Problem Set 3 # 7 #### \mathbf{a} Suppose $x_u \ge x_w$. Then $x_u \in (x_w, +\infty)$, so $f(x_w) = w \le f(x_u) = u$, contradicting that u < w. #### b $f(x_u) = u < v$ so $x_u \in A$. Similarly $f(x_w) = w > v$ so $x_w \in B$. Also, A and B are bounded by $[x_u, x_w]$. So A, B are non-empty and bounded. Note that $\forall a \in A, \forall b \in B, f(a) < v < f(b)$, so a < b. Suppose for the sake of contradiction that $\alpha > \beta$. Then $\exists a \in A$ such that $a > \beta$. But then, a is a lower bound for B greater than β , contradicting the fact that β is a greatest lower bound. So $\alpha \geq \beta$. A symmetric argument gives $\alpha \leq \beta$. So $\alpha = \beta$. #### \mathbf{c} Suppose for contradiction $f(\alpha) > \inf f(B)$. Then from (a), $\alpha > \inf B = \beta$, contradicting (b). Similarly, $f(\alpha) < \inf f(B)$ is a contradiction. So $f(\alpha) = \inf f(B)$. ### \mathbf{d} We show $v = \inf f(B) =: \gamma$. Suppose $v > \gamma$. Then there exists a $b \in f(B)$ such that $\gamma \leq b < v$. But this is impossible, since $b \in f(B) \implies f(b) > v$. Similarly, $v < \gamma$ is impossible. So $v = \gamma$. # 8 TODO. #### 9 Let $A = (a_n)$ be a convergent sequence. Since it is convergent, it is bounded. So $I = \inf a_n$ and $S = \sup a_n$ exists. Suppose for contradiction $S, I \notin A$. Consider $S \neq I$. Construct subsequences K, J that converge to S, I respectively. Then A is a convergent sequence containing subsequences that converge to two different limits; a contradiction. Now consider S = I. Since $S, I \notin A, I < a_n < S$; a contradiction. ### 10 $a_n = x, b_n = x^2$ gives $\lim a_n - b_n = 0$ and $\lim a_n/b_n = 0$. For the second case, $a_n = x + 1$ and $b_n = x$ gives $\lim a_n/b_n = 1$ but $\lim a_n - b_n = 1$. # 11 Recall the reverse triangle inequality, $|a-b| \ge ||a|-|b||$. Let $\epsilon > 0$ and $N \in \mathbb{N}$ such that $\forall n \ge N, |a_n-L| < \epsilon$. From the reverse triangle inequality, $||a_n|-|L|| \le |a_n-L| < \epsilon$. #### **12** See https://math.stackexchange.com/a/923055 . # 13 Choose $N \in \mathbb{N}$ such that $\forall n \geq N, |a_n - a| < \epsilon$. Then $$\left|\frac{a_1 + \dots + a_n}{n} - a\right| = \frac{1}{n} \left| (a_1 - a) + \dots + (a_n - a) \right|$$ $$\leq \frac{1}{n} (|a_1 - a| + \dots + |a_n - a|)$$ $$< \frac{1}{n} n \epsilon$$ $$= \epsilon$$ # **14** Since (a_n) diverges to infinity, there exists an $N \in \mathbb{N}$ such that $\forall n \geq N$, $a_n > M$ for all $M \in \mathbb{R}$. Consider the finite set $\{a_1, \ldots, a_N\}$. Then $\forall n \geq N$, $a_n \geq a_1, \ldots, a_N$. So $\min\{a_1, \ldots, a_N\} = \min(a_n)$. # 15 Consider $\epsilon = \frac{c}{2}$. We have $|a_{n+1} - a_n - c| < \frac{c}{2}$ so $a_{n+1} - a_n > \frac{c}{2}$. Then $a_{n+2} - a_{n+1} + a_{n+1} - a_n > \frac{c}{2} + \frac{c}{2} = c$ and in general, $a_{n+k} - a_n > k \cdot \frac{c}{2}$. So, we can make a_{n+k} arbitrary large. Let M > 0. Choose $N \in \mathbb{N}$ such that $\forall n \geq N, a_n > M$, which is possible since we can make a_n arbitrary large (from above). # 16 Let β be the lower bound of (b_n) . Let M > 0. Choose $N \in \mathbb{N}$ such that $\forall n \geq N$, $a_n > M - \beta$. Then $a_n + b_n \geq a_n + \beta > M$.