Parallel Processing Letters

© World Scientific Publishing Company

PARALLEL ALGORITHMS FOR
MAXIMUM SUBSEQUENCE AND MAXIMUM SUBARRAY

KALYAN PERUMALLA

College of Computing, Georgia Institute of Technology
Atlanta, GA 30382-0280, USA

and

NARSINGH DEO

Department of Computer Science, University of Central Florida
Orlando, FL 82816-2362, USA

ABSTRACT

Given a sequence @ of n numbers (positive and negative), the mazimum
subsequence of (is the contiguous subsequence that has the maximum sum
among all contiguous subsequences of Q). Given a two-dimensional array A
of n x n numbers (positive and negative), the mazimum subarray of A is
the contiguous subarray that has the maximum sum among all contiguous
subarrays of A. We present two O(log n)-time parallel algorithms—one for
finding the mazimum subsequence sum of a given sequence, and the other for
finding the mazimum subarray sum of a given array. The former is optimal
on an EREW PRAM. The latter is optimal on a CREW PRAM, in the sense
that the time-processor product matches the current sequential upperbound

of O(ns).

Keywords: Subsequence, subarray, prefix sums, suffix sums, prefix maxima,
suffix maxima

1 Introduction

Given an nxn array A of reals (positive and negative), the problem of finding a rect-
angular subarray with maximum sum arises in 2-dimensional pattern matching[1].
Such a maximum-sum subarray corresponds to a maximume-likelihood estimator
of a certain kind of pattern in a digitized picture. A simplification of the two-
dimensional problem to a one-dimensional one is the following: Given a sequence

of n reals (positive and negative), find a subsequence which has the maximum sum
among all contiguous subsequences in .

A linear-time sequential algorithm for the one-dimensional problem, attributed
to Jay Kadane, is given in [1]. Furthermore, as reported in [1], Ulf Grenander of
Brown University, who originally in 1977 formulated the two-dimensional problem,
“abandoned that approach to the pattern-matching problem,” because no reason-
ably fast algorithm (sequential) could be found. A formal design of a linear-time
sequential algorithm and an analysis for the one-dimensional problem are given in
[2] and [3], respectively. A unified approach to both the one-dimensional and two-
dimensional problems can be found in [4] and [5]. A solution generalized to higher
dimensions is presented in [4], with a sequential time-complexity of O(N%T_l) for a
d-dimensional matrix of N elements. A divide-and-conquer approach to the prob-
lems is given in [5], where algorithms are presented that are amenable to paralleliza-
tion in a natural way. Specifically, algorithms with sequential-time complexities of
O(n) and O(n?), and parallel-time complexities of O(logn) and O(log” n), corre-
sponding to one- and two-dimensions, are presented.

We present two O(logn)-time parallel algorithms—one for each of the two
problems—on the FREW PRAM model. Our approach is substantially different
from those employed earlier. Furthermore, since the number of processors we use in
solving the one-dimensional problem is O(n/logn), and the best possible sequen-
tial algorithm is O(n)-time, the algorithm is cost-optimal. For the two-dimensional
case, the number of processors used in our parallel algorithm is O(n®) on EREW
PRAM, and O(n®/logn) on CREW PRAM. Since the best known sequential time
complexity for the two-dimensional problem is O(n?), the second parallel algorithm
is optimal on CREW PRAM, in the sense that the time-processor product matches
the current sequential upperbound of O(n?).

2 The Maximum Subsequence Problem

Given a sequence @ = [q1,92, .-, ¢n], let Q;; be the subsequence [g;, ¢it1, ..., ¢;],
and let Range(qy) be the set of all the subsequences of @ that include ¢ in them.

Note: If all ¢; are negative, then the maximum sum is defined to be the least
negative number. This can be easily redefined to be zero, if desired.

Consider an element of the given sequence @, say qx. Let [(qx) = [¢1,92, - - -, k-1, ¢k)
be the elements of @ to the left of ¢ including ¢i. Let v(gx) = [qk, ¢k+1, - - -, dn] be
the elements of @ to the right of ¢x including ¢x. Let Si(qx) = [s1, 82, .., Sk—1, Sk
be the suffix sums® of {(qz), and P-(qx) = [Pk, Pk+1,- - -, Pn] be the prefix sums® of
7(qx). Also, let M¥ be the maximum of (g), and Mf be the maximum of P, (qx).

Lemma: The maximum among the sums of all subsequences that include ¢ in
them is given by Maz(qr) = MF+ MZE — 5.

Proof: Let SQ;; denote the sum of elements in ();;. Let the subsequence corre-

@See [6] for definitions of suffiz sums, prefiv sums, suffizx mazima and prefic mazima.

sponding to the sum given by the preceding equation be Q’;b. Such a subsequence
exists since M = SQu and Mf = SQgp for some 1 < a < k < b < n. Let
there exist another subsequence Q%,,, that includes g, such that its sum, SQ%,,,,
is greater than SQ¥, .

Q (a1 T- 17 T -1 Tal -7 -7 T4
T T T
a a k b b
Since the subsequence Q’;,b, can be viewed as two subsequences—Q . and Qrp—
overlapping at g, the sum SQ’;,b, can be written as SQ’;,b, = SQuk+5SQrp — qi.
But, since by definition M¥* = SQux > SQux for all 1 < i < k, it follows that

SQap > SQqp. A similar argument holds for b and V', giving SQu > SQup: .
Thus, SQ%, > SQ*%,,, for all SQ*,,, € Range(qgy).0

EXAMPLE:

Q [3]2 [-7]1uuJ1o]-6[4 o661 [-2]3]4]3[]0]2]

Wgr) []2 [-rJufiof-efa] [[| [[[[[|

Silgr) [A7]1afuzfuofs 204 [| [| [[| [|

gr) [[[[| JaJof6f1[-2[-3]a4]3[0]2]

Prgy [[[[| [a]uw[7[8]6[3]7[4]4]6]

M] = Mazimum(S;)) = 19, M] = Maximum(P,) = 13
M + M] —q7 = 19413—-4 =28 = Max(q7)

Suppose that Max(qx) is computed for all g, i.e., for each element, g, of the
sequence @, the maximum sum of all subsequences of) that include ¢ is computed.
Then clearly, the maximum subsequence sum of the sequence @ is the maximum of
those maximums, i.e.,

MaxzSeqSum = Mazimum(Max(qx),1 <k <n).

Since the suffix sums of g;_1 are related to the suffix sums of ¢ , it is enough to
compute the suffix sums of the whole sequence only once. Similar reasoning holds
for the prefix sums. In other words, if S;(¢x) = [s1,$2,...,8k], then Si(gx_1) =
[$1— K, 2 — qk, - - -, Sk—1 — qg]. Similar relation holds for prefix sums. Also, to find
the maximum of S;(qi) for all &, it is enough to compute the prefix maxima® of the
suffix sums of (). Similarly, to obtain the maximum of P.(g;) for all &, it is enough
to compute the suffix maxima® of the prefix sums of Q).

These observations lead to the following parallel algorithm for finding the max-
imum subsequence sum:

Algorithm: Maximum Subsequence Sum

Input: Sequence @Q[1..n] of numbers (positive and negative).
Output: Maximum Subsequence sum of Q.

Begin Algorithm

Compute in parallel the prefix sums of @) into array PSU M.
Compute in parallel the suffix sums of) into array SSUM.
Compute in parallel the suffix maxima of PSUM into array SMAX.
Compute in parallel the prefix maxima of SSUM into array PMAX.
For 1 <7 < n do in parallel
(a) M,li] .= PMAXI[i] — SSUM]Ji]
(b) Mpli] == SMAX[:] — PSUM[{]
() M[1] := M[i] + Mpli] — Q7]
6 Find the maximum of M into M 5Q.
7 Output M 5Q.

T W N =

[1]

+ Q
+ Q]

End Algorithm

EXAMPLE:

Q [3]2 [-7]1uu]J1o]6[4 o661 [-2]3]4]3[]0]2]

PsUM |3 |5 [-2]9 J19]13[17]26]20]21[19]16]20]17][17]19]

SsUM [19]16[14]21]10]0o [6 [2 [-7]-1[-2]0 [3 [-1]2]2 |

SMAX|26]26]26]26]26]26]26]26[21]21[20][20[20][19[19][19]

PMAX[1919192t 21J2t[2r]2at]2t]2r[2r]21]2r]21][21]21]

M |26] 2626 28] 28] 2828 [28] 23] 23

22[22]22]21[21] 21

Mazimum Subsequence Sum = Maximum(M) = 28 = Sum(Qas)

Complexity

Steps 1 and 2 can be performed in O(logn) time using the standard paral-
lel prefix and parallel suffix algorithms[7]. Steps 3 and 4 can be performed with
O(n/logn) processors on an EREW-PRAM machine in O(logn) time using vari-
ations of parallel prefix and parallel suffix algorithms[6]. Similarly, Step 6 can be
done optimally in O(logn) time. Step 5 can be easily scheduled to be done in the

same time optimally. Thus, the total algorithm can be performed in O(logn) time.

Since the best sequential algorithm for the problem requires O(n) time, (which
is also the lower bound), the algorithm is optimal.

The algorithm can be modified in a straightforward way if the actual maximum
subsequence 1s needed instead of just the sum. This is done by computing the
indices of the prefix maximum and suffix maximum for each element, instead of
just the values.

3 The Maximum Subarray Problem

Given an array A = [a;;],1 <1,j < n, let 4; ;;,;, be the subarray [a;;],1 < {1 <
i<iz<n, 1<jh<j<ja<n

Note: If all a;; are negative, then the maximum sum is defined to be the least
negative number. This can be easily redefined to be zero, if desired.

Given an n x n array A, to find the maximum subarray sum. For a given (g, h)-
pair, 1 < g < h < n, construct the column (sequence) C9" of size n, by compressing
(summing) all the columns of A between g and h inclusive, i.e., C’fh = Z?:g asj.

Denote by R9", the set of all the subarrays of the array A that start at the g**
column and end at the h'” column of the array, i.e., all SAi gioh, 1 <11 < <n.

It is clear that the maximum subsequence sum of C9" is the same as the maxi-
mum of the sums of all the subarrays belonging to R9".

EXAMPLE:

2 -1 12 -9 12 6 1
5 -4 -12 10 -1 1 2 -9
3 -8 -9 11 -10 | -2 -8 -7
A = -7 9 -11 |1 9 -2 10 -2 9
0 -8 8 -1 -1 5 3 -6
6 -5 -9 7 -2 11 4 8
2 6 7 -8 2 -3 -6 -8
4 5 -1 -8 1 -7 10 6

12 -9 412 +8 = 23

-12 410 -1 +1 = -2

-9 411 -10 -2 =1 -10

o6 _ |11 49 -2 410 = 6

8 -1 -1 +5 = 11

-9 +7 -2 411 = 7

7 -8 +2 -3 = -2

-1 -8 +1 -7 = | -15

The Maximum Subsequence Sum of C*% = 35. This is the same as the maximum of
the individual sums of all the subarrays of A that start at the 3"¢ column and end
at the 6" column of A. For example, one such subarray is SAs 356 whose sum is

7, and another subarray is SAsz 376 Whose sum is 14. The Maximum Subsequence
Sum of C3¢ of 35 corresponds to the subarray SAi1366-

If the preceding sums are computed for all possible (g, h)-pairs, then all the
subarrays of the given array would have been taken into account, and the maximum,
M, of all the Maximum Subsequence Sums, M SQ?", thus calculated gives the
Maximum Subarray Sum, M SA.

To compute the sequences C9" efficiently, the rows can be preprocessed. Re-
placing each row by its prefix sums allows the sum of the elements of a row between
any two columns ¢ and h to be computed in O(1) time.

The foregoing observations lead to the following parallel algorithm for finding
the Maximum Subarray Sum of an n x n array:

Algorithm: Maximum Subarray Sum

Input: Array A[l..n, 1..n] of numbers (positive and negative).
Output: Maximum Subarray Sum of A.

Begin Algorithm

1 Replace each row of A by its prefix sums.
2 Add a column of zeroes as the zeroth column of A.
3 Forall 1 < g < h < ndoin parallel

(a) Compute the sequence C9" :
e For all 1 <i < n do in parallel
Cora) = Al[h] — Alilg — 1]
(b) Compute the maximum subsequence sum of C9" into Mgy

4 Find the maximum of all My, 1 < g < h <ninto MSA.
5 Output M SA.

End Algorithm

Complexity

Assuming the availabilty of n3/logn processors for a CREW PRAM, and n?
processors for an EREW PRAM:
Step 1 can be completed in O(logn) time. Step 2 can be completed in O(1) time.
Step 3(a) can be computed in O(logn) time assigning n/logn processors on a
CREW PRAM, and n processors on an EREW PRAM, respectively, to each (g, h)-
pair. Step 3(b) can be computed in O(logn) time by assigning n/ log n processors to
each C?% by using the parallel algorithm for finding Maximum Subsequence Sum
previously presented. Step 4 can be completed in at most O(logn) time. Thus,
the total time is O(logn), with n®/logn processors on a CREW PRAM, and n?
processors on an EREW PRAM.

The algorithm can be modified in a straightforward way to find the actual max-
imum subarray instead of just its sum. This can be done by keeping track of the
maximum subsequence of each (g, h)-pair.

4 Remarks

The one-dimensional and two-dimensional problems can be generalized to d dimen-
sions as follows:

Given a d-dimensional cube with sides of size n, of positive and negative
numbers, find the sub-d-cube that has the maximum sum out of all
sub-d-cubes.

An approach similar to the one for the two-dimensional version given in the
preceding sections holds for the d-dimensional version also. Consider any principal
set (not a diagonal set) of n d — I-dimensional planes that are parallel to each

(d—1)
other in the d-cube. In each of these planes, there exist (;) sub-d — 1-

planes. For each of the sub-planes, computing the maximum subsequence of the
sequence formed by compressing the “tube” along the perpendicular axis of the
planes enclosed by the sub-plane gives the maximum subsequence sum out of all
sub-d-cubes that are enclosed by the tube. Thus, the Maximum Sub-d-cube Sum
of a d-cube with each side of length n can be computed in O(logn) time, using

d—1
n X (;) processors on an EREW PRAM.

References

1. J. Bentley, Programming Pearls (Addison-Wesley, 1989), 69-78.
2. U. Manber, Introduction to Algorithms (Addison-Wesley, 1989), 106-107.

3. J. Bates, R. Constable, Proofs as Programs, ACM Tansactions on Programming
Languages and Systems, Vol. 7, No. 1 (January 1985), 113-136.

4. J. Jeuring, The Derivation of Hierarchies of Algorithms on Matrices, Constructing
Programs from Specifications (North-Holland, 1991), 9-32.

5. D. R. Smith, Applications of a Strategy for Designing Divide-and-Conquer Algo-
rithms, Science of Computer Programming, Vol.8 (1987), 213-229.

6. J. J4ja, An Introduction to Parallel Algorithms (Addison-Wesley, 1992).

7. R. E. Ladner, M. J. Fischer, Parallel Prefix Computation, JACM, 27(4) (1980),
831-838.

