
David Tran
251169871 HW 1

CS 4402
February 29, 2024

Problem 1

1. Let A be a lower-triangular n× n matrix. The following computes and returns its inverse.

fn lower_triangular_inverse(row, col, n, A)

{

A1_inv = spawn lower_triangular_inverse(row, col, n/2);

A3_inv = lower_triangular_inverse(row + n/2, col + n/2, n/2);

sync;

A2 = A.submatrix(row + n/2, col, n/2);

result = matrix with (A1_inv) starting at (0,0),

(-A3_inv * A2 * A1_inv) starting at (n/2, 0),

(A3_inv) starting at (n/2, n/2)

return result;

}

2. The function will be called recursively until n = 1, that is, log n times. The work done at each
level is O(n3) (where n is the order of the current submatrix). So, the recurrence is

T (n) = 2T (n/4) + c(n/4)3

since we have two recursive calls and the work done at each level is O(n3). By the master
theorem, T (n) = Θ(n3), so the work is Θ(n3 log n). The critical path occurs in the subdivision of
the top-left (or bottom-right) of the matrix. The critical path length is logn, since we can divide
the matrix log n times, and the sum of log n matrix multiplications is n3 + (n/2)3 + · · ·+ 13 =
Θ(n3). So the critical path takes Θ(n3) time.

3. The main algorithm is shown below.

1 #include "SquareMatrix.hpp"

2 #include "SquareMatrixView.hpp"

3

4 auto lower_triangular_inverse(SquareMatrixView const &matrix, size_t

multithread_threshold = 2)

5 -> SquareMatrix {

6 auto const n = matrix.size();

7 if (n <= multithread_threshold) {

8 return matrix.inverse_forward_substitution();

9 }

10

11 auto const A1_inv = lower_triangular_inverse(

12 matrix.submat(0, 0, n/2), multithread_threshold);

13 auto const A2 = matrix.submat(n/2, 0, n/2);

14 auto const A3_inv = lower_triangular_inverse(

15 matrix.submat(n/2, n/2, n/2), multithread_threshold);

16 auto const prod = A3_inv

17 .parallel_negate(multithread_threshold)

1

18 .parallel_multiply(A2, multithread_threshold)

19 .parallel_multiply(A1_inv, multithread_threshold);

20 // auto const prod = -A3_inv * A2 * A1_inv;

21 auto result = SquareMatrix {n};

22 result.write_submat(0, 0, A1_inv);

23 result.write_submat(n/2, n/2, A3_inv);

24 result.write_submat(n/2, 0, prod);

25 return result;

26 }

Note that SquareMatrixView::submat runs in constant time, matrix multiplication runs in
Θ(n3), and Matrix::write_submat runs in Θ(n2), where n is the order of the matrix.

4. According to the graph below, a threshold value of 128 is best for both the parallel and serial
versions of the algorithm.

5. The running times for both the serial elision and multi-threaded version of the code is stored in
serial_perf.csv and parallel_perf.csv, respectively. The speedup is shown in the graph
above. The processor is an Apple M1 Pro chip with 8 cores, 8 threads, a 128-byte cache-line
size, 128 KB of L1 cache per core, 24 MB of L2 cache, and 24 MB of L3 cache.

6. For simplicity, we assume Case 1 when analyzing the cache complexity of matrix multiplication
as shown in class (indeed, this is justified since experimentally our 2048 * 2048 * 4 byte matrix
fits inside our 22 MB cache), which has a cache complexity of Θ(n3/L(

√
Z)). (Note that in our

example, the matrices are square so m = n = p = n). Writing to the result matrix will also
incur cache misses equivalent to Θ(n3/L). Using the Master theorem for the recurrence

Q(n,Z, L) = 2Q(n/2, Z, L) + Θ(n3/L(
√
Z)) + Θ(n3/L)

2

yields a cache complexity of Θ(n3/L) for the serial version of the algorithm.

Problem 2

1. (ps is sorted by x-coordinate)

PointPair closest_pair(Point ps[], int n)

{

if (n <= 3) return closest_pair_brute_force(ps, n);

int mid = n / 2;

PointPair left = spawn closest_pair(ps, mid);

PointPair right = closest_pair(ps + mid, n - mid);

sync;

PointPair middle = merge(ps, n, left, right);

return min_distance(left, right, middle);

}

PointPair merge(Point ps[], int n, PointPair left, PointPair right)

{

min_d = minimum distance of left and right;

boundary_ps = points within min_d of the middle;

sort boundary_ps by y-coordinate

for (i = 0; i < boundary_ps.size(); i++) {

for (j = i + 1; j < boundary_ps.size() && j < i + 7; j++) {

if (distance(boundary_ps[i], boundary_ps[j]) < min_d) {

min_d = distance(boundary_ps[i], boundary_ps[j]);

min_pair = (boundary_ps[i], boundary_ps[j]);

}

}

}

return min_pair;

}

Each recursive call of closest_pair calls merge which takes O(n log n) time to sort the
points by their y-coordinate. Since we split the points by 2 on each recursive call, the depth of
the recursion tree is at most log n. So the work is O(n log2 n) (this can also be shown by the
Master theorem).

2. A multi-threaded version of the above algorithm could spawn a child for each recursive call of
closest_pair. Because the span of the algorithm is O(n log n) (with an infinite number of
processors, a single processor would still need to do O(n log n) work due to the sort in merge),

the parallelism would be O(n log2 n
n logn) = O(log n).

3. Instead of using a standard sorting algorithm in O(n log n) as in the above, we can use a parallel
merge-sort algorithm which takes O(n) time. This would reduce the work to O(n log n) and the
span to O(log2 n), resulting in a parallelism of O(n

logn).
Note that the parallel merge-sort algorithm takes O(n) since the merge step can be done in

3

parallel. The work is O(n log n) since the depth of the recursion tree is log n and the work done
at each level is O(n). The span is O(log2 n) since the merge step takes O(log n) time.

4. The implementation is in closest_pair.c. Output is shown in q2.out (not using cilk) and
q2_cilk.out (using cilk). Note that as the number of points increases by a factor of 10, the
running time increases by a factor of 100 approximately for the naive implementation. The
running time for the cilk implementation increases by a factor of 10 approximately. This is
consistent with the parallelism of the cilk implementation being O(n

logn) and the complexity of

the naive algorithm being O(n2).

4

