Parallel Algorithms for the Maximum Subarray Problem

David Tran

University of Western Ontario

CS 4402, April 2024

Table of Contents

- Background
- 2 Main Results
- Recent Work

Maximum Subarray Problem

Let A be a d-dimensional array of n reals. Find a d-dimensional subarray A' of A such that the sum of the elements of A' is maximized.

• Image processing: find the brightest region in an image

- Image processing: find the brightest region in an image
- Signal processing: find the loudest region in a sound wave

- Image processing: find the brightest region in an image
- Signal processing: find the loudest region in a sound wave
- Data mining: find the most profitable region in a dataset

- Image processing: find the brightest region in an image
- Signal processing: find the loudest region in a sound wave
- Data mining: find the most profitable region in a dataset
- Bioinformatics: find the most conserved region in a DNA sequence

 2D version of the problem first proposed by Ulf Grenander in 1977 for maximum-likelihood estimation of patterns in images

- 2D version of the problem first proposed by Ulf Grenander in 1977 for maximum-likelihood estimation of patterns in images
- Grenander discovers $O(n^2)$ algorithm for 1D version

- 2D version of the problem first proposed by Ulf Grenander in 1977 for maximum-likelihood estimation of patterns in images
- Grenander discovers $O(n^2)$ algorithm for 1D version
- Michael Shamos discovers $O(n \log n)$ algorithm overnight

- 2D version of the problem first proposed by Ulf Grenander in 1977 for maximum-likelihood estimation of patterns in images
- Grenander discovers $O(n^2)$ algorithm for 1D version
- Michael Shamos discovers $O(n \log n)$ algorithm overnight
- Jay Kadane invents O(n) in less than a minute

Table of Contents

- Background
- 2 Main Results
- Recent Work

Main Result

Theorem

There exists parallel algorithms for d=1 and d=2 with $O(\log n)$ time complexity. The former is optimal on an EREW-PRAM, while the latter is optimal on a CREW-PRAM.

$$Q = \boxed{1 \mid 2 \mid 3 \mid 4 \mid 5}$$

$$Q = \boxed{1 \mid 2 \mid 3 \mid 4 \mid 5}$$

$$P(Q) = \boxed{1 \mid 3 \mid 6 \mid 10 \mid 15}$$

$$P(Q) = \boxed{1 \mid 3 \mid 6 \mid 10 \mid 15}$$

$$P(Q) = \boxed{1 \mid 3 \mid 6 \mid 10 \mid 15}$$

$$M_P(Q) = \boxed{1 \mid 2 \mid 3 \mid 4 \mid 5}$$

$$Q = \boxed{1 \mid 2 \mid 3 \mid 4 \mid 5}$$

$$P(Q) = \boxed{1 \mid 3 \mid 6 \mid 10 \mid 15}$$

$$M_P(Q) = \boxed{1 \mid 2 \mid 3 \mid 4 \mid 5}$$

$$M_S(Q) = \boxed{5 \mid 5 \mid 5 \mid 5 \mid 5}$$

Range Query in O(1)

The sum of elements in the subarray [i,j] is P[j] - P[i-1].

$$Q = \boxed{1 \mid 2 \mid 3 \mid 4 \mid 5}$$

Sum of Q[1,3] = P[3] - P[0] = 10 - 1 = 9.

Key Lemma

Lemma 1

Let Q be a 1D array of n reals. Let M_s^k be the maximum of the suffix sums of q_0, \ldots, q_k and M_p^k the maximum of the prefix sums of q_k, \ldots, q_{n-1} . The maximum of the sums of all subarrays containing q_k is

$$Max(q_k) := M_s^k + M_p^k - q_k$$

(the sum of the largest subarrays ending at q_k and starting at q_k).

Proof (Sketch) of Lemma 1

Suppose [A, B] is satisfies the above Lemma. Then any other subarray containing q_k (say [a, b]) has lesser sum.

	а	 Α	 q_k	 Ь	 В	

lacktriangledown Compute the prefix/suffix sums of Q as P, S

- lacktriangle Compute the prefix/suffix sums of Q as P, S
- ② Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s

- lacktriangle Compute the prefix/suffix sums of Q as P, S
- ② Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s
- **3** For each $1 \le k \le n$,

- \odot Compute the prefix/suffix sums of Q as P, S
- ② Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s
- \bullet For each $1 \leq k \leq n$,
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)

- \bigcirc Compute the prefix/suffix sums of Q as P, S
- ② Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s
- \bullet For each $1 \leq k \leq n$,
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)

- Compute the prefix/suffix sums of Q as P, S
- ② Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s
- \bullet For each $1 \leq k \leq n$,
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - **3** $Max(q_k) = M_s^k + M_p^k Q[k]$

- Compute the prefix/suffix sums of Q as P, S
- ② Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s
- \bullet For each $1 \leq k \leq n$,
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - 3 $Max(q_k) = M_s^k + M_p^k Q[k]$
- **1** Return the maximum of $Max(q_k)$

Maximum Subarray Algorithm (Parallel Version)

- Compute the prefix/suffix sums of Q as P, S (in parallel)
- ② Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s (in parallel)
- **3** For each $1 \le k \le n$, (in parallel)
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - 3 $Max(q_k) = M_s^k + M_p^k Q[k]$
- Return the maximum of $Max(q_k)$ (in parallel)

- lacktriangle Compute the prefix/suffix sums of Q as P, S
- 2 Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s
- **3** For each $1 \le k \le n$,
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - **3** $Max(q_k) = M_s^k + M_p^k Q[k]$
- Return the maximum of $Max(q_k)$

- Compute the prefix/suffix sums of Q as P, S $O(\log n)$
- ② Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s
- \bullet For each 1 < k < n,
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - 3 $Max(q_k) = M_s^k + M_p^k Q[k]$
- Return the maximum of $Max(q_k)$

- Compute the prefix/suffix sums of Q as P, S $O(\log n)$
- 2 Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s $O(\log n)$
- **3** For each $1 \le k \le n$,
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)

 - 3 $Max(q_k) = M_s^k + M_p^k Q[k]$
- Return the maximum of $Max(q_k)$

- Compute the prefix/suffix sums of Q as P, S $O(\log n)$
- 2 Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s $O(\log n)$
- **3** For each $1 \le k \le n$, $O(\log n)$
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - **3** $Max(q_k) = M_s^k + M_p^k Q[k]$
- Return the maximum of $Max(q_k)$

- Compute the prefix/suffix sums of Q as P, S $O(\log n)$
- 2 Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s $O(\log n)$
- **3** For each $1 \le k \le n$, $O(\log n)$
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - **3** $Max(q_k) = M_s^k + M_p^k Q[k]$
- Return the maximum of $Max(q_k)$ $O(\log n)$

Using $O(n/\log n)$ processors on EREW-PRAM:

- Compute the prefix/suffix sums of Q as P, S $O(\log n)$
- 2 Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s $O(\log n)$
- **3** For each $1 \le k \le n$, $O(\log n)$
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - 3 $Max(q_k) = M_s^k + M_p^k Q[k]$
- 4 Return the maximum of $Max(q_k)$ $O(\log n)$

T(n): $O(\log n)$

Using $O(n/\log n)$ processors on EREW-PRAM:

- Compute the prefix/suffix sums of Q as P, S $O(\log n)$
- 2 Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s $O(\log n)$
- **3** For each $1 \le k \le n$, $O(\log n)$
 - $M_s^k = M_p[k] S[k] + Q[k]$ (range query from A to k)
 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - **3** $Max(q_k) = M_s^k + M_p^k Q[k]$
- 4 Return the maximum of $Max(q_k)$ $O(\log n)$

T(n): $O(\log n)$

SU(n): O(n) (Kadane)

Using $O(n/\log n)$ processors on EREW-PRAM:

- Compute the prefix/suffix sums of Q as P, S $O(\log n)$
- 2 Compute the prefix maxima of S as M_p and the suffix maxima of P as M_s $O(\log n)$
- **3** For each $1 \le k \le n$, $O(\log n)$

 - $M_p^k = M_s[k] P[k] Q[k]$ (range query from k to B)
 - 3 $Max(q_k) = M_s^k + M_p^k Q[k]$
- 4 Return the maximum of $Max(q_k)$ $O(\log n)$

```
T(n): O(\log n)
```

SU(n): O(n) (Kadane)

Efficiency: $O(n)/O(\log n \cdot n/\log n) = O(1)(!!)$

Recall: Main Result

Theorem

There exists parallel algorithms for d=1 and d=2 with $O(\log n)$ time complexity. The former is optimal on an EREW-PRAM, while the latter is optimal on a CREW-PRAM.

2	-3	4	-1	5
-1	6	-2	7	-3
4	-2	8	-4	9

Pick a 2D subarray of columns.

2	-3	4	-1	5
-1	6	-2	7	-3
4	-2	8	-4	9

- Pick a 2D subarray of columns.
- 2 Sum across the rows to form a 1D array.

2	-3	4	-1	5
-1	6	-2	7	-3
4	-2	8	-4	9

- Pick a 2D subarray of columns.
- ② Sum across the rows to form a 1D array.
- Apply the 1D algorithm to find the maximum subarray sum.

2	-3	4	-1	5
-1	6	-2	7	-3
4	-2	8	-4	9

- Pick a 2D subarray of columns.
- ② Sum across the rows to form a 1D array.
- Apply the 1D algorithm to find the maximum subarray sum.
- Repeat for all subarrays of columns.

Replace each row by its prefix sums.

- Replace each row by its prefix sums.
- Prepend a column of zeroes to the matrix.

- Replace each row by its prefix sums.
- 2 Prepend a column of zeroes to the matrix.
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$

- Replace each row by its prefix sums.
- 2 Prepend a column of zeroes to the matrix.
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a a single column

- Replace each row by its prefix sums.
- Prepend a column of zeroes to the matrix.
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a a single column
 - ② Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} .

- Replace each row by its prefix sums.
- Prepend a column of zeroes to the matrix.
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a a single column
 - **2** Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} .
- Find the maximum of all M_{gh} for $0 \le g \le h < n$.

- Replace each row by its prefix sums.
- 2 Prepend a column of zeroes to the matrix.
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a 1D array.
 - a Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} .
- Find the maximum of all M_{gh} for $0 \le g \le h < n$.

- Replace each row by its prefix sums. $O(\log n)$
- 2 Prepend a column of zeroes to the matrix.
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a 1D array.
 - **2** Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} .
- Find the maximum of all M_{gh} for $0 \le g \le h < n$.

- 1 Replace each row by its prefix sums. $O(\log n)$
- 2 Prepend a column of zeroes to the matrix. $O(\log n)$
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a 1D array.
 - **2** Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} .
- Find the maximum of all M_{gh} for $0 \le g \le h < n$.

- 1 Replace each row by its prefix sums. $O(\log n)$
- 2 Prepend a column of zeroes to the matrix. $O(\log n)$
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a 1D array. $O(\log n)$, using $n/\log n$ and n processors for each C^{gh} on CREW-PRAM and EREW-PRAM, respectively.
 - **2** Apply the 1D algorithm to find the maximum subarray sum M_{ch} for C^{gh} .
- Find the maximum of all M_{gh} for $0 \le g \le h < n$.

- 1 Replace each row by its prefix sums. $O(\log n)$
- 2 Prepend a column of zeroes to the matrix. $O(\log n)$
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a 1D array. $O(\log n)$, using $n/\log n$ and n processors for each C^{gh} on CREW-PRAM and EREW-PRAM, respectively.
 - **2** Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} . $O(\log n)$
- Find the maximum of all M_{gh} for $0 \le g \le h < n$.

- 1 Replace each row by its prefix sums. $O(\log n)$
- 2 Prepend a column of zeroes to the matrix. $O(\log n)$
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a 1D array. $O(\log n)$, using $n/\log n$ and n processors for each C^{gh} on CREW-PRAM and EREW-PRAM, respectively.
 - **2** Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} . $O(\log n)$
- Find the maximum of all M_{gh} for $0 \le g \le h < n$. $O(\log n)$

Assume $n^3/\log n$ processors on a CREW-PRAM, and n^3 processors on an EREW-PRAM.

- 1 Replace each row by its prefix sums. $O(\log n)$
- 2 Prepend a column of zeroes to the matrix. $O(\log n)$
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a 1D array. $O(\log n)$, using $n/\log n$ and n processors for each C^{gh} on CREW-PRAM and EREW-PRAM, respectively.
 - **2** Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} . $O(\log n)$
- Find the maximum of all M_{gh} for $0 \le g \le h < n$. $O(\log n)$

T(n): $O(\log n)$

Assume $n^3/\log n$ processors on a CREW-PRAM, and n^3 processors on an EREW-PRAM.

- **1** Replace each row by its prefix sums. $O(\log n)$
- 2 Prepend a column of zeroes to the matrix. $O(\log n)$
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a 1D array. $O(\log n)$, using $n/\log n$ and n processors for each C^{gh} on CREW-PRAM and EREW-PRAM, respectively.
 - **2** Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} . $O(\log n)$
- Find the maximum of all M_{gh} for $0 \le g \le h < n$. $O(\log n)$

T(n): $O(\log n)$ SU(n): $O(n^3)$

Assume $n^3/\log n$ processors on a CREW-PRAM, and n^3 processors on an EREW-PRAM.

- 1 Replace each row by its prefix sums. $O(\log n)$
- 2 Prepend a column of zeroes to the matrix. $O(\log n)$
- **3** For each subarray of columns C^{gh} , $0 \le g \le h < n$
 - Collapse (sum) the rows of C^{gh} to form a 1D array. $O(\log n)$, using $n/\log n$ and n processors for each C^{gh} on CREW-PRAM and EREW-PRAM, respectively.
 - **2** Apply the 1D algorithm to find the maximum subarray sum M_{gh} for C^{gh} . $O(\log n)$
- **1** Find the maximum of all M_{gh} for $0 \le g \le h < n$. $O(\log n)$

T(n): $O(\log n)$ SU(n): $O(n^3)$

Efficiency: $O(n^3)/O(\log n \cdot n^3/\log n) = O(1)$

In general, for each of the $\binom{n}{2}^{d-2}$ d-dimensional subarrays, we can collapse them to a d-1-dimensional subarray and apply the d-1 algorithm to it in $O(\log n)$ time.

Remark

The d-dimensional maximum subarray problem can be solved in $O(\log n)$ time with $n \cdot \binom{n}{2}^{d-1}$ processors on a CREW-PRAM, and $n^2 \cdot \binom{n}{2}^{d-1}$ processors on an EREW-PRAM.

Table of Contents

- Background
- 2 Main Results
- Recent Work

Recent Work

- (1998) A (very slightly) sub-cubic algorithm for the 2D serial version using matmul
- (2004) 2D parallel version of the algorithm designed for BSP/CGM models
- (2017) 2D parallel version of the algorithm (among other problems) with optimal communication complexity on the systolic array model (FGPA, ASIC)

Citations

- Perumalla, K., & Deo, N. (1995). Parallel algorithms for maximum subsequence and maximum subarray. Parallel Processing Letters. World Scientific Publishing Company.
- Alves, C.E.R., Cáceres, E.N., Song, S.W. (2004). BSP/CGM Algorithms for Maximum Subsequence and Maximum Subarray.
- Bae, S.E.; Shinn, T.-W.; Takaoka, T. Efficient Algorithms for the Maximum Sum Problems. Algorithms (2017), 10, 5. https://doi.org/10.3390/a10010005