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Abstract

This lab is the 3rd in a series of 4 labs exploring various numerical methods, implementing them, and
examining their tradeoffs. In this lab, we explore the PA = LU factorization method for solving
systems of linear equations, as well as the Jacobi fixed-point iteration method and multivariate
Newton’s method. We compare the convergence of the Jacobi FPI and the PA = LU factorization
method, and we compare the convergence of Newton’s method for different systems of equations.
We find that the Jacobi FPI is a simple and easy-to-implement method for solving systems of linear
equations, but it is not the most efficient method. We also find that the PA = LU factorization
method is not suited for solving systems of linear equations when the matrix is large, and that the
Jacobi FPI is much faster and more reliable for this problem. We also find that Newton’s method is
a very fast and reliable method for solving systems of equations, and that plotting the convergence
of Newton’s method allows one to understand the rate of convergence and the behavior of the
system of equations.

1 Introduction

(The citations for the following are found in the references section at the end of the document.)

The problem of solving systems of linear equations forms the historical roots of linear algebra. It
was deeply explored by Rene Descartes, who introduced the geometrical interpretation of solutions
to systems as intersections in hyper-dimensional Cartesian space. Later, both Leibniz and Gauss
independently developed methods for solving systems of linear equations, with the latter being the
namesake for Gaussian elimination.

The methods explored in this lab, namely, PA = LU factorization, Jacobi fixed-point iteration,
and Newton’s method, are all later methods for solving systems of linear equations. The PA =
LU factorization method is a direct substitution method, which means that it is a method that
directly computes the solution to the system of linear equations. The Jacobi fixed-point iteration
and Newton’s method are iterative methods, which means that they are methods that use an
initial guess to iteratively compute the solution to the system of linear equations. Both have their
tradeoffs, and we will explore these tradeoffs in this lab. We will see why Newton’s method is one
of the more popular methods for solving systems of equations in modern times.

2 The PA = LU factorization method for linear systems

2.1 Why is PA = LU needed for solving linear systems approximately?

When solving linear systems of the form Ax = b, we begin by gaussian elimination of the matrix A,
followed by back substitution, and ultimately arrive at our solution. However, when a particular



matrix A is being used for multiple iterations, the overhead involved can become quite an obstacle.
This is because the process of Gaussian elimination is a computationally expensive process, with
complexity on the order O(n®). But with PA = LU factorization, we essentially remove the
overhead involved with Gaussian elimination, for all but the first iteration, by rewriting the matrix
A in terms of the upper and lower matrices L, and U, respectively. Thus, for every subsequent
iteration involving the same matrix, we need not perform gaussian elimination, since L and U allow
us to immediately begin performing the second step of solving; back-substitution, which only has
complexity O(n?).

However, when performing naive Gaussian elimination to form the matrices L and U, we are
at risk of swamping, or the existence of a zero-pivot. With the help of a permutation matrix P,
we can now swap rows and columns, to mitigate the propogation of errors due to multiplying rows
by large values, and avoid zero-pivots. The permutation matrix P keeps track of the swapping of

rows and columns, so that the linear system itself remains unperturbed (however it is now written
PAxz = Pb).

1 2 4
A great example would be the system Az =b with A= (3 8 14 |. To begin, we swap rows
2 6 13
1 and 2, since we want our multiplication to be by the smallest values possible during Gaussian
01 0
elimination. When doing this, we update our permutation matrix: P= |1 0 0|, and we can
0 01
3 8 14
subsequently perform gaussian elimination to yield the matrix (%) 7?2 %2 , where the brackets
3 3 3

around the values in the place of what should be 0 represents the multiplier for the elimination of
the row, (important for bookkeeping when doing permutations).
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Once again performing Gaussian elimination we obtain the matrix (é) %2 %2 . From
&) (-1 3
1 0 O 3 8 14
this matrix, we can easily find that L = é 1 0)andU = |0 %2 %2 . We can then use
£ -1 1 0 0 3
3

these to solve linear systems for by, with the increased efficiency of LU factorization, and the error
mitigation of the pivots enabled by the inclusion of the permutation matrix.

2.2 How to identify systems Ax = b for which PA = LU is not suited

Although it is a very effective direct method of giving (theoretically) the exact solution of the linear
system, PA = LU factorization is not always the tool you want to employ for solving said linear
system. For example, if the matrix involved is positive definite, and symmetric, we can employ
methods such as Cholensky Factorization, which is more efficient. If the matrix is not only positive
definite and symmetric, but also sparse, we can employ the Conjugate Gradient Method, which is
even more efficient than the aforementioned method, and has even lower memory demand.



2.3 Larger applications of PA = LU factorization

The applications of PA = LU factorization extend beyong just solving linear systems,and can be
used to solve very common problems. One such problem is solving for the inverse of a matrix,
which is made significantly easier when said matrix is decomposed into upper and lower matrices
via PA = LU factorization. On top of this, we can easily compute the determinant of a matrix
given its PA = LU factorization, when we recall that the determinant of a triangular matrix is
just its diagonal entries, and that the determinant of a permutation matrix is just (—1)", where n
is the number of rows swapped by the permutation.

3 Iterative solution of systems of linear equations

Jacobi FPI is a method for solving systems of linear equations of the form Ax = b. It is a multi-
dimensional analogue of the one-dimensional fixed-point iteration we explored in Lab 2. We require
that A is diagonally dominant, which means that the absolute value of the diagonal element of A
is greater than the sum of the absolute values of the other elements in the row. This is a sufficient
condition for the convergence of the Jacobi FPI. The Jacobi FPI is given by the following formula:

25D = YL+ U)2® + D1 (1)

where D is the diagonal of A, L is the lower triangular part of A, and U is the upper triangular
part of A. The Jacobi FPI is a simple and easy-to-implement method for solving systems of linear
equations, but it is not the most efficient method. We will explore the convergence of the Jacobi
FPI and compare it to the PA = LU factorization method.

3.1 Solving an equation for n = 100,000

We solve the following system of linear equations
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where b = (5/2,3/2,...,3/2,1,1,3/2,...,5/2)T where there are n — 4 3/2’s in the middle of
the vector. Using the code in Listing [I| we solve the system of linear equations for n = 100, 000,
with the following:

>> n = 100000;
>> [A, b] = sparsesetup(n);
>> x = jacobi(A, b, 50);

which converges to (1,...,1)7 after just 50 iterations.

% Inputs: full or sparse matrix a, r.h.s. b,
% number of Jacobi iterations, k

3| % Output: solution x

5

function x = jacobi(a,b,k)
n=length(b); % find n
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d=diag(a); 7% extract diagonal of a

r=a-diag(d); ’ r is the remainder

x=zeros(n,1); % initialize vector x

for j=1:k % loop for Jacobi iteration
x = (b-r*x)./4d;

end , End of Jacobi iteration loop

Listing 1: The code for the Jacobi FPI

3.2 Comparison of PA = LU and Jacobi Iteration

Theoretically, Jacobi is guaranteed to converge for all n if A is diagonally dominant, which A is in
this case. If we try PA = LU decomposition for this problem, using

% Solve a system of equations with PA = LU
function x = solve_lu(A, b)

[L, U, P] = 1u(A);

x = U\ (L \ (P * b));
end

Listing 2: The code for the LU decomposition

the function takes much longer due to its O(n3) time complexity. Even for n = 10000, the
function takes almost a minute on an Apple M1 Pro chip. Usually for PA = LU, if the matrix
is rank-deficient (multiple rows/columns that are linearly dependent), the LU decomposition may
not be unique and thus may fail to find the correct solution. However in this case, A is not rank-
deficient, so the LU decomposition should work. But, the Jacobi method is much faster and more
reliable for this problem.

3.3 Why is solving such large systems important in applications?

Solving large systems of linear equations is important in applications because it is a fundamental
problem in many areas of science and engineering. For example, in statstics, a linear model may
depend on millions or even billions of parameters which translates to a system of equations of the
same size. As a concrete example, a dimensonality-reduction technique such as principal component
analysis requires solving a system with as many equations as there are data points and/or desired
dimensions. Or, for example, modelling fluid dynamics similarily requires very large systems of
equations due to the complexity of the problem. Data is naturally highly multi-dimensional, which
makes solving large systems important in practice.

4 Implement Newton’s method for multiple variables

4.1 Implementation of Newton’s method for systems using vectorization

function [x,flag] = vectornewton(f,Df,x0,tol,maxiter)
flag = -1;
3lx = x0;
for i = 1l:maxiter
x_old = x;
x = x - Df(x)\f(x);
if norm(x - x_o0ld) <= tol
flag = 1i;
break




Listing 3: The code for the Newton’s method

4.2 Testing

We test Newton’s method on the following system of equations in Listing which yields the
approximate solution of v = 1.0960,v = —1.1592, w = —0.2611 in 7 iterations with a tolerance of
10712,

2u? —du+v? + 3w+ 6w+2=0

u? +0v? =20+ 2w? —5=0 (3)
3u? — 12u+v2 + 3w? +8=0

In the same code, we solve
2 —a® =0

24y -1=0
which yields 2 = 0.8260, y = 0.5636 in 7 iterations with a tolerance of 10~'2.

4.3 Adding Visualization to Newton’s Method

Plotting the convergence of Newton’s method allows one to understand the rate of convergence and
the behavior of the system of equations, since we often don’t know how the system may converge or
behave beforehand. For example, We can plot the convergence of Newton’s method for the system
of equations in Listing [4] by using the code in Listing [5 which yields the plot in Figure[l]l It shows
that although we don’t reach the desired tolerance until iteration 7, the rate of convergence is very
fast, and the solution is very close to the true solution after just 4 iterations.

5 Summary

5.1 Results

We explored 3 different methods of solving systems of equations across 2 different categories: direct
substitution methods, and iterative methods. We found that the Jacobi FPI is a simple and easy-
to-implement method for solving systems of linear equations, but it is not the most efficient method.
We also found that the PA = LU factorization method is not suited for solving systems of linear
equations when the matrix is large, and that the Jacobi FPI is much faster and more reliable for
this problem. We also implemented Newton’s method for systems of equations and found that it is
a very fast and reliable method for solving systems of equations, and that plotting the convergence
of Newton’s method allows one to understand the rate of convergence and the behavior of the
system of equations.

5.2 Team Work Problems and Ideas

We worked well together and were able to complete the lab in a timely manner. We were able to
divide the work evenly and work on the lab together. We were able to communicate effectively and
work together to solve the problems in the lab. A problem that was encountered was in the testing



of the PA = LU method, where the function took much longer than expected to run. We were able
to solve this problem by starting with much smaller input sizes (e.g. n = 100) and growing n much
slower to see how the function scaled.

5.3 Future Explorations

In the future, we would like to explore other methods for solving systems of equations, such as
the Gauss-Seidel method, the SOR method, and the conjugate gradient method. We would also
like to explore the convergence of these methods and compare them to the methods we explored in
this lab. We would also like to further explore how ill-conditioned matrices may behave with the
discussed methods, and how to transform the matrices to be better conditioned.
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6 Appendices
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6.1 Code
clear

clc

f1 = e(x) [

2xx (1) "2 - 4*x(1) + x(2)°2 + 3*x(3)°"2 + 6*x(3) + 2;
x(1)7"2 + x(2)72 - 2*x(2) + 2xx(3)"2 - 5;
3xx (1) "2 - 12*%xx(1) + x(2)°2 + 3*x(3)"2 + 8

gl 1

Df1 = e(x)[
4xx (1) - 4, 2xx(2), 6%x(3) + 6;
2%xx (1), 2*x(2) - 2, 4*xx(3);
: 6xx (1) - 12, 2*x(2), 6%x(3)
1;

[x1_soln, itersl] = vectormewton(fil, Dfi1, [0; O; 0], 10~(-12), 100)
£f2 = e(x) [

x(2) - x(1)°3 ;
x(1)"2 + x(2)"2 -1

21 1;
3/ Df2 = @(x) [

-3x x(1)"2 , 1 ;
2xx (1) , 2% x(2)
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[x2_soln , itersl] = vectormewton(f2 , Df2 , [ 1 ; 2 1, 10°(-12) ,10)

Listing 4: The code for the Newton’s method test

function [x, flag] = vectornewtonvisualized(f, Df, x0, tol, maxiter)
flag = -1;
x = x0;

% Initialize vectors to store iteration information

iteration_numbers = zeros(maxiter, 1);
norms_of_steps = zeros(maxiter, 1);
for i = l:maxiter

x_old = x;

% Compute the Newton step
step = Df(x)\f(x);

% Update the solution

X = X - step;

% Store iteration information

iteration_numbers (i) = i;

norms_of_steps(i) = norm(step);

% Check for convergence based on the norm of the step

if norms_of_steps(i) <= tol * (1 + norm(x))

flag = i;
break

end
end
% Plot the convergence
figure;
plot(iteration_numbers (1:flag), norms_of_steps(l:flag), ’-0’);
title(’Convergence of Newton’’s Method’);
xlabel (’Iteration’) ;
ylabel (’Norm of Newton Step’);
grid omn;

end
Listing 5: The code for the Newton’s method with visualization
6.2 Plots
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Figure 1: The convergence of Newton’s method for the second system of equations in Listing
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