Definition: A field is a triple $(\mathbb F, +, \cdot)$ where $\mathbb F$ is a nonempty set, $+: \mathbb F \times \mathbb F \to \mathbb F$, and $\cdot: \mathbb F \times \mathbb F \to \mathbb F$ are functions, called addition and multiplication, satisfying the following axioms:
Theorem: Let $(\mathbb F, +, \cdot)$ be a field. Then,
Proof:
Definition: The characteristic of a field $\mathbb F$ is defined as the smallest number of times needed to sum the multiplicative identity of $\mathbb F$ to obtain 0. That is,
\[\begin{align*} \operatorname{char}(\mathbb F) = \begin{cases} p & p = \operatorname{min}\lbrace k \in \mathbb N : 1_1 + \dots + 1_k = 0\rbrace \\ 0 & \text{if $p$ doesn't exist} \end{cases} \end{align*}\]Example:
Definition: An ordered field is a field equipped with a linear order relation compatible with the field addition and multiplication. That is, $(\mathbb F, +, \cdot)$ is an ordered field when there is a relation $<$ on $\mathbb F$ satisfying the following (OF) axioms:
Notation: We write $x \leq y$ when $x \lt y \lor x = y$.
Example: $\mathbb Q, \mathbb R$ with $\lt$. But, $\mathbb C$ and $\mathbb Z_p$ are NOT ordered fields! ($\mathbb Z_p$ does not satisfy (OF3)). Show that no relation $\lt$ can exist for $\mathbb C$ that complies with the order axioms.
Proof: Suppose for the sake of contradiction that an ordering exists. Then, either $0 \lt i$ or $0 \gt i$, since $i \neq 0$. Suppose $0 \lt i$. Then by (OF4), $0i \lt i^2 \implies 0 \lt -1 \implies 0 \lt (-1)^2 = 1$. Then, by (OF3), $0 \lt -1 \implies 0 + 1 \lt -1 + 1 \implies 1 \lt 0$. We have $0 \lt 1$ and $1 \lt 0$, contradicting (OF1).
So suppose $i < 0$. Then by (OF3), $0 < -i$, so by (OF4) $0 < (-i)^2 = -1$. Then, by (OF3), $0 + 1 = 1 < -1 + 1 = 0$, We have $0 < 1$ and $1 < 0$, contradicting (OF1). $\blacksquare$
Definition: Let $(\mathbb F, \lt)$ be an ordered field. We say $a \in \mathbb F$ is positive if $0 \lt a$ and negative if $a \lt 0$ (and non-negative if $0 \leq a$).
Theorem: Let $(\mathbb F, \lt)$ be an ordered field with $x, y, z, w \in \mathbb F$. Then,
Proof:
Theorem: Let $(\mathbb F, \lt)$ be an ordered field. Then, there exists an injection $\psi: \mathbb N \hookrightarrow \mathbb F$ such that the elements of $\psi(\mathbb N_+)$ are positive and $\operatorname{char}(\mathbb F) = 0$.
Proof: Define $\psi: \mathbb N \to \mathbb F$: recurisvely as
\[\begin{align*} \psi(0_{\mathbb N}) &= 0_{\mathbb F} \\ \psi((n + 1)_{\mathbb N}) &= \psi(n_{\mathbb N}) + 1_{\mathbb F} \end{align*}\]for all $n \in \mathbb N$. Then, $\forall n \in \mathbb N, \psi(n) = 0 + \psi(n) < 1 + \psi(n) = \psi(n + 1) = 0 + \psi(n + 1) \lt 1 + \psi(n + 1) = \psi(n + 2) \dots$. By induction, it can be shown that $\forall k \in \mathbb N_+, \psi(n) < \psi(n + k)$, thus $\psi$ is injective. So, there is no $n \in \mathbb N_+$ with $\psi(n) = 0$, so $\operatorname{char}(\mathbb F) = 0$, by definition. $\blacksquare$
Definition: We say a field $\mathbb F$ contains another field $\mathbb K$, that is, $\mathbb K$ is a subfield of $\mathbb F$, or $\mathbb K \subseteq \mathbb F$, if there exists an injection $\phi: \mathbb K \hookrightarrow \mathbb F$ such that
\[\begin{align*} \phi(0_{\mathbb K}) &= 0_{\mathbb F} \\ \phi(1_{\mathbb K}) &= 1_{\mathbb F} \\ \phi(x + y) &= \phi(x) + \phi(y) \\ \phi(xy) &= \phi(x)\phi(y) \end{align*}\]for all $x, y \in \mathbb K$.
Corollary: Every ordered field $\mathbb F$ contains the field of rational numbers $\mathbb Q$.
Proof: TODO.
Corollary: Let $(\mathbb F, \lt)$ be an ordered field, $x, y \in \mathbb F$. If $\forall \epsilon \gt 0, x \leq y + \epsilon$, then $x \leq y$.
Proof: Suppose $\forall \epsilon \gt 0, x \leq y + \epsilon$. For the sake of contradiction, assume $y \lt x$. Then, $x - y \gt 0$, so $\epsilon = \frac{1}{2}(x - y) \gt 0$. So,
\(\begin{align*} y + \epsilon &= y + \frac{1}{2}(x - y) \\ &= \frac{1}{2} \cdot 2 \cdot y + \frac{1}{2}(x - y) \\ &= \frac{1}{2} (2y + x - y) \\ &= \frac{1}{2} (y + x) \\ &< \frac{1}{2} (x + x) \\ &= x \end{align*}\) ; a contradiction. $\blacksquare$
Definition: Let $(\mathbb F, \lt)$ be an ordered field. The absolute value function on $\mathbb F$ is
\[\begin{align*} \lvert x \rvert = \begin{cases} x & 0 \leq x \\ -x & x < 0 \end{cases} \end{align*}\]Theorem: Let $(\mathbb F, \lt)$ be an ordered field, $x, y \in \mathbb F$, $a \in \mathbb F$, $a \geq 0$. Then,
Proof:
Definition (Interval): Let $(X, \lt)$ be a non-empty set with a linear order relation $<$. A subset $I \subseteq X$ is called an interval in $X$ when
\[\begin{align*} \forall x,y,z \in X, (x \in I \land y \in I \land x < z \land z < y) \implies z \in I \end{align*}\]Definition: Let $(X, \lt)$ be a nonempty set with linear ordering $\lt$. Let $S \subseteq X$.
Definition: Let $(X, \lt)$ be a non-empty set with a linear order $\lt$, let $S \subseteq X, S \neq \emptyset$ be bounded.
Example:
Note: if $\max S$ exists, then $\operatorname{sup} S = \max S$!
Definition: We say that a non-empty linearly ordered set $(X, \lt)$ satisfies the Completeness Axiom, when every non-empty bounded above subset of $X$ has a least upper bound.
Intuitively, the Completeness Axiom says that there are no “gaps” or “missing points”.s
Definition: The field $\mathbb R$ of real numbers is defined as the smallest (with respect to inclusion) ordered field satisfying the completness axiom.
Theorem: The set $\mathbb N$ is not bounded above in $\mathbb R$.
Proof: Suppose otherwise and let $\alpha = \sup \mathbb N$ Then, $\alpha - 1$ is not an upper bound for $\mathbb N$, so $\exists n_0 \in \mathbb N, \alpha - 1 < n_0$. But then $\alpha < n_0 + 1$. $\blacksquare$.
Theorem: The following conditions are equivalent.
Proof:
($1 \to 2$) by definition.
($2 \to 3$) Let $x \in \mathbb R_+, y \in \mathbb R$. By (2), $\exists n_0 \in \mathbb N, \frac{y}{x} \lt n_0$. Then, as $x \gt 0$, $\frac{y}{x} \cdot x = y \lt n_0 x$.
($3 \to 4$). Let $x \in \mathbb R$. By (3), $\exists n_0 \in \mathbb N_+, n_0x \gt 1$. Then, $n_0 \gt 0 \implies \frac{1}{n_0} \gt 0 \implies n_0 \cdot x \cdot \frac{1}{n_0} \gt 1 \cdot \frac{1}{n_0}$, that is, $x \gt \frac{1}{n_0}$.
($4 \to 1$). Suppose $\alpha \in \mathbb R$ such that $\alpha \geq n, \forall n \in \mathbb N$. Then, $\alpha \geq 1 \gt 0$, and $\forall n \in \mathbb N, \frac{1}{\alpha} \leq \frac{1}{n}$, contradicting (4). $\blacksquare$
Theorem: For every $s \in \mathbb R, s \gt 0 \implies \exists x \in \mathbb R, x^2 = s$.
Proof: Given $s \in \mathbb R_+$, let $S = \lbrace x \in \mathbb R : x \geq 0 \land x^2 \lt s \rbrace$. Then, $S \neq \emptyset$ as $0 \in \mathbb S$ and $S$ is bounded above (indeed, $s \gt 0 \implies s + 1 \gt 1 \implies (s + 1)^2 \gt s + 1 \implies s + 1 \not\in S$). Let $\alpha = \sup S$. We claim that $\alpha^2 = s$.
Corollary: For every prime number $p$, there exists $x_p \in \mathbb R$ such that $x_p^2 = p$. Hence, $\mathbb Q \subseteq \mathbb R$.
Theorem: If $x, y \in \mathbb R, x \lt y$, then there is $q \in \mathbb Q$ such that $x \lt q \lt y$. That is, $\mathbb Q$ is everywhere dense in $\mathbb R$.
Proof: By the Archimedean Principle, $y \gt x \implies y - x \gt 0 \implies \exists n \in \mathbb N$ such that $\frac{1}{n} \lt \frac{y - x}{2}$. Pick $k_0 \geq 1$, such that $k_0 \gt n_0x$, and $\forall k \geq 1, k \gt n_0x \implies k_0 \leq k$. That is, $k_0$ is the smallest such number. We claim that $x \lt \frac{k_0}{n_0} \lt y$.
$x \lt \frac{k_0}{n_0}$ follows from the definition of $k_0$. We show $\frac{k_0}{n_0} \lt y$. By definition of $k_0$, $k_0 - 1 \leq n_0x$, so $\frac{k_0 - 1}{n_0} \leq x$, that is, $\frac{k_0}{n_0} \leq x + \frac{1}{n_0} \lt x + \frac{y + x}{2} = \frac{y + x}{2} \lt \frac{2y}{2} = y$. $\blacksquare$.
Theorem: If $x, y \in \mathbb R, x \lt y$, then there is $s \in \mathbb R \setminus \mathbb Q$ such that $x \lt s \lt y$. That is, the irrationals are everywhere dense in $\mathbb R$.
Proof: Given $y \gt x, x, y \in \mathbb R$. Then, $\frac{x}{\sqrt 2} \lt \frac{y}{\sqrt 2}$. By the previous theorem, we can choose $q \in \mathbb Q$ such that $\frac{x}{\sqrt 2} \lt q \lt \frac{y}{\sqrt 2}$, so $x \lt q \sqrt 2 \lt y$. It remains to show that $q \sqrt 2$ is irrational. TODO. $\blacksquare$
Theorem (Nested Interval Principle): Let $I_1 \supseteq I_2 \supseteq \dots$ be a nested sequence of closed intervals in $\mathbb R$. Then, $\bigcap_{k \geq 1}I_k \neq \emptyset$.
Proof: Write $\forall n \geq 1, I_n = [a_n, b_n]$. Define $A = \lbrace a_n : n \geq 1 \rbrace$, $B = \lbrace b_n : n \geq 1 \rbrace$. Then, $A \neq \emptyset \neq B$ and $A$ is bounded above, and $B$ is bounded below. Set $\alpha = \sup A, \beta = \inf B$, We claim that $\alpha \leq \beta$. Pick any $p \in \alpha, \beta$. We have
\[\begin{align*} \alpha \leq p &\implies \forall k \geq 1, a_k \leq \alpha \leq p \\ p \leq \beta &\implies \forall k \geq 1, p \leq \beta \leq b_k \end{align*}\]For a proof of contradiction, suppose $\beta \lt \alpha$. By he definition of $\beta, \alpha$ is not a lower bound (i.e., we can choose a $b_k \in B, b_k \lt \alpha$. By the definition of $\alpha, \exists l \geq 1$ such that $b_k \lt a_l$. If $k \leq l$, then $I_k \supseteq I_l$, so $a_k \leq a_l \leq b_l \leq b_k$, contradicting $b_k \lt b_l$. If $l \leq k$, then $I_l \supseteq I_k$, etc. $\blacksquare$.