
Distributed and Parallel Systems Due on Monday, February, 26, 2024

Assignment 1
CS4402B / CS9635B University of Western Ontario

Submission instructions.

Format: The answers to the problem questions should be typed:

• source programs must be accompanied with input test files and,
• in the case of Cilk code, a Makefile (for compiling and running) is required, and
• for algorithms or complexity analyzes, LATEX is highly recommended.

A PDF file (no other format allowed) should gather all the answers to non-programming
questions. All the files (the PDF, the source programs, the input test files and Make-
files) should be archived using the UNIX command tar.

Submission: The assignment should submitted through the OWL website of the class.

Collaboration. You are expected to do this assignment on your own without assistance
from anyone else in the class. However, you can use literature and if you do so, briefly
list your references in the assignment. Be careful! You might find on the web solutions
to our problems which are not appropriate. For instance, because the parallelism
model is different. So please, avoid those traps and work out the solutions by yourself.
You should not hesitate to contact the instructor or the TA if you have any questions
regarding this assignment. We will be more than happy to help.

Marking. This assignment will be marked out of 100. A 10 % bonus will be given if your
paper is clearly organized, the answers are precise and concise, the typography and the
language are in good order. Messy assignments (unclear statements, lack of correctness
in the reasoning, many typographical and language mistakes) may yield a 10 % malus.

PROBBLEM 1. [60 points] Let A be a n×n lower triangular matrix, where every diagonal
element is non-zero. Hence, the matrix A is invertible. We assume that n is power of 2. A
simple divide-and-conquer strategy to compute the inverse A−1 of A is described below. Let
A be partitioned into (n/2)× (n/2) blocks as follows:

A =

[
A1 0
A2 A3

]
. (1)

Clearly A1 and A3 are invertible lower triangular matrices. The matrix A−1 is given by

A−1 =

[
A−1

1 0
−A−1

3 A2A
−1
1 A−1

3

]
(2)

We assume that we have at our disposal a Cilk-code for matrix multiplication, such as the
one posted on the course web site based on the DnC algorithm studied in class.

1

Question 1. [10 points] Write a Cilk-like multi-threaded algorithm (that is pseudo-code in
the fork-join model) computing A−1.

Question 2. [5 points] Analyze the work and critical path of your multi-threaded algorithm.

Question 3. [25 points] Realize a Cilk implementation of your multi-threaded algorithm using
matrices with floating point numbers. Your code must use a threshold B such that
when the order satisfies n ≤ B, recursive calls are no longer spawned. For the tests,
use matrices with randomly generated coefficients, with absolute value between 1/10
and 10. You must provide two types of tests with your code:

• correctness tests: a couple examples with n = 4 (with B taking values 1, 2, 4)
for which your code verifies that AA−1 equals the identity matrix;

• performance tests: tests for which n takes successive powers of 2, namely
4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and B varies in the range 32, 64, 128.

Note that it is possible to avoid recursive calls for n < B by simply writing a for-loop
for forward substitution. Here are three matrices A1, A2, A3 with integer coefficients
such that the inverse A−1

I has also integer coefficients. These so-called unimodular
matrices are convenient for testing the correctness of your code and will avoid issues
with floating point arithmetic:

A1 =


1 0 0 0

−1 1 0 0

−1 −1 1 0

−1 −1 −1 1

 , A2 =


1 0 0 0

−1 1 0 0

1 −1 1 0

1 1 −1 1

 , A3 =


1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 ,

and we have:

A−1
1 =


1 0 0 0

1 1 0 0

2 1 1 0

4 2 1 1

 , A−1
2 =


1 0 0 0

1 1 0 0

0 1 1 0

−2 0 1 1

 , A−1
3 =


1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

 .

Note that the patterns in the matrices A1, A2, A3 are easy to generalize to arbitray n
so that A−1

1 , A−1
2 , A−1

3 still have integer coefficients.

Question 4. [5 points] The best choice for B depends on various factors, in particular cache
sizes, parallelization overheads. Determine experimentally (reporting your experimen-
tal data) what is the best choice for B, for

1. the serial elision of your code that is when cilk spawn and cilk sync are erased.
2. the multi-threaded version of your code run on a multi-core processor with 4 cores

(or more).

Question 5. [5 points] Collect running times for the performance tests on a multi-core pro-
cessor with 4 cores (or more) comparing the serial elision of your code against the

2

https://en.wikipedia.org/wiki/Triangular_matrix#Forward_and_back_substitution

multi-threaded version of your code. You should report running times using plots.
Please indicate the type (brand, model, cache size) of processor you are using. If this
processor uses https://en.wikipedia.org/wiki/Hyper-threading/hyper-threading tech-
nology, please check whether this has been turned on or not, and report the result in
your assignment.

Question 6. [10 points] Using the ideal-cache model, analyze the cache complexity of the serial
elision of the algorithm proposed in Question 1.

PROBBLEM 2. [40 points]
In this problem, we develop a divide-and-conquer algorithm for the following geometric

task, called the CLOSEST PAIR PROBLEM (CSP):

Input: A set of n points in the plane

{p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)},

whose coordinates are floating point numbers (positive, null or negative).

Output: The closest pair of points, that is, the pair {pi, pj} with pi ̸= pj for which the
distance between pi and pj, that is,√

(xj − xi)2 + (yj − yi)2

is minimized.

For simplicity, we assume that n is a power of 2 and that all the x-coordinates xi are pairwise
distinct, as well are the y-coordinates yi. Here’s a high-level overview of the proposed
algorithm:

1. Find a value x for which exactly half of the points satisfy xi < x and the other half
satisfy xi > x, thus splitting the points into groups L and R.

2. Recursively find the closest pair in L and the closest pair in R. Let us call these pairs
{pL, qL}, with pL, qL ∈ L, and {pR, qR}, with pR, qR ∈ R; we denote by dL (resp. dR)
the distance between pL and qL (resp. pR and qR). Let d be the smallest of these two
distances.

3. It remains to be seen whether or not there is a point in L and a point in R that are less
than distance d apart from each other. To this end, discard all points with xi < x− d
or xi > x+ d. Then, sort the remaining points by y-coordinate.

4. Now, go through this sorted list, and for each point, compute its distance to the six
subsequent points in the list. Let pM , qM be the closest pair found in that way.

5. The answer is {pL, qL}, {pR, qR} or {pM , qM}, whichever is closest.

3

https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Closest_pair_of_points_problem

Why are six subsequent points sufficient in the algorithm above? In fact this follows from
an elementary geometrical argument the proof of which can be found at https://sites.cs.ucsb.edu/ suri/cs235/ClosestPair.pdf
and which states that: A rectangle of width d and height 2d can contain at most six points
such that any two points are at distance at least d.

Question 1. [10 points] Write down pseudo-code (using the syntax of the C language) for the
algorithm, and show that its work is given by the recurrence:

W (n) = 2W (n/2) +O(nlog(n))

Deduce that W (n) ∈ O(nlog2(n)).

Question 2. [5 points] Propose a multi-threaded version of the above algorithm (for the fork-
join model) and show that its parallelism is limited to O(log(n)).

Question 3. [10 points] Propose an improved multi-threaded algorithm (for the fork-join
model) with a parallelism of O(n/log(n)).

Question 4. [15 points] Realize a either a Cilk implementation or a Julia implementation of
the multi-threaded algorithm proposed in Question 3. In any case, provide test cases
and study experimentally how your program scales with larger and larger input data
sets. If you use Cilk, provide test cases as part of your cpp file, following the style of
the examples studied in class. If you use Julia, provide a Jupyter notebook.

4

https://sites.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf

	Lecture – Assignment 1

