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Maximum Subarray Problem

Let A be a d-dimensional array of n reals. Find a d-dimensional
subarray A′ of A such that the sum of the elements of A′ is
maximized.
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Applications

Image processing: find the brightest region in an image

Signal processing: find the loudest region in a sound wave

Data mining: find the most profitable region in a dataset

Bioinformatics: find the most conserved region in a DNA
sequence
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History (Serial version)

2D version of the problem first proposed by Ulf Grenander in
1977 for maximum-likelihood estimation of patterns in images

Grenander discovers O(n2) algorithm for 1D version

Michael Shamos discovers O(n log n) algorithm overnight

Jay Kadane invents O(n) in less than a minute
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Main Result

Theorem

There exists parallel algorithms for d = 1 and d = 2 with O(log n)
time complexity. The former is optimal on an EREW-PRAM, while
the latter is optimal on a CREW-PRAM.
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Prefix/Suffix Sums and Maxima

Q = 1 2 3 4 5

P(Q) = 1 3 6 10 15

S(Q) = 15 14 12 9 5

MP(Q) = 1 2 3 4 5

MS(Q) = 5 5 5 5 5
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Range Query in O(1)

The sum of elements in the subarray [i , j ] is P[j ]− P[i − 1].

Q = 1 2 3 4 5

P(Q) = 1 3 6 10 15

Sum of Q[1, 3] = P[3]− P[0] = 10− 1 = 9.
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Key Lemma

Lemma 1

Let Q be a 1D array of n reals. Let Mk
s be the maximum of the

suffix sums of q0, . . . , qk and Mk
p the maximum of the prefix sums

of qk , . . . , qn−1. The maximum of the sums of all subarrays
containing qk is

Max(qk) := Mk
s +Mk

p − qk

(the sum of the largest subarrays ending at qk and starting at qk).
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Proof (Sketch) of Lemma 1

Suppose [A,B] is satisfies the above Lemma. Then any other
subarray containing qk (say [a, b]) has lesser sum.

a . . . A . . . qk . . . b . . . B

David Tran Parallel Algorithms for the Maximum Subarray Problem
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Maximum Subarray Algorithm

1 Compute the prefix/suffix sums of Q as P, S

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,

1 Mk
s = Mp[k]− S [k] + Q[k] (range query from A to k)

2 Mk
p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)
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Maximum Subarray Algorithm (Parallel Version)

1 Compute the prefix/suffix sums of Q as P, S (in parallel)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms (in parallel)

3 For each 1 ≤ k ≤ n, (in parallel)
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk) (in parallel)
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Maximum Subarray Algorithm (Analysis)
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Maximum Subarray Algorithm (Analysis)

Using O(n/ log n) processors on EREW-PRAM:

1 Compute the prefix/suffix sums of Q as P, S O(log n)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms O(log n)

3 For each 1 ≤ k ≤ n, O(log n)
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk) O(log n)

T (n): O(log n)
SU(n): O(n) (Kadane)
Efficiency:O(n)/O(log n · n/ log n) = O(1)(!!)
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Recall: Main Result

Theorem

There exists parallel algorithms for d = 1 and d = 2 with O(log n)
time complexity. The former is optimal on an EREW-PRAM, while
the latter is optimal on a CREW-PRAM.
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Maximum Subarray Idea: d = 2

2 -3 4 -1 5

-1 6 -2 7 -3

4 -2 8 -4 9

1 Pick a 2D subarray of columns.

2 Sum across the rows to form a 1D array.

3 Apply the 1D algorithm to find the maximum subarray sum.

4 Repeat for all subarrays of columns.
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Maximum Subarray Algorithm: d = 2

1 Replace each row by its prefix sums.

2 Prepend a column of zeroes to the matrix.
3 For each subarray of columns C gh, 0 ≤ g ≤ h < n

1 Collapse (sum) the rows of C gh to form a a single column
2 Apply the 1D algorithm to find the maximum subarray sum

Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.
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Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.
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Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums. O(log n)

2 Prepend a column of zeroes to the matrix. O(log n)

3 For each subarray of columns C gh, 0 ≤ g ≤ h < n
1 Collapse (sum) the rows of C gh to form a 1D array. O(log n),

using n/ log n and n processors for each C gh on CREW-PRAM
and EREW-PRAM, respectively.

2 Apply the 1D algorithm to find the maximum subarray sum
Mgh for C gh. O(log n)

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n. O(log n)

T (n): O(log n)
SU(n): O(n3)
Efficiency: O(n3)/O(log n · n3/ log n) = O(1)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d > 2

In general, for each of the
(n
2

)d−2
d-dimensional subarrays, we can

collapse them to a d − 1-dimensional subarray and apply the d − 1
algorithm to it in O(log n) time.

Remark

The d-dimensional maximum subarray problem can be solved in

O(log n) time with n ·
(n
2

)d−1
processors on a CREW-PRAM, and

n2 ·
(n
2

)d−1
processors on an EREW-PRAM.
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Recent Work

(1998) A (very slightly) sub-cubic algorithm for the 2D serial
version using matmul

(2004) 2D parallel version of the algorithm designed for
BSP/CGM models

(2017) 2D parallel version of the algorithm (among other
problems) with optimal communication complexity on the
systolic array model (FGPA, ASIC)
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