
Background
Main Results
Recent Work

Parallel Algorithms for the Maximum Subarray
Problem

David Tran

University of Western Ontario

CS 4402, April 2024

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Table of Contents

1 Background

2 Main Results

3 Recent Work

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Problem

Let A be a d-dimensional array of n reals. Find a d-dimensional
subarray A′ of A such that the sum of the elements of A′ is
maximized.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Applications

Image processing: find the brightest region in an image

Signal processing: find the loudest region in a sound wave

Data mining: find the most profitable region in a dataset

Bioinformatics: find the most conserved region in a DNA
sequence

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Applications

Image processing: find the brightest region in an image

Signal processing: find the loudest region in a sound wave

Data mining: find the most profitable region in a dataset

Bioinformatics: find the most conserved region in a DNA
sequence

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Applications

Image processing: find the brightest region in an image

Signal processing: find the loudest region in a sound wave

Data mining: find the most profitable region in a dataset

Bioinformatics: find the most conserved region in a DNA
sequence

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Applications

Image processing: find the brightest region in an image

Signal processing: find the loudest region in a sound wave

Data mining: find the most profitable region in a dataset

Bioinformatics: find the most conserved region in a DNA
sequence

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

History (Serial version)

2D version of the problem first proposed by Ulf Grenander in
1977 for maximum-likelihood estimation of patterns in images

Grenander discovers O(n2) algorithm for 1D version

Michael Shamos discovers O(n log n) algorithm overnight

Jay Kadane invents O(n) in less than a minute

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

History (Serial version)

2D version of the problem first proposed by Ulf Grenander in
1977 for maximum-likelihood estimation of patterns in images

Grenander discovers O(n2) algorithm for 1D version

Michael Shamos discovers O(n log n) algorithm overnight

Jay Kadane invents O(n) in less than a minute

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

History (Serial version)

2D version of the problem first proposed by Ulf Grenander in
1977 for maximum-likelihood estimation of patterns in images

Grenander discovers O(n2) algorithm for 1D version

Michael Shamos discovers O(n log n) algorithm overnight

Jay Kadane invents O(n) in less than a minute

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

History (Serial version)

2D version of the problem first proposed by Ulf Grenander in
1977 for maximum-likelihood estimation of patterns in images

Grenander discovers O(n2) algorithm for 1D version

Michael Shamos discovers O(n log n) algorithm overnight

Jay Kadane invents O(n) in less than a minute

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Table of Contents

1 Background

2 Main Results

3 Recent Work

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Main Result

Theorem

There exists parallel algorithms for d = 1 and d = 2 with O(log n)
time complexity. The former is optimal on an EREW-PRAM, while
the latter is optimal on a CREW-PRAM.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Prefix/Suffix Sums and Maxima

Q = 1 2 3 4 5

P(Q) = 1 3 6 10 15

S(Q) = 15 14 12 9 5

MP(Q) = 1 2 3 4 5

MS(Q) = 5 5 5 5 5

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Prefix/Suffix Sums and Maxima

Q = 1 2 3 4 5

P(Q) = 1 3 6 10 15

S(Q) = 15 14 12 9 5

MP(Q) = 1 2 3 4 5

MS(Q) = 5 5 5 5 5

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Prefix/Suffix Sums and Maxima

Q = 1 2 3 4 5

P(Q) = 1 3 6 10 15

S(Q) = 15 14 12 9 5

MP(Q) = 1 2 3 4 5

MS(Q) = 5 5 5 5 5

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Prefix/Suffix Sums and Maxima

Q = 1 2 3 4 5

P(Q) = 1 3 6 10 15

S(Q) = 15 14 12 9 5

MP(Q) = 1 2 3 4 5

MS(Q) = 5 5 5 5 5

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Prefix/Suffix Sums and Maxima

Q = 1 2 3 4 5

P(Q) = 1 3 6 10 15

S(Q) = 15 14 12 9 5

MP(Q) = 1 2 3 4 5

MS(Q) = 5 5 5 5 5

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Range Query in O(1)

The sum of elements in the subarray [i , j ] is P[j ]− P[i − 1].

Q = 1 2 3 4 5

P(Q) = 1 3 6 10 15

Sum of Q[1, 3] = P[3]− P[0] = 10− 1 = 9.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Key Lemma

Lemma 1

Let Q be a 1D array of n reals. Let Mk
s be the maximum of the

suffix sums of q0, . . . , qk and Mk
p the maximum of the prefix sums

of qk , . . . , qn−1. The maximum of the sums of all subarrays
containing qk is

Max(qk) := Mk
s +Mk

p − qk

(the sum of the largest subarrays ending at qk and starting at qk).

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Proof (Sketch) of Lemma 1

Suppose [A,B] is satisfies the above Lemma. Then any other
subarray containing qk (say [a, b]) has lesser sum.

a . . . A . . . qk . . . b . . . B

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm

1 Compute the prefix/suffix sums of Q as P, S

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,

1 Mk
s = Mp[k]− S [k] + Q[k] (range query from A to k)

2 Mk
p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm

1 Compute the prefix/suffix sums of Q as P, S

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,

1 Mk
s = Mp[k]− S [k] + Q[k] (range query from A to k)

2 Mk
p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm

1 Compute the prefix/suffix sums of Q as P, S

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,

1 Mk
s = Mp[k]− S [k] + Q[k] (range query from A to k)

2 Mk
p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm

1 Compute the prefix/suffix sums of Q as P, S

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)

2 Mk
p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm

1 Compute the prefix/suffix sums of Q as P, S

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm

1 Compute the prefix/suffix sums of Q as P, S

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm

1 Compute the prefix/suffix sums of Q as P, S

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm (Parallel Version)

1 Compute the prefix/suffix sums of Q as P, S (in parallel)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms (in parallel)

3 For each 1 ≤ k ≤ n, (in parallel)
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk) (in parallel)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm (Analysis)

Using O(n/ log n) processors on EREW-PRAM:

1 Compute the prefix/suffix sums of Q as P, S

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm (Analysis)

Using O(n/ log n) processors on EREW-PRAM:

1 Compute the prefix/suffix sums of Q as P, S O(log n)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms

3 For each 1 ≤ k ≤ n,
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm (Analysis)

Using O(n/ log n) processors on EREW-PRAM:

1 Compute the prefix/suffix sums of Q as P, S O(log n)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms O(log n)

3 For each 1 ≤ k ≤ n,
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm (Analysis)

Using O(n/ log n) processors on EREW-PRAM:

1 Compute the prefix/suffix sums of Q as P, S O(log n)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms O(log n)

3 For each 1 ≤ k ≤ n, O(log n)
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm (Analysis)

Using O(n/ log n) processors on EREW-PRAM:

1 Compute the prefix/suffix sums of Q as P, S O(log n)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms O(log n)

3 For each 1 ≤ k ≤ n, O(log n)
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk) O(log n)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm (Analysis)

Using O(n/ log n) processors on EREW-PRAM:

1 Compute the prefix/suffix sums of Q as P, S O(log n)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms O(log n)

3 For each 1 ≤ k ≤ n, O(log n)
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk) O(log n)

T (n): O(log n)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm (Analysis)

Using O(n/ log n) processors on EREW-PRAM:

1 Compute the prefix/suffix sums of Q as P, S O(log n)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms O(log n)

3 For each 1 ≤ k ≤ n, O(log n)
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk) O(log n)

T (n): O(log n)
SU(n): O(n) (Kadane)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm (Analysis)

Using O(n/ log n) processors on EREW-PRAM:

1 Compute the prefix/suffix sums of Q as P, S O(log n)

2 Compute the prefix maxima of S as Mp and the suffix maxima
of P as Ms O(log n)

3 For each 1 ≤ k ≤ n, O(log n)
1 Mk

s = Mp[k]− S [k] + Q[k] (range query from A to k)
2 Mk

p = Ms [k]− P[k]− Q[k] (range query from k to B)

3 Max(qk) = Mk
s +Mk

p − Q[k]

4 Return the maximum of Max(qk) O(log n)

T (n): O(log n)
SU(n): O(n) (Kadane)
Efficiency:O(n)/O(log n · n/ log n) = O(1)(!!)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Recall: Main Result

Theorem

There exists parallel algorithms for d = 1 and d = 2 with O(log n)
time complexity. The former is optimal on an EREW-PRAM, while
the latter is optimal on a CREW-PRAM.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Idea: d = 2

2 -3 4 -1 5

-1 6 -2 7 -3

4 -2 8 -4 9

1 Pick a 2D subarray of columns.

2 Sum across the rows to form a 1D array.

3 Apply the 1D algorithm to find the maximum subarray sum.

4 Repeat for all subarrays of columns.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Idea: d = 2

2 -3 4 -1 5

-1 6 -2 7 -3

4 -2 8 -4 9

1 Pick a 2D subarray of columns.

2 Sum across the rows to form a 1D array.

3 Apply the 1D algorithm to find the maximum subarray sum.

4 Repeat for all subarrays of columns.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Idea: d = 2

2 -3 4 -1 5

-1 6 -2 7 -3

4 -2 8 -4 9

1 Pick a 2D subarray of columns.

2 Sum across the rows to form a 1D array.

3 Apply the 1D algorithm to find the maximum subarray sum.

4 Repeat for all subarrays of columns.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Idea: d = 2

2 -3 4 -1 5

-1 6 -2 7 -3

4 -2 8 -4 9

1 Pick a 2D subarray of columns.

2 Sum across the rows to form a 1D array.

3 Apply the 1D algorithm to find the maximum subarray sum.

4 Repeat for all subarrays of columns.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2

1 Replace each row by its prefix sums.

2 Prepend a column of zeroes to the matrix.
3 For each subarray of columns C gh, 0 ≤ g ≤ h < n

1 Collapse (sum) the rows of C gh to form a a single column
2 Apply the 1D algorithm to find the maximum subarray sum

Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2

1 Replace each row by its prefix sums.

2 Prepend a column of zeroes to the matrix.

3 For each subarray of columns C gh, 0 ≤ g ≤ h < n

1 Collapse (sum) the rows of C gh to form a a single column
2 Apply the 1D algorithm to find the maximum subarray sum

Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2

1 Replace each row by its prefix sums.

2 Prepend a column of zeroes to the matrix.
3 For each subarray of columns C gh, 0 ≤ g ≤ h < n

1 Collapse (sum) the rows of C gh to form a a single column
2 Apply the 1D algorithm to find the maximum subarray sum

Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2

1 Replace each row by its prefix sums.

2 Prepend a column of zeroes to the matrix.
3 For each subarray of columns C gh, 0 ≤ g ≤ h < n

1 Collapse (sum) the rows of C gh to form a a single column

2 Apply the 1D algorithm to find the maximum subarray sum
Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2

1 Replace each row by its prefix sums.

2 Prepend a column of zeroes to the matrix.
3 For each subarray of columns C gh, 0 ≤ g ≤ h < n

1 Collapse (sum) the rows of C gh to form a a single column
2 Apply the 1D algorithm to find the maximum subarray sum

Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2

1 Replace each row by its prefix sums.

2 Prepend a column of zeroes to the matrix.
3 For each subarray of columns C gh, 0 ≤ g ≤ h < n

1 Collapse (sum) the rows of C gh to form a a single column
2 Apply the 1D algorithm to find the maximum subarray sum

Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums.

2 Prepend a column of zeroes to the matrix.
3 For each subarray of columns C gh, 0 ≤ g ≤ h < n

1 Collapse (sum) the rows of C gh to form a 1D array.
2 Apply the 1D algorithm to find the maximum subarray sum

Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums. O(log n)

2 Prepend a column of zeroes to the matrix.
3 For each subarray of columns C gh, 0 ≤ g ≤ h < n

1 Collapse (sum) the rows of C gh to form a 1D array.
2 Apply the 1D algorithm to find the maximum subarray sum

Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums. O(log n)

2 Prepend a column of zeroes to the matrix. O(log n)

3 For each subarray of columns C gh, 0 ≤ g ≤ h < n
1 Collapse (sum) the rows of C gh to form a 1D array.
2 Apply the 1D algorithm to find the maximum subarray sum

Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums. O(log n)

2 Prepend a column of zeroes to the matrix. O(log n)

3 For each subarray of columns C gh, 0 ≤ g ≤ h < n
1 Collapse (sum) the rows of C gh to form a 1D array. O(log n),

using n/ log n and n processors for each C gh on CREW-PRAM
and EREW-PRAM, respectively.

2 Apply the 1D algorithm to find the maximum subarray sum
Mgh for C gh.

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums. O(log n)

2 Prepend a column of zeroes to the matrix. O(log n)

3 For each subarray of columns C gh, 0 ≤ g ≤ h < n
1 Collapse (sum) the rows of C gh to form a 1D array. O(log n),

using n/ log n and n processors for each C gh on CREW-PRAM
and EREW-PRAM, respectively.

2 Apply the 1D algorithm to find the maximum subarray sum
Mgh for C gh. O(log n)

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums. O(log n)

2 Prepend a column of zeroes to the matrix. O(log n)

3 For each subarray of columns C gh, 0 ≤ g ≤ h < n
1 Collapse (sum) the rows of C gh to form a 1D array. O(log n),

using n/ log n and n processors for each C gh on CREW-PRAM
and EREW-PRAM, respectively.

2 Apply the 1D algorithm to find the maximum subarray sum
Mgh for C gh. O(log n)

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n. O(log n)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums. O(log n)

2 Prepend a column of zeroes to the matrix. O(log n)

3 For each subarray of columns C gh, 0 ≤ g ≤ h < n
1 Collapse (sum) the rows of C gh to form a 1D array. O(log n),

using n/ log n and n processors for each C gh on CREW-PRAM
and EREW-PRAM, respectively.

2 Apply the 1D algorithm to find the maximum subarray sum
Mgh for C gh. O(log n)

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n. O(log n)

T (n): O(log n)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums. O(log n)

2 Prepend a column of zeroes to the matrix. O(log n)

3 For each subarray of columns C gh, 0 ≤ g ≤ h < n
1 Collapse (sum) the rows of C gh to form a 1D array. O(log n),

using n/ log n and n processors for each C gh on CREW-PRAM
and EREW-PRAM, respectively.

2 Apply the 1D algorithm to find the maximum subarray sum
Mgh for C gh. O(log n)

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n. O(log n)

T (n): O(log n)
SU(n): O(n3)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d = 2 (Analysis)

Assume n3/ log n processors on a CREW-PRAM, and n3 processors
on an EREW-PRAM.

1 Replace each row by its prefix sums. O(log n)

2 Prepend a column of zeroes to the matrix. O(log n)

3 For each subarray of columns C gh, 0 ≤ g ≤ h < n
1 Collapse (sum) the rows of C gh to form a 1D array. O(log n),

using n/ log n and n processors for each C gh on CREW-PRAM
and EREW-PRAM, respectively.

2 Apply the 1D algorithm to find the maximum subarray sum
Mgh for C gh. O(log n)

4 Find the maximum of all Mgh for 0 ≤ g ≤ h < n. O(log n)

T (n): O(log n)
SU(n): O(n3)
Efficiency: O(n3)/O(log n · n3/ log n) = O(1)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Maximum Subarray Algorithm: d > 2

In general, for each of the
(n
2

)d−2
d-dimensional subarrays, we can

collapse them to a d − 1-dimensional subarray and apply the d − 1
algorithm to it in O(log n) time.

Remark

The d-dimensional maximum subarray problem can be solved in

O(log n) time with n ·
(n
2

)d−1
processors on a CREW-PRAM, and

n2 ·
(n
2

)d−1
processors on an EREW-PRAM.

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Table of Contents

1 Background

2 Main Results

3 Recent Work

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Recent Work

(1998) A (very slightly) sub-cubic algorithm for the 2D serial
version using matmul

(2004) 2D parallel version of the algorithm designed for
BSP/CGM models

(2017) 2D parallel version of the algorithm (among other
problems) with optimal communication complexity on the
systolic array model (FGPA, ASIC)

David Tran Parallel Algorithms for the Maximum Subarray Problem



Background
Main Results
Recent Work

Citations

Perumalla, K., & Deo, N. (1995). Parallel algorithms for
maximum subsequence and maximum subarray. Parallel
Processing Letters. World Scientific Publishing Company.

Alves, C.E.R., Cáceres, E.N., Song, S.W. (2004). BSP/CGM
Algorithms for Maximum Subsequence and Maximum
Subarray.

Bae, S.E.; Shinn, T.-W.; Takaoka, T. Efficient Algorithms for
the Maximum Sum Problems. Algorithms (2017), 10, 5.
https://doi.org/10.3390/a10010005

David Tran Parallel Algorithms for the Maximum Subarray Problem


	Background
	Main Results
	Recent Work

