Problem Set 4

4

By the Algebraic Limit Theorem, it suffices to show that $\lim_{n\to\infty} \sqrt[n]{|P(n)|} = 1$. We have $\lim_{n\to\infty} |P(n)| = \infty$ so $|P(n)| \ge 1$ for all but finitely many n. We have

$$1 \leq \sqrt[n]{|P(n)|}$$

$$= \sqrt[n]{|a_k n^k + \dots + a_0|}$$

$$\leq \sqrt[n]{n^k(|a_k| + \dots + |a_0 n^{-k}|)}$$

$$= \sqrt[n]{n^k} \sqrt[n]{|a_k| + \dots + |a_0 n^{-k}|}$$

Taking the limit of the right side of the inequality as $n \to \infty$, the second factor $\to 0$ and the first $\to 1$. So by Squeeze Theorem, $\sqrt[n]{|P(n)|} = 1$.

5

Let $N_0 \in \mathbb{N}$ such that $\forall n \geq N$ we have $\left| \frac{a_{n+1}}{a_n} - c \right| < \epsilon$ for all ϵ , namely, $\epsilon < 1$. So $\frac{a_{n+1}}{a_n} > c - \epsilon$, and $\frac{a_{n+2}}{a_{n+1}} \frac{a_{n+1}}{a_n} > (c - \epsilon)^2$. Similarly, $\frac{a_{n+k}}{a_n} > (c - \epsilon)^k$ and $a_{n+k} > (c - \epsilon)^k a_n$, which $\to \infty$ as $k \to \infty$.

Let M>0. Choose $K\in\mathbb{N}$ such that, $\forall k\geq K,\, a_{N_0+k}>M$. Choose $N=N_0+K$. Then, for all $n\geq N,\, a_{N+k}>M$.

6

TODO.

7

https://math.stackexchange.com/a/1340559

Note that we can show $b_n \ge a_n$ by showing $b_n - a_n \ge 0$.

8

Suppose the sequence (a_n) did converge. Then every one of its subsequences also converges by the theorem proved in class. But (a_n) does not have a convergent subsequence: so (a_n) diverges.

9

We prove the contrapositive. Suppose (a_n) is bounded and it does not converge to b. Then there is an $\epsilon > 0$ such that $\forall N \in \mathbb{N}, \exists n \geq N$ such that $|a_n - b| > \epsilon$.

These a_n 's form a subsequence S, which is bounded, so by Bolzano-Weistrass, contains a subsequence S' that converges. But, since $\forall x \in S, |s-b| > \epsilon, S'$ can't converge to b.

10

https://math.stackexchange.com/a/3975498/890112

11

Use Monotone Convergence Theorem.

12

Use Monotone Convergence Theorem.

13

Let $s:=\liminf a_n=\limsup a_n$ Suppose for contradiction that $\lim_{n\to\infty}a_n\neq s$. Then, for $\epsilon>0$, there are infinitely many a_n such that $a_n>\epsilon+s$. Create a subsequence S from such a_n . Since (a_n) is bounded, S is bounded, so by Bolzano-Weistrass, we can create a subsequence S' convergent to some limit L. But, since $\forall x\in S,\, x>\epsilon+s$, so $L>\epsilon+s$. Then, L is a subsequential limit with $L\geq \limsup a_n$; a contradiction. Similarly, there are not infinitely many a_n such that $a_n<\epsilon-s$. So $\lim a_n=s$.

14

a

Define $\alpha := \liminf a_n + b_n$. Choose subsequences $a' \subseteq a_n, b' \subseteq b_n$ such that $\lim_{\infty} a' + b' = \alpha$. Since a', b' are convergent, they are bounded, so by Bolzano-Weistrass, we can choose subsequences $a'' \subseteq a'$ and $b'' \subseteq b'$ that converge to A, B, respectively. By definition of $\lim \inf_{n \to \infty} a_n$ and $B \ge \liminf_{n \to \infty} b_n$. And, since the subsequences of convergent sequences converge to the same $\lim_{n \to \infty} a'' + b'' = \alpha$. So, $\alpha = \liminf_{n \to \infty} a_n + b_n = a'' + b'' = A + B \ge \liminf_{n \to \infty} a_n + \lim_{n \to \infty} b_n$. \blacksquare .

b-c

 $a_n = \sin(n \cdot \frac{pi/2}{)}$ and $b_n = \sin(n \cdot \frac{\pi}{2} - \pi)$ works: note that $\liminf a_n = -1$ and $\liminf b_n = -1$, but $\liminf a_n + b_n = 0$ (and similarly for \limsup).