Adjust the expected root value if necessary

20 ex3(i) = abs(x2(i + 1) - 0.5);

21 logex2(i) = log(abs(x2(i) - 0.5));

22 logex3(i) = log(abs(x2(i + 1) - 0.5));

23 end

24

25 % Plot errors for the first set of iterations

26 figure (1)

27 plot(logex , logex1 , ’.’, ’MarkerSize ’, 15)

28 title(’Convergence for Root x = -1’)

29 xlabel(’log(|x_n + 1|)’)

30 ylabel(’log(|x_{n+1} + 1|)’)

31

32 % Plot errors for the second set of iterations

33 figure (2)

34 plot(log(ex2), log(ex3), ’.’, ’MarkerSize ’, 15)

35 title(’Convergence for Root x = 0.5’)

36 xlabel(’log(|x_n - 0.5|) ’)

37 ylabel(’log(|x_{n+1} - 0.5|) ’)

newtontest.m

Figure 1: newtontest.m
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Figure 2: Log errors for x = −1

Figure 3: Log errors for x = 1/2
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Figure 4: Log errors for x = −1

Figure 5: Log errors for x = 1/2
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1 clear

2 clc

3

4 % Define the function and its derivative

5 f = @(x) (x + 1) .* (x - 1/2);

6 df = @(x) 2 * x + 1/2;

7

8 profile on

9 % Perform Newton ’s method

10 [x, ~] = mynewton(f, df , -100, 1e-10, 100);

11

12 % Compute differences

13 d = diff(x);

14

15 % Compute ratios

16 r = d(2:end) ./ d(1:end -1);

17 profile off

18 profile viewer

19

20 % Plot ratios

21 figure;

22 plot(r, ’o-’, ’MarkerSize ’, 8);

23 title(’Difference Ratios for Initial Guess x0 = -1000’);

24 xlabel(’Iteration ’);

25 ylabel(’Ratio (r_k)’);

26 grid on;

estimate convergence.m

Figure 6: estimate convergence.m
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Figure 7: Difference Ratios for an Initial Guess x0 = −1000

1 function [root , iterations] = modifiednewton(f, df, d2f , x0, tol , max_iter)

2 iterations = 0;

3 x = x0;

4 while iterations < max_iter

5 fx = f(x);

6 dfx = df(x);

7 d2fx = d2f(x);

8

9 if abs(fx) < tol

10 root = x;

11 return;

12 end

13 x = x - (dfx / d2fx) * (fx / dfx);

14 iterations = iterations + 1;

15 end

16 root = x

17 end

modifiednewton.m

Figure 8: modifiednewton.m
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