- 1. Proof. Let U be an open cover of X. Since U is open, for every $x \in U$, there is an open ball B_x of radius $\epsilon(x)$ around x contained in U. Consider the union of all such balls $V = \bigcup_{x \in U} B_x$. Since every ball is contained in U, $V \subseteq U$. Also, since every $x \in U$ is contained in some ball B_x , $U \subseteq V$. Thus, U = V, so V is a cover of X by open balls, so it has a finite subcover. So U has a finite subcover, so X is compact.
- 2. Proof. Suppose X is not compact. Let (x_n) , $n \in \mathbb{N}$ be an arbitrary sequence with no accumulation point in X. Define $f(x) = \inf_n \{d(x, x_n) + 1/n\}$. First we show that f is continuous. Let $x, y \in X$ with d(x, y) > 0. We have that for $n \in \mathbb{N}$,

$$f(x) \le d(x, x_n) + 1/n \le d(x, y) + d(y, x_n) + 2/n$$

so $f(x) \le d(x,y) + f(y) + 1/n$. Similarly, $f(y) \le d(x,y) + f(x) + 1/n$. So,

$$|f(x) - f(y)| \le d(x, y) + 1/n$$

Since 1/n and d(x,y) can be made arbitrarily small, f is continuous.

Next we show that f(X) is non-compact. Note that $0 \notin f(X)$ since if $x \notin (x_n)$, then f(x) > 0 since x is not an accumulation point, so $\lim_{n\to\infty} d(x,x_n) \neq 0$. If instead $x \in (x_n)$, then

$$f(x) = \inf\{1/n : x_n = x\} = \min\{1/n : x_n\} > 0$$

since there are finitely many $x_n = x$. We know there are only finitely many such x_n since if there weren't, (x_n) would have an accumulation point x. Finally, note that $1/n \in f(X)$ for arbitrarily large n since f(y) = 1/n, where $n = \max\{n : y = x_n\}$, which exists because there are only finitely many such $x_n = y$ by y not being an accumulation point. So, we can form a sequence $(f(y_k)) \subseteq f(X)$ converging to 0. But, $0 \notin f(X)$. So f(X) is not closed, and by Heine-Borel, is not compact.