
Solving Systems of Equations, Errors and Explorations

David Tran and Spencer Kelly

March 10, 2024

Abstract

1 Introduction

2 The PA = LU factorization method for linear systems

2.1 Why is PA = LU needed for solving linear systems approximately?

When solving linear systems of the form Ax = b, we begin by gaussian elimination of the matrix A,
followed by back substitution, and ultimately arrive at our solution. However, when a particular
matrix A is being used for multiple iterations, the overhead involved can become quite an obstacle.
This is because the process of Gaussian elimination is a computationally expensive process, with
complexity on the order O(n3). But with PA = LU factorization, we essentially remove the
overhead involved with Gaussian elimination, for all but the first iteration, by rewriting the matrix
A in terms of the upper and lower matrices L, and U , respectively. Thus, for every subsequent
iteration involving the same matrix, we need not perform gaussian elimination, since L and U allow
us to immediately begin performing the second step of solving; back-substitution, which only has
complexity O(n2).

However, when performing naive Gaussian elimination to form the matrices L and U , we are
at risk of swamping, or the existence of a zero-pivot. With the help of a permutation matrix P ,
we can now swap rows and columns, to mitigate the propogation of errors due to multiplying rows
by large values, and avoid zero-pivots. The permutation matrix P keeps track of the swapping of
rows and columns, so that the linear system itself remains unperturbed (however it is now written
PAx = Pb).

A great example would be the system Ax = b with A =

1 2 4
3 8 14
2 6 13

. To begin, we swap rows

1 and 2, since we want our multiplication to be by the smallest values possible during Gaussian

elimination. When doing this, we update our permutation matrix: P =

0 1 0
1 0 0
0 0 1

, and we can

subsequently perform gaussian elimination to yield the matrix

 3 8 14
(13)

−2
3

−2
3

(23)
2
3

11
3

, where the brackets

around the values in the place of what should be 0 represents the multiplier for the elimination of
the row, (important for bookkeeping when doing permutations).

1



Once again performing Gaussian elimination we obtain the matrix

 3 8 14
(13)

−2
3

−2
3

(23) (−1) 3

. From

this matrix, we can easily find that L =

1 0 0
1
3 1 0
2
3 −1 1

 and U =

3 8 14
0 −2

3
−2
3

0 0 3

. We can then use

these to solve linear systems for bk, with the increased efficiency of LU factorization, and the error
mitigation of the pivots enabled by the inclusion of the permutation matrix.

2.2 How to identify systems Ax = b for which PA = LU is not suited

Although it is a very effective direct method of giving (theoretically) the exact solution of the linear
system, PA = LU factorization is not always the tool you want to employ for solving said linear
system. For example, if the matrix involved is positive definite, and symmetric, we can employ
methods such as Cholensky Factorization, which is more efficient. If the matrix is not only positive
definite and symmetric, but also sparse, we can employ the Conjugate Gradient Method, which is
even more efficient than the aforementioned method, and has even lower memory demand.

2.3 Larger applications of PA = LU factorization

The applications of PA = LU factorization extend beyong just solving linear systems,and can be
used to solve very common problems. One such problem is solving for the inverse of a matrix,
which is made significantly easier when said matrix is decomposed into upper and lower matrices
via PA = LU factorization. On top of this, we can easily compute the determinant of a matrix
given its PA = LU factorization, when we recall that the determinant of a triangular matrix is
just its diagonal entries, and that the determinant of a permutation matrix is just (−1)n, where n
is the number of rows swapped by the permutation.

2



3 Iterative solution of systems of linear equations

3.1 Solving an equation for n = 100,000

3.2 Comparison of PA = LU and Jacobi Iteration

3.3 Why is solving such large systems important in applications?

4 Implement Newton’s method for multiple variables

4.1 Implement Newton’s method for systems using vectorization

4.2 Testing

4.3 Challenging Example

5 Summary

6 Appendices

6.1 Code

6.2 Plots

7 Code

8 Summary

8.1 Results

8.2 Team Description

8.3 Future Explorations

8.4 References

Appendix

3


	Introduction
	The PA = LU factorization method for linear systems
	Why is PA = LU needed for solving linear systems approximately?
	How to identify systems Ax = b for which PA = LU is not suited
	Larger applications of PA = LU factorization

	Iterative solution of systems of linear equations
	Solving an equation for n = 100,000
	Comparison of PA = LU and Jacobi Iteration
	Why is solving such large systems important in applications?

	Implement Newton's method for multiple variables
	Implement Newton's method for systems using vectorization
	Testing
	Challenging Example

	Summary
	Appendices
	Code
	Plots

	Code
	Summary
	Results
	Team Description
	Future Explorations
	References


