Problem 1

1. Let A be a lower-triangular $n \times n$ matrix. The following computes and returns its inverse.

2. The function will be called recursively until n = 1, that is, $\log n$ times. The work done at each level is $\mathcal{O}(n^3)$ (where n is the order of the current submatrix). So, the recurrence is

$$T(n) = 2T(n/4) + c(n/4)^3$$

since we have two recursive calls and the work done at each level is $\mathcal{O}(n^3)$. By the master theorem, $T(n) = \Theta(n^3)$, so the work is $\Theta(n^3 \log n)$. The critical path occurs in the subdivision of the top-left (or bottom-right) of the matrix. The critical path length is $\log n$, since we can divide the matrix $\log n$ times, and the sum of $\log n$ matrix multiplications is $n^3 + (n/2)^3 + \cdots + 1^3 = \Theta(n^3)$. So the critical path takes $\Theta(n^3)$ time.

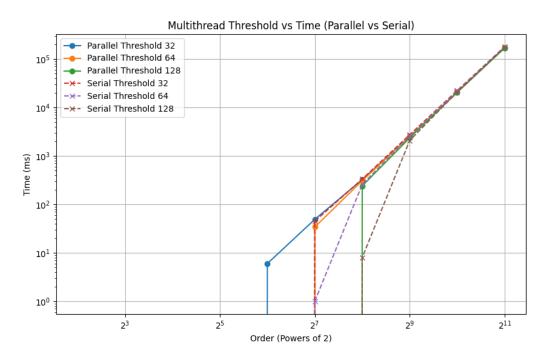
3. The main algorithm is shown below.

```
#include "SquareMatrix.hpp"
   #include "SquareMatrixView.hpp"
   auto lower_triangular_inverse(SquareMatrixView const &matrix, size_t
      multithread_threshold = 2)
       -> SquareMatrix {
5
       auto const n = matrix.size();
       if (n <= multithread_threshold) {</pre>
           return matrix.inverse_forward_substitution();
       }
10
       auto const A1_inv = lower_triangular_inverse(
11
           matrix.submat(0, 0, n/2), multithread_threshold);
12
       auto const A2 = matrix.submat(n/2, 0, n/2);
13
       auto const A3_inv = lower_triangular_inverse(
14
           matrix.submat(n/2, n/2, n/2), multithread_threshold);
       auto const prod = A3_inv
           .parallel_negate(multithread_threshold)
17
```

```
.parallel_multiply(A2, multithread_threshold)
18
            .parallel_multiply(A1_inv, multithread_threshold);
19
       // auto const prod = -A3_inv * A2 * A1_inv;
20
       auto result = SquareMatrix {n};
21
       result.write_submat(0, 0, A1_inv);
22
       result.write_submat(n/2, n/2, A3_inv);
23
       result.write_submat(n/2, 0, prod);
24
       return result;
25
   }
26
```

Note that SquareMatrixView::submat runs in constant time, matrix multiplication runs in $\Theta(n^3)$, and Matrix::write_submat runs in $\Theta(n^2)$, where n is the order of the matrix.

4. According to the graph below, a threshold value of 128 is best for both the parallel and serial versions of the algorithm.



- 5. The running times for both the serial elision and multi-threaded version of the code is stored in serial_perf.csv and parallel_perf.csv, respectively. The speedup is shown in the graph above. The processor is an Apple M1 Pro chip with 8 cores, 8 threads, a 128-byte cache-line size, 128 KB of L1 cache per core, 24 MB of L2 cache, and 24 MB of L3 cache.
- 6. For simplicity, we assume Case 1 when analyzing the cache complexity of matrix multiplication as shown in class (indeed, this is justified since experimentally our 2048 * 2048 * 4 byte matrix fits inside our 22 MB cache), which has a cache complexity of $\Theta(n^3/L(\sqrt{Z}))$. (Note that in our example, the matrices are square so m = n = p = n). Writing to the result matrix will also incur cache misses equivalent to $\Theta(n^3/L)$. Using the Master theorem for the recurrence

$$Q(n, Z, L) = 2Q(n/2, Z, L) + \Theta(n^3/L(\sqrt{Z})) + \Theta(n^3/L)$$

yields a cache complexity of $\Theta(n^3/L)$ for the serial version of the algorithm.

Problem 2

```
1.
      (ps is sorted by x-coordinate)
      PointPair closest_pair(Point ps[], int n)
          if (n <= 3) return closest_pair_brute_force(ps, n);</pre>
          int mid = n / 2;
          PointPair left = spawn closest_pair(ps, mid);
          PointPair right = closest_pair(ps + mid, n - mid);
          sync;
          PointPair middle = merge(ps, n, left, right);
          return min_distance(left, right, middle);
      }
      PointPair merge(Point ps[], int n, PointPair left, PointPair right)
      {
          min_d = minimum distance of left and right;
          boundary_ps = points within min_d of the middle;
          sort boundary_ps by y-coordinate
          for (i = 0; i < boundary_ps.size(); i++) {</pre>
               for (j = i + 1; j < boundary_ps.size() && j < i + 7; j++) {
                   if (distance(boundary_ps[i], boundary_ps[j]) < min_d) {</pre>
                       min_d = distance(boundary_ps[i], boundary_ps[j]);
                       min_pair = (boundary_ps[i], boundary_ps[j]);
                   }
               }
          }
          return min_pair;
      }
```

Each recursive call of closest_pair calls merge which takes $O(n \log n)$ time to sort the points by their y-coordinate. Since we split the points by 2 on each recursive call, the depth of the recursion tree is at most $\log n$. So the work is $O(n \log^2 n)$ (this can also be shown by the Master theorem).

- 2. A multi-threaded version of the above algorithm could spawn a child for each recursive call of closest_pair. Because the span of the algorithm is $O(n \log n)$ (with an infinite number of processors, a single processor would still need to do $O(n \log n)$ work due to the sort in merge), the parallelism would be $O(\frac{n \log^2 n}{n \log n}) = O(\log n)$.
- 3. Instead of using a standard sorting algorithm in $O(n \log n)$ as in the above, we can use a parallel merge-sort algorithm which takes O(n) time. This would reduce the work to $O(n \log n)$ and the span to $O(\log^2 n)$, resulting in a parallelism of $O(\frac{n}{\log n})$.

Note that the parallel merge-sort algorithm takes O(n) since the merge step can be done in

- parallel. The work is $O(n \log n)$ since the depth of the recursion tree is $\log n$ and the work done at each level is O(n). The span is $O(\log^2 n)$ since the merge step takes $O(\log n)$ time.
- 4. The implementation is in closest_pair.c. Output is shown in q2.out (not using cilk) and q2_cilk.out (using cilk). Note that as the number of points increases by a factor of 10, the running time increases by a factor of 100 approximately for the naive implementation. The running time for the cilk implementation increases by a factor of 10 approximately. This is consistent with the parallelism of the cilk implementation being $O(\frac{n}{\log n})$ and the complexity of the naive algorithm being $O(n^2)$.